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ABSTRACT

Anemia is a frequent cytopenia in myelodysplastic syndromes (MDS) and most 
patients require red blood cell transfusion resulting in iron overload (IO). Deferasirox 
(DFX) has become the standard treatment of IO in MDS and it displays positive effects 
on erythropoiesis. In low risk MDS samples, mechanisms improving erythropoiesis 
after DFX treatment remain unclear. Herein, we addressed this question by using 
liquid cultures with iron overload of erythroid precursors treated with low dose of 
DFX (3μM), which corresponds to DFX 5 mg/kg/day, an unusual dose used for iron 
chelation. We highlight a decreased apoptosis rate and an increased proportion of 
cycling cells, both leading to higher proliferation rates. The iron chelation properties 
of low dose DFX failed to activate the Iron Regulatory Proteins and to support 
iron depletion, but low dose DFX dampers intracellular reactive oxygen species. 
Furthermore low concentrations of DFX activate the NF-κB pathway in erythroid 
precursors triggering anti-apoptotic and anti-inflammatory signals. Establishing stable 
gene silencing of the Thioredoxin (TRX) 1 genes, a NF-κB modulator, showed that fine-
tuning of reactive oxygen species (ROS) levels regulates NF-κB. These results justify 
a clinical trial proposing low dose DFX in MDS patients refractory to erythropoiesis 
stimulating agents.
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INTRODUCTION

Myelodysplastic syndromes (MDS) are a rare group 
of heterogeneous clonal stem cell disorders characterized 
by dysplasia on myeloid cell lines leading to ineffective 
hematopoiesis and evolution to acute myeloid leukemia 
[1]. Low-risk MDS (low or intermediate-1 risk from 
international prognostic scoring system IPSS [2] and 
recently IPSSR [3] are characterized by increased 
intramedullary apoptosis of hematopoietic progenitors 
leading to inefficient hematopoiesis and cytopenia [4, 5].

Anemia is the most frequent cytopenia in MDS and 
most patients require red blood cell (RBC) transfusion 
resulting in the development of iron overload (IO). IO is a 
common complication of MDS management, decreasing 
life expectancy due to cardiac and liver failure [6]. As a 
consequence, most patients become transfusion-dependent 
and have to be treated with iron chelation therapy (ICT) 
such as deferoxamine, a classical iron-chelating agent 
which has to be administered intravenously. Deferasirox 
(DFX) with its high lipophilic property and oral 
administration has become a standard for IO treatment [7, 
8]. The standard dose is ranging from 20 to 30 mg/kg/
day. Many studies have shown the efficiency of DFX to 
decrease iron burden in lower risk MDS patients under red 
blood cell transfusion programs [9, 10]. Interestingly, ICT 
with DFX seems to have positive effects on hematopoiesis 
in some MDS patients leading to reduction of RBC 
transfusion or even transfusion independence [11–20].

In this study, we bring insight on an original effect 
of DFX in iron-overloaded condition. Strikingly, low dose 
DFX improves erythropoiesis in vitro, through reduction 
of ROS levels and activation of NF-κB. We demonstrate 
that ROS levels finely regulate the activation of NF-κB in 
the implemented cellular model.

RESULTS

Low dose of deferasirox has a beneficial effect on 
proliferation rates

A total of 27 low risk MDS samples were 
analyzed (more details are given in Table 1). Because 
of the varying initial proportion of CD34+ cells and the 
inherent heterogeneity of proliferation capacities for each 
myelodysplastic samples, proliferation rates were given 
as a proliferation ratio (PR) consisting in the number of 
cells counted at each day of analysis divided by the initial 
number of CD34+. In a set of preliminary experiments, 
we tested various DFX doses, ranging from 1, 3, 5, 
7.5, 10 and 20μM onto hematopoietic stem progenitor 
cells (HSPCs) stemming from 3 MDS samples. It is 
noteworthy that 20μM corresponds to the plasma level 
of patients receiving 20 mg/kg/day of DFX for iron 
chelation use. Our results indicated that above 7.5μM 

DFX, there were no positive effects on cell proliferation in 
erythroid progenitors of MDS samples (data not shown). 
Consequently, all further experiments were carried out 
with 3μM DFX, corresponding to an oral dose of 5 mg/
kg/day in patients, which will be called low dose (LD) 
DFX throughout the text.

