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Abstract

In this paper, we present an iterative procedure method for estimating the robust domains of attraction of non-linear systems. This
method is based on the approximation of the uncertain non-linear system with a parameters-dependent Convex Difference Inclusions
(CDI) system and the classical iterative methods for linear systems, which are introduced in this paper. A robust one-step operator
computing a sequence of convex sets is derived, and the polyhedral case is discussed. An algorithm summarizing the iterative
procedure based on the robust one-step operator is given, which is the theoretical contribution of this paper. This method is applied
to cancer chemotherapy model considering parametric uncertainties and it is shown that drastic reduction of the robust domain of
attraction of the cancer chemotherapy model has happened and this is caused by the parametric uncertainties. It is also proved that
the chemotherapy aggressive is not the effective treatment for all the patients.

Keywords: Robust domains of attraction, parametric uncertainties, invariance, parameters-dependent CDI system, cancer
chemotherapy model.

1. Introduction

Approximating the region of attraction of non-linear sys-
tems is an important task in model analysis and controlled de-
sign/evaluation, and several works have been devoted to this
issue [1]. These regions of attraction have the property of in-
variance. The importance of invariant sets in control and anal-
ysis of dynamical systems is due to the implicit stability and
robustness properties of these regions of the state space. Many
results regarding invariance and related topics have been pro-
vided in the literature: see, for instance, the notable pioneering
contribution [2], the works [3, 4], concerning the maximal in-
variant set, and [5] regarding the minimal one. The problem of
obtaining invariant sets for discrete-time non-linear systems is
dealt with using ellipsoids in [6] and polytopes in [7, 8]. For a
recent monograph on the subject, reader can consult [9]. The
mathematical theory that may be used to address these issues is
the viability theory, see [10] for more details.

According to our knowledges, there are few contributions for
estimating the region of attraction of non-linear systems using
set-theoretic methods. An important result in this field is the
theoretical and computational methods for a wide class of non-
linear systems and the corresponding iterative procedures to ap-
proximate them given in [11, 8]. In [12], invariant sets com-
putation for Convex Difference Inclusions (CDI) systems are
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investigated. In [13], CDI systems and set-valued maps are dis-
cussed for systems control purposes. In [14], the estimation of
the region of attraction of non-linear system is based on the ap-
proximation of the non-linear system with CDI system as well
as the classical set-theoretic methods of linear systems. This
technique is motivated by the fact that the use of linear matrix
inequalities (LMI) and iterative procedures for linear systems
has become very popular due to their advantageous properties
and the availability of efficient numerical tools to solve LMI
problems.

In numerous control applications the parameters of the dy-
namical models are considered unknown but belong to known
intervals. Approximating the robust region of attraction of
such models are important in model analysis and controlled de-
sign/evaluation. Based on the results of [11, 8, 14], in this work
we present computational method for estimating the robust do-
main of attraction of non-linear systems. This method is based
on the robust one-step operator of the parameters-dependent
CDI system that approximates the uncertain non-linear system.
This is the theoretical contribution of the paper.

Mathematical models for tumor growth have appeared in the
last decades and several scientific researchers have been inter-
ested by this topic [15, 16, 17, 18]. These models have been
used for control-based tumoral therapy design, applying opti-
mal control [19, 20] or feedback control [21, 22, 23]. Some
of them are based on the evolution of the different populations
of cells [24, 25, 26, 18, 17] and may incorporate the effects of
external drugs on the tumor growth, for instance chemotherapy
and immunotherapy drugs or their combination.
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Several objectives for control-based tumoral chemotherapy
design were posed in the literature. In some cases, the main
goal was to minimize the amount of chemotherapy drug, with
the constraint that the tumor size does not exceed the prescribed
level at the end of the treatment period. In other cases, the ob-
jective was to minimize the number of tumor cells in a fixed
therapy period under some constraints [18, 21, 20, 23, 27]. Min-
imize the amount of the therapy drug and the number of tumor
cells at the end of the treatment period simultaneously is also
considered in [22]. As a healthy condition, maintaining a nor-
mal cells population above a given level is often used [18, 28].

In this paper, the model based on the works done in [24,
25, 18, 15] is adopted to reproduce the behaviour of the nor-
mal cells population levels in presence of tumor cells and un-
der the effect of chemotherapy drugs. It was given in form of
a system of ordinary differential equations. This model origi-
nally was used to represent the evolution of acute myeloblastic
leukemia (AML) and in [18] it has been used to simulate the
tumor growth. The normal cells represent a part of the innate
immune system and can be interpreted as the aggregation of
NK cells, CD8+ cells and a circulating lymphocytes (or white
blood cells) as in [21]. In this model, Gompertzian functions
are employed to describe the tumor and normal cells growths
and some assumptions are introduced in order to maintain suf-
ficient simplicity to admit analysis.

The practical contribution of this paper, whose preliminary
version is [29], consists in the development of numerical tool
for cancer chemotherapy model considering parametric uncer-
tainties. According to the literature, this assumption is crucial
since in general the chemotherapy cancer models involve many
unknown and dynamically varying set of parameters [22]. The
presence of these uncertainties is important since, in practice,
the model parameters can vary from patient to patient and are
usually not exactly known. On the other hand, uncertainties
might make the analysis problem much more complex. The
practical contribution is done by applying the computational
method that will be developed in the first part of this paper,
which is based on the properties of invariant sets of parameters-
dependent CDI systems.

This numerical tool compute the robust domain of attraction
of the uncertain cancer chemotherapy model. It contains all
the normal and tumor cells states for which a set of appropriate
chemotherapy drug administration profiles exist. These profiles
drive the states of this region to the safe region. The safe re-
gion is defined to be the set for which the number of tumor
cells population is small enough and the normal cells popula-
tion is higher than the minimal admitted level. A minimal level
is imposed as a healthy condition for the patients.