For control condition (CTRL) and LD DFX 
respectively, PR were 27.6 (2.1-134.4) and 51.3 (3-440.7) 
(p=0.19) at D10 of erythroid differentiation, and 49.2 
(3.2-207.9) and 82.2 (5.6-229.8) (p=0.039) at D14 (Figure 
1A). These results showed an increased proliferation rate 
of erythroid progenitors derived from MDS samples 14 
days after LD DFX treatment as compared to CTRL. 
Importantly, LD DFX did not affect the proliferation 
rate of HSPCs from healthy donors (n=5) which strongly 
suggests a specific role of LD DFX on MDS samples only 
(Supplementary Figure 1). We also sought to determine 
whether these proliferation-enhancing effects were 
specific to the chelating function of DFX. For that, we 
have tested two other iron chelators routinely used in 
clinical practice, desferoxamine (DFO) and deferiprone 
(DFP). In order to determine the concentrations of DFO 
and DFP which trigger similar iron chelating effects as 
LD DFX, we measured the total iron concentration in 
leukemia K562 cells by Inductively Coupled Plasma-
Mass Spectrometry (ICP-MS) (data not shown). We 
then transposed those concentrations in the erythroid 
differentiation model, and impaired cell proliferation after 
either DFO or DFP treatment was observed as compared 
to the control conditions (Figure 1B), in contrast to the 
LD DFX effect. These expected results with DFO or 
DFP confirmed previously observed iron withdrawal 
effects on cell proliferation [21]. Altogether, these results 
demonstrate that LD DFX stimulates cell proliferation of 
MDS erythroid progenitors independently of iron removal.

Increased proliferation rates with LD DFX 
are due to a larger proportion of cycling cells, 
less apoptosis but no effects on erythroid 
differentiation

LD DFX entailed fewer apoptotic cells as compared 
to control, at D10 (n=7), with 13.8% (0.7-35.9) versus 
17.5% (1.1-39.8%) (p=0.03) respectively, and at D14 
(n=9) with 19.1% (1.2-70) versus 24.7% (2.7-81) 
(p=0.007) respectively (Figure 1C). Besides, we also 
observed more cycling cells with LD DFX at D10 (n=7) 
with 30.5% of S-G2-M cells (19-34.5) for DFX versus 
21.9% (11.8-29.1) for CTRL (p=0.0001) (Figure 1D). At 
D14, there was no more statistical difference (data not 
shown).

The clonogenic properties were probed on 10 
different MDS samples (Figure 1E). We observed an 
increased number of CFU-E colonies with DFX versus 
CTRL with on average 72.7 (15-261) and 46.5 (3-174.5) 
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colonies respectively (p=0.04). However, no significant 
differences were detected for BFU-E, between DFX 
and CTRL: 59 (23-192.5) versus 44.3 (3-179) (p=0.14). 
It was noteworthy that LD DFX did not accelerate the 
different steps of erythroid differentiation (Supplementary 
Figure 2).

Induction of the NF-κB pathway by LD DFX

We then investigated which signaling pathways 
could be involved in the functional effects observed after 

DFX treatment. As evidenced by flow cytometry analysis, 
fluorescence intensities of either pAKT (Ser473), pS6 
ribosomal protein (Ser235/236) or pERK (p44/42 MAPK) 
in 3 MDS samples treated with DFX (3μM) were not 
enhanced as compared to mock treated cells (data not 
shown). We then probed two major transcription factors 
required for hematopoiesis and tumorigenesis: NF-κB 
(nuclear factor-kappa B) and FOXO3a (a member of 
the Forkhead box O). We failed to detect any change of 
location of FOXO3a by confocal microscopy as compared 

Table 1: Samples characteristics

Patient Date of birth Diagnosis Karyotype IPSS-R

Patient 1 27/04/1926 RCMD 46, XY (20) low

Patient 2 18/08/1934 RCMD 46, XY (20) low

Patient 3 01/04/1941 CMML 45,X,-Y,del(13)(q12q21)[17]/45,sl,del(7)(q21q35)[3] high

Patient 4 19/08/1938 RCMD 46, XX (20) low

Patient 5 24/06/1957 RCMD 46, XY (20) low

Patient 6 02/05/1951 RCMD 46, XY (20) low

Patient 7 16/02/1947 ICUS 46, XX (20) low

Patient 8 10/10/1955 RCMD 46, XX (20) low

Patient 9 09/09/1932 RCMD 46, XX (20) low

Patient 10 14/04/1959 RCMD 46, XX (20) low

Patient 11 10/04/1953 RCMD 46, XY (20) low

Patient 12 25/01/1928 RCMD 46, XY (20) intermediate

Patient 13 28/02/1941 CMML 46, XY (20) low

Patient 14 03/11/1947 RCMD 46, XY (20) low

Patient 15 09/07/1936 RCMD 46, XX (20) low

Patient 16 23/12/1968 RN 46, XY (20) low

Patient 17 22/10/1939 RCMD 46, XX (20) low

Patient 18 26/04/1933 RCMD 46, XY (20) low

Patient 19 07/06/1940 RCMD 46, XY (20) low

Patient 20 16/08/1924 ICUS 46, XX (20) low

Patient 21 15/09/1935 RCMD 46, XX (20) low

Patient 22 28/06/1925 CMML 46, XX (20) low

Patient 23 15/11/1951 CMML 46, XX (20) low

Patient 24 28/02/1941 CMML 46, XY (20) low

Patient 25 31/07/1945 CMML 46, XY (20) low

Patient 26 10/06/1973 RN 46, XY (20) low

Patient 27 13/02/1935 CMML 46,XY,del(16)(q12q23)[10]/46,sl,del(9)(q13q33)
[3]/46,sl,+del(16)(q12q23)[1]/ high

Diagnosis: CMML: chronic myelo-monocytic leukemia; ICUS: idiopathic cytopenia of undetermined significance; RCMD: 
refractory cytopenia with multilineage dysplasia; RN: refractory neutropenia.
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to mock treated cells (data not shown) (n=3). Regarding 
NF-κB nuclear recruitment after LD DFX treatment, we 
observed an increased NF-κB nuclear translocation (n=7) 
with an average fold of 1.69 (1.21-2.05) (p=0.004), which 
could correspond to an enhanced activation of the NF-κB 
pathway (Figure 2A).

We then analyzed 84 target genes belonging to the 
NF-κB pathway by RT-qPCR microarray plates on five 
samples (D14) treated or not with LD DFX. Four genes 

were over-expressed with LD DFX with a fold change 
> 2 and ten genes were down regulated (Figure 2B). 
Collectively, these results suggest enhanced anti-apoptotic 
(BIRC3, CSF3 and FASLG) and anti-inflammatory 
responses (TLR9, TLR4, LTBR, and TRAF2) as a result 
of the downstream NF-κB activation.

Moreover, we attempted to determine which of 
clonal or normal hematopoiesis could be amplified by 
LD DFX. To identify the molecular pattern of cells after 

Figure 1: (A) Cell proliferation rates with or without 3 μM DFX (n=18). Proliferation rates were given as a proliferation ratio (PR) 
consisting in the number of cells counted at each day of analysis divided by the initial number of CD34+. CD34+ from myelodysplastic 
patients cells treated with DFX 3μM had a better proliferation rates (p=0.039) at the end of the cell culture period (day 14). (B) Proliferation 
rates after DFX (3μM) treatment in comparison with deferoxamine (DFO; 500μM) or deferiprone (DFP; 800μM) for 3 samples of CD34+ 
from myelodysplastic patients. (C) Results of apoptosis assay (% of annexin V positive cells) assessed by flow cytometry using annexin V 
staining. (D) Cell cycle was analyzed by flow cytometry with DAPI staining (n=7) and the two histograms correspond to cells in mitosis and 
S-phase (left) or in other phases of the cycle (right). (E) Clonogenic assays were started at D5 (n=9) of the erythroid differentiation model. 
BFU-E: Burst Forming Unit-Erythroid; CFU-E: Colony Forming-Unit-Erythroid.
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DFX treatment, we applied the erythroid differentiation 
model to 2 patients, one harboring mutation in the IDH1 
(Isocitrate Dehydrogenase 1) gene, and the second in the 
MPL (MPL proto-oncogene, thrombopoietin receptor) 
and the SRSF2 (Serine and arginine Rich Splicing Factor 
2) genes. The evolution of the variant allele frequency 
(VAF) was followed by Next Generation Sequencing 
(NGS) after different times of treatment (Supplementary 
Figure 3). Interestingly, we saw a slight decrease of the 
VAF at the end of the culture period for cells treated with 
DFX strengthening the notion that DFX could maintain a 
normal hematopoiesis.