In this paper, it will be shown that considering parame-
ters uncertainties in the cancer chemotherapy models is crucial
in order to achieve a good tumor contraction without killing
the normal cells. It will be proved using simulations that for
some patients the chemotherapy aggressive is not the efficiency
chemotherapy drug administration. A comparative study be-
tween several drug strategies is provided. The characterization
of all the robust domains of attraction for each chemotherapy
drug administration profile is given, and the suitable strategy

for each patient can be inferred by analyzing the different ro-
bust domains of attraction.

The paper is organized as follows: In Section II, the problem
statement and the theoretic contribution of the paper, which is
a computational method to estimate the robust domain of at-
traction of non-linear systems, are given. In Section III, the
mathematical cancer chemotherapy model is first given then the
numerical tool for approximating the robust domains of attrac-
tion of this model is developed. Simulations results for cancer
chemotherapy analysis are illustrated in Section IV. Section V
ends the paper by providing conclusions and giving hints for
future investigations.

Notation 1. Given n ∈ N, define Nn =
{
m ∈ N : 1 ≤ m ≤ n

}
.

Given A ∈ Rn×m, Ai with i ∈ Nn denotes its i-th row, Ai, j with
i ∈ Nn and j ∈ Nm a value that corresponds to the i-th row and
the j-th column.

2. Robust domains of attraction of non-linear systems

In this section the problem statement and the theoretic con-
tribution of the paper are stated.

We consider discrete-time uncertain non-linear systems of
the form

x+ = fP(x, u), ∀x ∈ X, ∀u ∈ U, P ∈ Σ, (1)

where x is the state vector, x+ is the successor, u is the control
input, and P is the vector of uncertain parameters. The function
fP is a parameters-dependent non-linear function. Furthermore,
the sets X andU are intended to be, hereafter, respectively the
set of state constraints and the set of admissible control inputs,
and Σ is the bounding set of the parameters vector P. They are
assumed to be known convex regions.

The set of all initial conditions from which the trajectories of
(1) converge to the safe region (it can be just a point) regardless
the parametric uncertainties is called the robust domain of at-
traction. In this paper, the main goal is to propose an algorithm
to compute this domain using set-theoretic methods.

According to set-theoretic methods, the robust domain of at-
traction of the uncertain non-linear system (1) is the maximal
robust invariant set. Since in set-theoretic methods the convex-
ity property of sets is often considered, this domain is convex.
In order to compute this domain an algorithm, which is a part
of the contributions of this paper, is based on the following pro-
cedures:

1. Approximation of the uncertain non-linear system (1) with
a parameters-dependent CDI system;

2. Characterization of the robust domain of attraction of
the parameters-dependent CDI system using set-theoretic
methods.

The CDI systems are characterized by a particular class of
set-valued maps as dynamic functions. In particular, the set-
valued map determining a CDI system is such that, given a point
in the state space, its image through the map is a convex and
compact set, for more details about CDI systems, see [11].
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The approximation of a non-linear system with a CDI system
is useful in order to apply the set-theoretic methods. In cancer
chemotherapy analysis, that will be given in the next section, it
will be shown that this algorithm can compute the exact robust
domain of attraction of cancer chemotherapy model.

In order to approximate a non-linear system, one defines a
CDI system which is characterized by a set-valued map whose
graph contains the graph of the function determining the non-
linear system. Indeed, an invariant (contractive) set for the CDI
system is also invariant (contractive) for the non-linear system.
Thus due to the particular properties of the CDI systems, con-
vexity is preserved by the one-step operator and then the numer-
ical methods proper for linear systems are also valid for CDI
systems.

Now in order to approximate the uncertain non-linear sys-
tem (1), which is defined by the parameters-dependent func-
tion fP, it is sufficient to determine a parameters-dependent set-
valued map that bounds the parameters-dependent function fP.
Therefore a robust invariant (contractive) set for the parameters-
dependent CDI system, which is defined by a parameters-
dependent set-valued map, is also invariant (contractive) for the
uncertain non-linear system (1).

Now let us introduce some useful tools to deal with convex
closed sets and CDI systems. First consider the parameters-
dependent difference inclusions systems

x+ ∈ FP(x, u), (2)

where x ∈ X ⊆ Rn is the state, x+ is the successor, u ∈ U ⊆ Rm

is the control input, P ∈ Σ ⊆ Rr is the vector of parameters
and FP(·, ·) is a parameters-dependent set-valued map on Rn.
FP(x, u) represents a function which relates a set to every point
(x, u, P) ∈ Rn×Rm×Rr, i.e. FP(x, u) ⊆ Rn for all x ∈ Rn, u ∈ Rm

and P ∈ Rr.
We consider that the parameters-dependent difference inclu-

sions system (2) is used to approximate the uncertain non-linear
system (1), i.e.

fP(x, u) ∈ FP(x, u), ∀x ∈ X, ∀u ∈ U, and P ∈ Σ.

The parameters-dependent difference inclusions system
could be obtained by bounding the dynamics of the uncertain
non-linear system (1) and this can be done by bounding the
parameters-dependent function fP(·, ·).

Hereafter, the second step to compute the robust domain of
attraction of the uncertain non-linear system (1) is given. First,
an important tool to deal with convex closed sets is the support
function, it is defined as follows.

Definition 1. Given a set Ω ⊆ Rn, the support function of Ω

evaluated at η ∈ Rn is given by φΩ(η) such that

φΩ(η) = sup
x∈Ω

ηT x.

Geometrically the support function of Ω at η is the signed ”dis-
tance” of the point of the closure of Ω farthest from the origin,
along the direction η. See [30] for some properties of support
functions. Using the support function is helpful to transform a

set-inclusion condition in terms of linear inequalities, see [30]
for instance. From the definition of the support function, we get
this property.

Property 1. [31] Given the closed convex set Ω ⊆ Rn and the
set Γ ⊆ Rn then x ∈ Ω if and only if ηT x ≤ φΩ(η) for all η ∈ Rn,
and Γ ⊆ Ω if and only if φΓ(η) ≤ φΩ(η) for all η ∈ Rn.