DFX functional effects are independent of 
functional iron depletion

Since the functional effects of DFX are usually 
assigned to its iron chelating properties, intracellular 
iron concentrations were measured by Inductively 
Coupled Plasma Mass Spectrometry (ICP-MS) after 
treatment of K562 cells with increasing doses of DFX 
for 48 hours (n=4). There was a dose-dependent decrease 
of intracellular iron with DFX reaching statistical 
significance (p=0.04) starting from 3 μM and above 
(Figure 3A).

Figure 2: (A) Results of confocal immunofluorescence microscopy assays for NF-κB (n=7). Nuclei are stained in blue; the red signal 
represents the p65 subunit of NF-κB; x 63. Histogram representing the fold of change of NF-κB nuclear translocation. Data were analyzed 
by a specific software (ICY) to determine the nuclear fluorescence of NF-κB in the nucleus. Data were normalized to the CTRL condition 
in each case. (B) Results of the RT-qPCR microarray plates used to assess the impact of DFX on the expression of 84 known gene targets 
of NF-κB activation (n=5). Scatter plots represent the normalized expression of NF-κB targeted genes between DFX and CTRL conditions. 
The central line indicates unchanged gene expression. The dotted lines indicate the selected 2-fold regulation threshold. Data points beyond 
the dotted lines in the upper left area (yellow) are over expressed genes and those in the lower right sections (blue) are under expressed 
genes. Baculoviral IAP Repeat Containing 3 (BIRC3), caspase 8 (CASP8), Colony Stimulating Factor 3 (CSF3), and Interleukin 1 Receptor 
Associated Kinase 2 (IRAK2). Fas Ligand (FASLG), Interleukin 1 Receptor Type 1 (IL1R1), Toll Like Receptor 9 (TLR9), PC4 and SFRS1 
Interacting Protein 1 (PSIP1), C-C Motif Chemokine Ligand 2 (CCL2), TNF Receptor Associated Factor 2 (TRAF2), Lymphotoxin Beta 
Receptor (LTBR), Toll Like Receptor Adaptor Molecule 2 (TICAM2), CD27, and Toll Like Receptor 4 (TLR4).
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Cellular iron homeostasis is regulated by iron 
regulatory proteins (IRP) which are cytoplasmic RNA-
binding proteins either stabilizing mRNAs by recognizing 
RNA motifs, termed Iron-Responsive Elements (IRE), 
located on 3’ untranslated regions (3’UTR), such as for 
transferrin receptor 1, or impairing translation of those for 
which IRE are on the 5’UTR, as for the ferritin subunits 
[22]. To determine if LD DFX perturbs iron homeostasis, 
the activity of the Iron Regulatory Proteins (IRP) was 
measured by RNA electrophoretic mobility shift assay 
(REMSA) on K562 cells treated with increasing doses 
of DFX (Figure 3B). The cell line was grown in iron-
overloaded medium to mimic the conditions experienced 
by MDS progenitors. An increase of the IRP activity 
present in K562 cells was only seen by applying 300 μM 
of DFX to the culture for 48 hours (Figure 3B lane 5), 
whereas 3 μM DFX (lane 3) did not change the activity 
present in control cells (lane 1). In all cases, this basal 
activity reflected only a minority (< 10% Figure 3C) of the 
total IRP present in the samples, as revealed by treatment 
of the lysates with β-mercaptoethanol (lanes 2,4,6). These 
results indicate that, although LD DFX induced a decrease 
of total cellular iron (Figure 3A), this low dose did not 
change the availability of functional iron as detected by 
the activity of the IRP.

LD DFX protects cells from oxidative stress

We assessed ROS levels in 9 different MDS samples 
during erythroid differentiation after 10 (D10) or 14 (D14) 
days in culture (Figure 4A). Intracellular oxidizing species, 
such as the superoxide radical anion, were measured 
with the fluorescent DHE probe. At D14, LD DFX (n=8) 
decreased the level of DHE-reactive species (average 
RFI: 6.86 (3.52-10.12)) as compared to CTRL (average 
RFI: 9.05 (4.77-15.76)) corresponding to a 20% average 
decrease (p=0.04). In the same experimental conditions, 
the mitochondria-targeted superoxide-reacting MitoSOX 
probe detected an average decrease of 58% (p=0.03) with 
LD DFX (n=9) (average RFI: 21 (7.33-33.2) compared to 
CTRL (average RFI: 30.7 (13.7-48.3)).