Before giving the definition of a controlled robust invariant
set let us introduce the following assumption.

Assumption 1. Assume that the parameters-dependent set-
valued map FP determining the system dynamics (2) is, such
that FP(x, u) for all P ∈ Σ is compact and convex for all
(x u)T ∈ Rn × Rm and for every η ∈ Rn and P ∈ Σ the func-
tion FP(x, u, η) : Rn × Rm × Rn −→ R defined as

FP(x, u, η) = φFP(x,u)(η) = sup
z∈FP(x,u)

ηT z, (3)

is convex with respect to (x u)T on X ×U.

Thus, in practice, given P ∈ Σ, FP(x, u, η) is the support func-
tion of the set FP(x, u) evaluated at η ∈ Rn and then

FP(x, u) =

{
z ∈ Rn : ηT z ≤ FP(x, u, η), ∀η ∈ Rn

}
, (4)

and it is convex in (x u)T .
The dynamical system (2) for which Assumption 1 holds are

tightly related to the CDI systems defined in [11, 12]. In fact,
given a known parameters vector P ∈ Σ then the system (1) can
be approximated by the parameters-dependent CDI system (2),
i.e.

fP(x, u) ∈ FP(x, u), ∀x ∈ X, and ∀u ∈ U.

However, when the parameters vector P is unknown and is
assumed to belong to the known set Σ the parameters-dependent
function fP(·, ·) has to be approximated by the union of FP(·, ·)
for all P ∈ Σ. Therefore, the uncertain non-linear system (1) can
be approximated by the following parameters-dependent CDI
system

x+ ∈
⋃
P∈Σ

FP(x, u), (5)

where FP(·, ·) is a parameters-dependent set-valued map on Rn

defined above.
Now let us introduce the standard definition of the controlled

robust invariant set for the generic non-linear system, adapted
here to the sets that do not necessarily contain the origin and
the parameters-dependent set-valued maps.

Definition 2. [9] The closed convex set Ω ⊆ Rn is a controlled
robust invariant set for the system (1) with P ∈ Σ if for all x ∈ Ω

there exists u ∈ U such that fP(x, u) ∈ Ω for all P ∈ Σ. It is
controlled robust invariant for the system (5) if for all x ∈ Ω

there exists u ∈ U such that FP(x, u) ⊆ Ω for all P ∈ Σ.
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For every trajectory starting in a controlled robust invariant
set Ω there exists a control input such that this trajectory re-
mains inside Ω regardless of the parametric uncertainties. For
the system (5), the controlled robust one-step operator is em-
ployed to check the controlled robust invariance of Ω ⊆ X. It is
defined hereafter.

Definition 3. Consider the closed convex set Ω and assume
that Assumption 1 holds for the parameters-dependent set-
valued map FP(·, ·) determining the dynamic system (5). The
controlled robust one-step operator is defined as follows

Q(Ω,U,X) =

{
x ∈ X | ∃u ∈ U :

⋃
P∈Σ

FP(x, u) ⊆ Ω

}
. (6)

Notice that obtaining the controlled robust one-step operator
(6) requires sweeping the parameter vector P in the set Σ which
might be computationally very demanding. Hence in order to
solve this issue one focuses on the vertices of the bounding set
Σ. Finally let us introduce the following proposition.

Proposition 1. Consider the closed convex set Ω and assume
that Assumption 1 holds for the parameters-dependent set-
valued map FP(·, ·) determining the dynamic system (5). Given
a polytope Σ and the setV of its vertices, assume that the sup-
port function FP(x, u, η) of the set FP(x, u) is convex with re-
spect to P, then the controlled robust one step-operator given
by (6) is equivalent to

Q(Ω,U,X) =

{
x ∈ X | ∃u ∈ U : FP(x, u) ⊆ Ω, ∀P ∈ V

}
.

(7)

Before giving the proof the following property that is helpful
for the proof is introduced, see [32] for the demonstration and
for other details.

Property 2. [32] Let C be a closed convex subset of Rn that
has at least one extreme point. A convex function f : C 7→ Rn

that attains a maximum over C attains the maximum at some
extreme point of C.

Proof 1. Applying Property 1, the inclusion
⋃
P∈Σ
FP(x, u) ⊆ Ω

in Eq.(6) is equivalent to

φ⋃
P∈Σ
FP(x,u)(η) ≤ φΩ(η), ∀η ∈ Rn.

By using the properties of the support function, see [30], the
latter condition is equivalent to

φ⋃
P∈Σ
FP(x,u)(η) = max

P∈Σ
φFP(x,u)(η) = max

P∈Σ
FP(x, u, η) ≤ φΩ(η), ∀η ∈ Rn,

(8)
since FP(x, u, η) for η ∈ Rn is the support function of FP(x, u)
defined in Assumption 1.

Similarly, applying Property 1 and using the definition of the
support function, the inclusion FP(x, u) ⊆ Ω,∀P ∈ V in Eq.(7)
is equivalent to

FP(x, u, η) ≤ φΩ(η), ∀P ∈ V, ∀η ∈ Rn,

whereV is the set of vertices of the set Σ, such condition is also
equivalent to

max
P∈V

FP(x, u, η) ≤ φΩ(η), ∀η ∈ Rn. (9)

Now one proves that the inequality in Eq.(8) is equivalent to
the inequality in Eq.(9). Necessity is due toV ⊆ Σ since Σ is a
polytope. To prove sufficiency, one have to prove that

max
P∈Σ

FP(x, u, η) ≤ max
P∈V

FP(x, u, η), ∀η ∈ Rn. (10)

Since (10) would mean that max
P∈V

FP(x, u, η) ≤ φΩ(η) implies

that
max
P∈Σ

FP(x, u, η) ≤ φΩ(η) ∀η ∈ Rn,

resonating by contradiction will be applied and this by sup-
posing that there exists η ∈ Rn such that max

P∈Σ
FP(x, u, η) >

max
P∈V

FP(x, u, η).

By hypothesis, for a given (x, u, η) ∈ X×U×Rn, the function
FP(x, u, η) : Σ 7→ Rn is convex with respect to P ∈ Σ, and Σ

is compact. Thus the function FP(x, u, η) attains his maximum
with respect to P over the set Σ.

Therefore, according to the Property 2 the function
FP(x, u, η) attains his maximum at some extreme point of Σ.
Hence this is a contradiction and the supposition is false then
the condition given in (10) is true and the sufficiency is proved.
Consequently, the condition (8) is equivalent to (9) and the ro-
bust one-step operator given in Definition 3 is equivalent to that
given in Proposition 1.

The controlled robust one-step operator associates to every
set Ω the set of points for which there exists a set of admissible
controls u ∈ U such that these points will be mapped inside Ω

through
⋃

P∈V
FP(x, u).

The one-step operator will be used to compute an increas-
ing sequences of nested controlled robust invariant sets, as for
linear or non-linear systems. In fact, Algorithm 1, standard
for generating increasing controlled robust invariant approxi-
mations of the robust domain of attraction, see [9], can be also
applied in this context.

Algorithm 1 Increasing sequences of controlled robust invari-
ant sets for (5)
Input: Initial convex closed controlled robust invariant set

Ω0 ⊆ X.
1: for k ∈ NN do
2: Compute Ωk+1 = Q(Ωk,U,X) ∩ X
3: if Ωk+1 = Ωk then Ωmax = Ωk return
4: end if
5: end for

Thus Ωk, k ∈ NN are the controlled robust invariant sets that
converge to the robust domain of attraction of the parameters-
dependent CDI system (5), and hence of all the non-linear sys-
tems approximated by (5). Since in this paper the robust domain
of attraction is needed to be calculated in polyhedral form, the
following proposition is introduced, analogous to [11], which
is functional for this purpose.
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Proposition 2. Given the parameters-dependent set-valued
map FP(x, u) determining the system dynamics (5), its support
function FP(x, u, η) which is assumed to be convex with respect
to P, and the state constraints set X; given also a polytope
Ω =

{
x ∈ Rn : Hx ≤ h

}
with H ∈ Rnh×n; given also a polytope

Σ andV its vertices, the controlled robust one-step operator is
given as follows

Q(Ω,U,X) =

{
x ∈ X | ∃u ∈ U : FP(x, u,Hi

T ) ≤ hi,

∀i ∈ Nnh , ∀P ∈ V
}
.

(11)

Notice that for every polytope Ω and admissible control poly-
hedral setU the set Q(Ω,U,X) is closed and convex, as proved
in [11]. Moreover, if FP(·, ·, η) are piecewise affine functions
of (x u)T then Q(Ω,U,X) is a polyhedron, which is the inter-
section of a finite number of halfspaces for every polytope (or
polyhedron) Ω.

The Algorithm 1 is suitable to compute the robust domain of
attraction of the parameters-dependent CDI system (5) which
is an approximation of the robust domain of attraction of the
uncertain non-linear system (1). A meaningful application of
the method developed in this section will be given in the rest of
the paper.

In practice, these domains are the stability/save regions of
the non-linear systems. In the second part of this paper, this
algorithm will be applied for a cancer chemotherapy analysis.

3. Application to cancer chemotherapy model

3.1. Mathematical cancer model under chemotherapy drugs
3.1.1. State variables

The mathematical model considered in [18, 24, 25] to de-
scribe the behaviour of the cells populations in the presence of
tumor and under the chemotherapy treatment is used in this pa-
per. This model involves the following cells populations:

• L, tumor cells population;

• N, normal cells population. These cells are part of the in-
nate immune system and in [24, 25] it represents the neu-
trophil cells population.

3.1.2. Modelling assumptions
The model given below is based on the following assump-

tions taken from [18, 24, 25]:

1. The growth dynamics of both tumor and normal cells pop-
ulations are the same anywhere in the body;

2. The tumor and normal cells populations follow a process
of Gompertzian growth;

3. The chemotherapy drug kills both tumor and normal cells;
4. The chemotherapy drug affects tumor cells more than nor-

mal cells;
5. The tumor cells exhibit a negative and inhibiting effect on

the growth and development of the normal cells;
6. The drug spreads instantaneously within the body.

3.1.3. Dynamic model of a cancer under chemotherapy drugs
The assumptions given above lead to the following model,

for cells populations dynamics, in presence of tumor cells and
under chemotherapy drug administration:

L̇ = αL ln
θL

L
− Π1(u)L, L(0) = L0,

Ṅ = βN ln
θN

N
− Ξ(L)N − Π2(u)N, N(0) = N0,

where α and β are the tumor and normal growth rates respec-
tively, θL and θN are the greatest size of tumor cells population
and the normal size of normal cells population respectively.

The terms αL ln θL
L and βN ln θN

N represent the Gompertizian
growth of both tumor and normal cells populations respectively,
and the term −Ξ(L)N represents the negative effect of the tumor
on the normal cells.

The variable u stands for the concentration of the chemother-
apy drug, and Π1(u) and Π2(u) represent loss functions for both
cells populations due to chemotherapy effects.

According to the works [18, 24, 25], we adopt the following
approximations:

• The function Ξ(L) is taken to be linear as in [24] (i.e.
Ξ(L) = γL, where γ is a given parameter);

• The loss function Π1(u) is considered to be linear, taking
into account the saturation phenomena, i.e, Π1(u) = ku,
k is the fraction of tumor cells that are killed due to the
chemotherapy drugs;

• The loss function Π2(u) is also considered linear, i.e,
Π2(u) = lu, l is the fraction of the normal cells that are
destroyed by the effects of the chemotherapy drugs (it is
assumed that l < k);

• The parameters of the model are uncertain and bounded
within known intervals. This leads to a polytopic paramet-
ric uncertain model.

Thus the resulting model becomes:

L̇ = αL ln
θL

L
− kuL, L(0) = L0,

Ṅ = βN ln
θN

N
− γLN − luN, N(0) = N0

PLN =
(
α β γ θN θL k l

)T
∈ ΣLN ,

(12)

where PLN is a vector of the parameters of the uncertain model,
and ΣLN is the polytopic bounding set. Since ΣLN is a polytope,
then it can be represented as the convex hull of its vertices, i.e.

ΣLN = Co
{
PLN(1), ..., PLN(Z)

}
,

where Co denotes a convex hull, PLN(z), z = 1, . . . ,Z are ver-
tices of the polytope ΣLN . Notice that, for any PLN ∈ ΣLN , there
exist non-negative coefficients λz satisfying

Z∑
z=1

λz = 1, PLN =

Z∑
z=1

λzPLN(z).

5



Table 1: Parameters of the cancer chemotherapy model (12)

param value param value

α 3.96 × 10−4 day−1 β 3.33 × 10−2 day−1

θN 1.4 × 108 cells θL 3 × 108 cells
k 8 × 10−2 l 15 × 10−3

γ 10−9 (cells.day)−1

Notice that the non-linear model (12) involves two state vari-
ables L,N, one manipulated variable u, and nP = 7 uncertain
parameters. The consistent nominal values for these parame-
ters are inferred from [24, 18], then modified to reproduce the
cells evolutions given in [24] and summarized in Table 1.

As proposed in [18], we introduce the change of variables
x1 = ln θL

L and x2 = ln θN
N , and we get the equivalent system

ẋ1 = −αx1 + ku, x1(0) = x10,

ẋ2 = −βx2 + γθLe−x1 + lu, x2(0) = x20,

P =
(
α β γ θL k l

)T
∈ Σ,

(13)

where P, Σ are derived directly from (12), x10 and x20 are the
initial conditions.

The discrete-time system modelling the cancer evolution is
obtained by sampling the continuous-time system (13), with nu-
merical integration schemes using Euler’s method and sampling
time of Ts = 1 day. It results in

x+
1 = (1 − Tsα)x1 + Tsku = fP1(x, u), x1(0) = x10,

x+
2 = (1 − Tsβ)x2 + TsγθLe−x1 + Tslu = fP2(x, u), x2(0) = x20,

P =
(
α β γ θL k l

)T
∈ Σ.

(14)
We notice that this model is more suitable to apply the iterative
methods for invariant set computation.

3.2. Control problem and constraints

In cancer chemotherapy the main objective is to contract the
tumor cells population L while maintaining the normal cells
population N above a prescribed level [21, 17]. The number
of the normal cells population N is considered as a measure of
the patient health [18].

In this section, the objective is to apply the algorithm de-
veloped in the first part of the paper in order to develop a nu-
merical tool for cancer chemotherapy analysis. This numerical
tool leads to determine all the initial tumor and normal states
for which there exist appropriate drug injection profiles. These
profiles must lead to a substantial regression of the tumor size
while avoiding that the health measure reaches dangerous val-
ues for the patient. Thus, the substantial regression of the tumor
size must be ensured without knowing the values of the param-
eters of the cancer chemotherapy model.

Explicitly the numerical tool provides the set of the initial
points (L,N), such that the dynamics of the model (12) con-
verge to the safe region, when an admissible chemotherapy drug

profile is applied. The safe region is defined as the set in the
state space L,N, where L is small enough and N ≥ Nmin, with
Nmin denoting the minimal admitted value of the normal cells
population.

Similarly in the domain of coordinates x1 and x2, this numer-
ical tool provides the set of the initial points (x1, x2), such that
the dynamics of the model (14) can be driven to the safe region,
by applying admissible chemotherapy drug profiles. The safe
region in the state space x1, x2 is defined by x1 high enough and
x2 ≤ x2max, where x2max = ln θN

Nmin
denotes the maximal admitted

value of x2.
These initial tumor and normal states are represented by the

robust domain of attraction of the cancer chemotherapy model
(14). Its calculation is substantially based on the properties of
robust positively invariant sets and convex inclusions that are
introduced in the first part of this paper.

3.3. Robust domain of attraction of cancer chemotherapy
model

The robust domain of attraction of the cancer chemotherapy
model (12) can be computed by following these procedures:

1. Approximating the discrete-time non-linear cancer model
(14) by a parameters-dependent CDI system (5);

2. Applying Algorithm 1 for the parameters-dependent CDI
system (5) that approximates the model (14); The principal
task is to compute the controlled robust one-step operator
(11). The result of this procedure is the robust domain of
attraction in the state space (x1, x2);

3. Computing the robust domain of attraction in the state
space (L,N) by using change of variables.

3.3.1. Controlled robust one-step operator for cancer
chemotherapy model

Here the controlled robust one-step operator for the cancer
chemotherapy model in the state space (x1, x2) (14) is deter-
mined by using the approximations and considerations given in
Section 2.

Firstly, it is necessary to determine the bounding functions
FP(x, u, η) for all η ∈ Rn that is convex with respect to (x u)T . Its
associated parameters-dependent set-valued maps FP(x, u), that
defines the parameters-dependent CDI system (5) must satisfy
the following inclusion

fP(x, u) ∈ FP(x, u), ∀(x u)T ∈ X ×U,

with fP(x, u) defines the cancer model (14), and FP(x, u) is de-
fined by the bounding functions FP(x, u, η) as it is given by the
equation (4).

Thus, according to Property 1, the functions FP(x, u, η) must
satisfy the following inequality

ηT fP(x, u) ≤ FP(x, u, η), ∀η ∈ Rn.

Moreover, since the non-linearity in (14) involves only fP2(x, u)
then the bounding functions of ηT fP(x, u) are related only to η2,
since the dynamics of x1 is linear. Thus a possible choice is
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• if η2 ≥ 0: FP(x, u, η) = ηT fP(x, u),
since FP(x, u, η) is already convex in this case;

• if η2 < 0:

FP(x, u, η) = η1

(
(1 − Tsα)x1 + Tsku

)
+η2

(
(1 − Tsβ)x2 + TsγθL(ax1 + b) + Tslu

)
,

(15)
with a and b such that (ax1 + b) ≤ e−x1 , obtained for in-
stance as the tangent to the graph of e−x1 at one point;

for all η ∈ R2.

Remark 1. Notice that, if the non-linear function Ξ(L) in
(3.1.3) can be taken strictly increasing, convex and Ξ(0) = 0
as in [18], the convexity is preserved and in this case, the con-
vex bounding function of ηT fP(x, u) is also easily obtainable.

We are interested in convex piecewise affine bounding func-
tions for computational purposes. For this it is sufficient to re-
place e−x1 with a convex piecewise affine upper bound, which is
easily obtainable, for the case of η2 ≥ 0. In fact, it is sufficient
to choose a set of q ∈ N parameters ci ∈ R, di ∈ R, with i ∈ Nq,
such that, e−x1 ≤ max

i∈Nq

{cix1 + di}, for all x1 ∈ R. To obtain those

parameters, it is sufficient to define zi with i ∈ Nq+1 such that
zi < zi+1 and then

ci =
e−zi+1 − e−zi

zi+1 − zi
, di =

zi+1e−zi − zie−zi+1

zi+1 − zi
,

is the affine function such that e−x1 ≤ cix1 + di for every x1 ∈

[zi, zi+1] and e−zi = cizi + di for all i ∈ Nq. Figure 1 illustrates
this approximation.

Remark 2. Notice that, in order to increase the precision, the
number of parameters q can be taken as big as desired. Hence,
arbitrary precision can be attained.

Concerning the case of η2 < 0, no modification is required
with respect to (15), since the function (15) is already piecewise
affine function. Then, we obtain

FP(x, u, η) =


η1

(
(1 − Tsα)x1 + Tsku

)
+ η2

(
(1 − Tsβ)x2

+TsγθL max
i∈Nq

{cix1 + di} + Tslu
)

if η2 ≥ 0,

FP(x, u, η)as in (15) if η2 < 0.
(16)

Figure 1 shows the convex upper bound and the concave
lower bound of e−x1 implicitly used to determine FP(x, u, η).

Notice that the bounding functions FP(x, u, η) are convex up-
per bounds of ηT fP(x, u), for all (x u)T ∈ X × U and for all
η ∈ Rn. Once convex upper bounds of ηT fP(x, u) are deter-
mined, the controlled robust one-step operator is given by using
the Proposition 2.

Since in (16) we have the term γθL then this function is not
convex with respect to the vector of model parameters P, and
the Proposition 2 can not be applied directly.

In order to derive a representation of FP(x, u, η) with con-
vex functions, we use the following change of variable δ =

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

X
1

e−
x 1

Upper bound function

Lower bound function

e−x
1

Figure 1: Bounds of the exponential function

γθL. Thus the new vector of model parameters P̄ is equal to(
α β δ k l

)T
∈ Σ̄, where Σ̄ is determined from Σ by using

the change of variable given above. Now the function given by
(16) with this change of variable becomes

FP̄(x, u, η)=



η1

(
(1 − Tsα)x1 + Tsku

)
+ η2

(
(1 − Tsβ)x2

+Tsδmax
i∈Nq

{cix1 + di} + Tslu
)

if η2 ≥ 0,

η1

(
(1 − Tsα)x1 + Tsku

)
+ η2

(
(1 − Tsβ)x2

+Tsδ(ax1 + b) + Tslu
)

if η2 < 0,
(17)

and is convex with respect to P̄, since it is the sum of convex
functions.

Now let us assume that the polytope Ω =
{
x ∈ Rn : Hx ≤ h

}
with H ∈ Rnh×n, the polyhedron X =

{
x ∈ Rn : x1 ≥ 0; 0 ≤ x2 ≤

x2max
}
, with x2max represents the maximal admitted value of x2

and the polytope U =
{
u ∈ Rm : umin ≤ u ≤ umax} with umax

and umin are respectively the maximal and the minimal value of
the chemotherapy drug, are given for the cancer chemotherapy
analysis.

Then considering that the polytope Σ̄ is also given, the con-
trolled robust one-step operator, introduced in Proposition 2, is
defined by using the upper bounds of ηT fP(x, u) given by (17).
Finally, Algorithm 1 is applied in order to compute the maximal
robust invariant polyhedral set for cancer chemotherapy model
since FP̄(x, u, η) is piecewise affine function.

Remark 3. By applying Algorithm 1, we have found that the
sequence of polytopes Ωk = {x ∈ Rn : Hk x ≤ hk} generated
by the controlled robust one-step operator have never a facet
determined by Hk

i with Hk
i,2 < 0 except the case related to

the trivial constraints x2 ≤ 0 which can be neglected in the
computation, then the lower bound of e−x1 is never used. This
would mean that the sequence of polytopes obtained and the
robust domain of attraction are affected only by the mismatches
between e−x1 and the piecewise function max

i∈Nq

{cix1 + di}, mis-

match that can be done arbitrarily small, as notice in Remark 2.
Hence the desired precision can be achieved by employing suf-
ficiently close piecewise approximations of e−x1 . Consequently,
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the conservatism introduced by approximating the uncertain
non-linear cancer model (14) by a parameters-dependent CDI
system (5) can be reduced increasing the precision as indicated
in Remark 2.

Thus according to Remark 3, the piecewise affine bound
function of ηT fP(x, u) to be employed is that given for η2 ≥ 0.
Therefore the related controlled robust one-step operator for the
cancer model (14) is given as follow:

Q(Ω,U,X) =

{
x ∈ X : ∃ u ∈ U : ∀i ∈ Nnh ,∀ j ∈ Nq, ∀P̄ ∈ V̄,(
Hi,1(1 − Tsα) + Hi,2Tsδc j

)
x1 + Hi,2

(
1 − Tsβ

)
x2

≤ hi − Hi,2Tsδd j −
(
Hi,1Tsk + Hi,2Tsl

)
u
}
,

(18)
where V̄ is the set of vertices of Σ̄. Then Q(Ω,U,X) maps
polytopes in polytopes and Algorithm 1 generates a sequence
of polytopes.

Therefore this one-step operator can be used in Algorithm
1 to compute the robust domain of attraction of the uncertain
cancer chemotherapy model (14). This domain is given in state
space (x1, x2).

3.3.2. Tumor-normal cells robust domain of attraction
Once the robust domain of attraction Ωmax for the cancer

chemotherapy model (14) has been obtained by applying Algo-
rithm 1 with the one-step operator (18), the tumor-normal cells
robust domain of attraction of the cancer chemotherapy model
(12) can be determined using change of variables.

Now we assume that Ωmax =
{
x ∈ Rn : Hx ≥ h

}
with H ∈

Rnh×n. Thus by using the change of variables x1 = ln
θL

L
and

x2 = ln
θN

N
the robust domain of attraction in the state space

(L,N) is given by the following equation

Υ =

{
(L N)T ∈ R2 : N ≥ max

i∈Nnh

{(θN
|Hi,2 |

θL
|Hi,1 |

e−hi
) 1
|Hi,2 | L

|Hi,1 |
|Hi,2 |

}}
. (19)

Since the Eq.(19) depends on the parameters θN and θL, and
these parameters are fixed but unknown, i.e. θN ∈ [θN θN] and
θL ∈ [θL θL], then the tumor-normal cells robust domain of
attraction defined by Eq.(19) becomes

Ῡ =

{
(L N)T ∈ R2 : N ≥ max

i∈Nnh

{(θN
|Hi,2 |

θL
|Hi,1 |

e−hi
) 1
|Hi,2 |

L
|Hi,1 |
|Hi,2 |

}
,

∀θN ∈ [θN θN], ∀θL ∈ [θL θL]
}
.

(20)

In Eq.(20), we have to maximize the term{(θN
|Hi,2 |

θL
|Hi,1 |

e−hi
) 1
|Hi,2 |

L
|Hi,1 |
|Hi,2 |

}
, ∀i ∈ Nnh , ∀θN ∈ [θN θN] and

∀θL ∈ [θL θL]. Hence it is equivalent to consider only

the terms
(
θN
|Hi,2 |

θL
|Hi,1 |

e−hi
) 1
|Hi,2 | L

|Hi,1 |
|Hi,2 | for all i ∈ Nnh and Eq.(20) is

equivalent to

Ῡ =

{
(L N)T ∈ R2 : N ≥ max

i∈Nnh

{(θN
|Hi,2 |

θL
|Hi,1 |

e−hi
) 1
|Hi,2 | L

|Hi,1 |
|Hi,2 |

}
. (21)

Consequently the set Ῡ is the maximal non-convex robust do-
main of attraction of the cancer chemotherapy model (12) in the
state space (L,N).

4. Simulation results

In this section, the method for the computation of the robust
domain of attraction that is developed in Section 2 is applied to
analyse the cancer chemotherapy model given in Section 3. The
parameters of this model are considered unknown but assumed
to belong into known intervals. According to our knowledge,
this assumption is consistent and maybe it is the suitable man-
ner to address the problem of variability of the parameters of
cancer models.

For simulation the chemotherapy drug profile is constrained
to take value between umin = 0 and umax = 1. The mini-
mal admitted level of the normal cells population is Nmin =

0.1θNCells, which implies that x2max = 2.30 by using change of
variable defined in the previous sections. Since the exact values
of the model parameters are not available in the literature the
value of Nmin is also taken approximately as others parameters
described and noted in Section 2.

Once the set of state constraints X and the initial robust in-
variant set Ω0 are selected, Algorithm 1 is fully automatic and
no parameters are needed to be selected.

4.1. Robust domains of attraction versus uncertainty degree of
model parameters

Applying Algorithm 1 with the controlled robust one-step
operator (18), by starting with an initial controlled robust in-
variant set Ω0, a sequence of controlled robust invariant sets is
computed. This sequence of sets converge to the controlled ro-
bust invariant set of the cancer chemotherapy model (14), in the
state space (x1, x2).

For the model considered in this paper the set Ω0 = {x ∈ X :
x1 ≥ a} with a big enough, for which the invariance condition
Ω0 ⊆ Q(Ω0,X,U) holds, is used as an initial controlled robust
invariant set. The controlled robust one-step operator (20) is to
be used to check the robust invariance of sets.

In order to illustrate the use of the method developed in
the paper, let us assume that the parameters of the cancer
chemotherapy model (12) can have variations of 30% around
their nominal values.

Figure 2 shows a sequence of nested controlled robust invari-
ant sets that converge to the maximal controlled robust invari-
ant set. This sequence of sets is depicted in black line. Notice
that Ωk+1 is defined as the set that contains all the states for
which there exist a set of admissible chemotherapy drug such
that these states can be mapped in Ωk in one step regardless
of the parametric uncertainties. In the same figure, the maxi-
mal controlled invariant set of the cancer chemotherapy model
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(14) computed taking the nominal values of the parameters is
depicted in blue line.

By applying (21) to the sets given in Figure 2, one gets the
tumor-normal cells robust domains of attraction of the cancer
chemotherapy model (12). These domains are depicted in Fig-
ure 3. In black line, the robust domain of attraction of the cancer
chemotherapy model (12) is showed. This domain contains all
the tumor and normal cells states that can be driven to the set
of healthy states considering that the parameters of the cancer
chemotherapy model are uncertain. In blue line the domain of
attraction of the cancer chemotherapy model (12) is shown for
comparison purpose.

According to simulation results given in this section, we re-
mark drastic reduction of the domain of attraction and we con-
clude that this reduction is caused by model parameters uncer-
tainties. Therefore, in order to achieve a successful chemother-
apy treatment, the identification of the real values of the model
parameters or the assumption that the model parameters are un-
known but belong to given known intervals are crucial.

The robust domain of attraction, with arbitrary precision, is
the exact domain of all the initial tumor and normal cells states
for which there exist appropriate administration chemotherapy
profiles. These administration profiles lead to tumor cells con-
traction without violating the healthy condition of the patients.
Consequently, given a patient state one could infer on the exis-
tence of successful chemotherapy treatment. Furthermore, the
amount of drugs that should be delivered and the therapy length
can also be calculated following the method of this paper.

Figure 2: Comparison between the maximal controlled invariant set (blue line)
and the maximal controlled robust invariant set computed by considering pa-
rameters variations of 30% around their nominal values (black line). The ad-
mitted level of x2 is equivalent to the admitted level of the normal cells, which
is 0.1θN Cells. The chemotherapy drugs are constrained to take values between
umax = 1 and umin = 0

Figure 4 and Figure 5 show the controlled robust invari-
ant sets of the cancer chemotherapy model (14) in the state
space (x1, x2), and the robust domains of attraction of the can-
cer chemotherapy model (12), computed by considering param-
eters variations of 0%, 10%, 20%, 30%, 40% and 50% around
their nominal values. From these figures, we conclude that the
more important the parameters variations around their nominal
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Figure 3: Comparison between the domain of attraction (blue line) and the ro-
bust domain of attraction (black line), computed considering parameters vari-
ations of 30% around their nominal values, of the cancer model (12). The
admitted level of the normal cells is 0.1θN Cells. The chemotherapy drugs are
constrained to take values between umax = 1 and umin = 0

values are, the more the reductions of domains of attraction of
the cancer chemotherapy model (12) are drastic.

Figure 4: Controlled robust invariant sets, computed by considering parameters
variations of 0%, 10%, 20%, 30%, 40% and 50% around their nominal values,
of the cancer chemotherapy model (14) in the state space (x1, x2). The admitted
level of x2 is equivalent to the admitted level of the normal cells population,
which is 0.1θN Cells. The chemotherapy drugs are constrained to take values
between umax = 1 and umin = 0

4.2. Analysis of different chemotherapy drug administration
profiles

For a given chemotherapy drug administration profile the re-
lated robust one-step operator can be determined by composing
(18). For instance, the robust one-step operator for the profile
given by one sampling period of full drug injection and one pe-
riod of null chemotherapy drug is given by the following com-
position Q

(
Q
(
Ω, {0},X

)
, {umax},X

)
.

In order to analyse and compare the robust domains of attrac-
tion of appropriate drug administration strategies, three profiles
of chemotherapy drugs are taken into account, which are:
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Figure 5: Robust domains of attraction, computed considering parameters vari-
ations of 0%, 10%, 20%, 30%, 40% and 50% around their nominal values, of
the cancer chemotherapy model (12). The admitted level of the normal cells
population is 0.1θN Cells. The chemotherapy drugs are constrained to take val-
ues between umax = 1 and umin = 0

• chemotherapy drug administration profile 1: Heavy
doses of drugs are applied all the time (chemotherapy ag-
gressive);

• chemotherapy drug administration profile 2: Heavy
doses of drugs are applied for 12 days then no doses are
applied for 12 days;

• chemotherapy drug administration profile 3: Heavy
doses of drugs are applied for 4 days then no doses are
applied for 4 days.

Model parameters variations of 30% around their nominal val-
ues are considered in the cancer chemotherapy model (12).

Now applying Algorithm 1, Figure 6 shows the robust do-
mains of attraction of the cancer chemotherapy model (12) re-
lated to the different chemotherapy drug administration profiles
given below. By analyzing the robust domains, one can notice
that there are tumor and normal cells populations states that
cannot be cured by the chemotherapy drug administration pro-
file 3, whereas they can be healed by applying the chemother-
apy drug administration profile 2 and there are tumor and nor-
mal cells populations states that can not be cured by chemother-
apy drug administration profile 2, however they can be healed
by applying the chemotherapy drug administration profile 1.
Notice that both profiles 2 and 3 have the same drug delivery
rate, i.e. 0.5umax/day. Consequently, it is more beneficial to
attack the tumor cells population for long period then release,
than for small period then release.

In Figure 6, the robust domain of attraction computed us-
ing the controlled robust one-step operator (18) is depicted in
solid line. The chemotherapy drug administration profile is con-
strained to take value between umax and umin. We remark that
this domain is the maximal domain of attraction of the can-
cer chemotherapy model (12). Consequently, the aggressive
chemotherapy is not the recommended chemotherapy treatment

for all the patients, and an appropriate treatment for each patient
is more beneficial.
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Figure 6: Robust domains of attraction of the cancer chemotherapy model (12)
related to different chemotherapy drug administration profile considering pa-
rameters variations of 30% around their nominal values. The admitted level of
the normal cells population is 0.1θN cells

5. Conclusion

In this paper we develop an iterative procedure method to
approximate the robust domains of attraction of non-linear
systems.This procedure is based on set-theoretic methods and
parameters-dependent CDI systems which is used to approxi-
mate the uncertain non-linear systems. The good approxima-
tion allows us to find the maximal robust domain of attrac-
tion as it is shown in the application. In the second part of
this paper, we apply the method developed for uncertain non-
linear systems to cancer chemotherapy model considering para-
metric uncertainties and saturation constraints which limit the
chemotherapy drug injections.

Thus we have developed numerical tool that leads to com-
pute the robust domain of attraction of cancer chemotherapy
model. This domain contains all the initial tumor and normal
cells states for which there exists a set of admissible chemother-
apy drug administration profiles. It is shown that in order to
achieve a successful chemotherapy treatment, either the identi-
fication of the real values of the model parameters or the aware-
ness during the treatment synthesis that the parameters of the
cancer model are not well known, is crucial.

In future work, alternative modelling frameworks could be
employed and other methods for estimating the robust domains
of attraction of non-linear systems could follow the work done
in this paper.
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