Thereafter, we sought to determine whether some 
metabolites and antioxidant enzymes participating to the 
cellular redox homeostasis could be regulated by LD 
DFX. The Malondialdehyde (MDA) level (p<0.05) was 
slightly decreased with LD DFX, but no impact of DFX 
on carbonyls levels was observed (Figure 4B). Neither 
SOD (SOD1-3) activity nor the GSH/GSSH ratio were 
significantly changed after LD DFX treatment (Figure 4B).

Remarkably, GPx activity was not detected in 6 
different MDS samples in the iron overloaded system 

Figure 3: (A) Decreased intracellular iron content after DFX treatment as measured by ICP-MS. K562 cells were treated with increased 
doses of DFX for 48 hours (n=4). (B) Representative (n=2) Iron Regulatory protein (IRP) activity in K562 cells treated with increasing 
concentrations of DFX. IRP activity was assessed by REMSA using an Iron Responsive Element (IRE) biotin-labeled probe. The apo-
IRP form was activated after treatment with 2-mercaptoethanol (2ME). (C) Histogram representing the ratio of the measured IRP activity 
divided by the total of IRP activity revealed by the 2-mercaptoethanol treatment (n=2).
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and, likewise, in 4 different MDS samples cultured in the 
more conventional, non-iron overloaded medium (data 
not shown). GPx4 and GPx8 were recently involved in 
redox homeostasis during erythroid differentiation [23]. 
They were tested by RT-qPCR in seven different MDS 
samples cultured in iron-overloaded medium. GPx8 
mRNA was only present in 1 sample, whereas GPx4 
mRNA was present in all MDS samples without difference 
in relative expression in the presence of LD DFX (data not 
shown). Western blots confirmed the presence of the GPx4 
protein in samples of MDS patients treated or not with 

LD DFX and also in a healthy donor sample (Figure 4C). 
We performed lysis of 3 MDS samples under nitrogen to 
avoid oxidative damage to the highly reactive active site 
selenocysteine of GPx4. As expected, GPx activity was 
detected, meaning that this activity was inhibited under 
oxygen-saturated conditions in the conventional lysis 
procedure. GPx activity was not modified by the LD DFX 
treatment (data not shown).

These results outlined that the redox molecular 
shift associated with decreased oxidizing species induced 
by LD DFX was responsible for the lowered MDA 

Figure 4: (A) Flow cytometry analysis of intracellular ROS with DHE staining (n=8) and mitochondrial ROS with MitoSOX probe 
(n=9) at D14 of the cell culture procedure. The data are normalized to the CTRL condition in each case. (B) Levels of MDA, Carbonyls, 
Glutathione and SOD (SOD 1-3) activity normalized to the CTRL condition. (C) Western blot of GPX4 for MDS patient (three samples 
were pooled) and healthy donor (n=1). Fibroblasts were used as a positive control.CTRL: control; DMSO: Dimethylsulfoxyde; REMSA: 
RNA electrophoretic mobility shift assay; HD: healthy donor; IRP: Iron response protein; IRE: Iron Responsive Element; MDA: 
Malondialdehyde; ROS: reactive oxygen species; SOD: superoxide dismutase.
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values (Figure 4B). Interestingly, lipid peroxidation is 
a hallmark of iron-dependent regulated necrosis, also 
termed as ferroptosis, which might be indicated by 
lowered MDA values. Therefore, we asked whether LD 
DFX might protect cells from ferroptosis when iron 
overload conditions were applied. For this purpose, the 
gene expression levels of 6 biomarkers of ferroptosis [24] 
were measured by RT-qPCR. After LD DFX treatment, 
the expression of these genes remained unchanged 
as compared to CTRL (Supplementary Figure 4). In 
addition, DFX did not interfere with the GPx4 activity, 
another hallmark of ferroptosis. Therefore, ferroptosis is 
not a death mechanism impacted by LD DFX under our 
experimental conditions.

NFKB is regulated by an extremely fine control 
of ROS levels

To demonstrate the tight correlation between DFX, 
ROS downregulation and activation of the NFκB pathway, 
we have engineered a cellular model by a strategy 
described previously [25] to silence thioredoxin (TRX) 
gene expression by stable RNA interference. The two 
isoforms of thioredoxin, Trx1 expressed in the cytoplasm 
and nucleus and Trx2 localized within the mitochondria, 
contribute to the intracellular redox equilibrium. Trx play a 
dual role by inhibiting NF-kB nuclear translocation under 
oxidizing conditions, and by enhancing its binding to DNA 
[26]. TRXKD knock-down cells were analyzed by Western 
blot (Figure 5A). As a CTRL, we established K652 cells 
stably expressing an inefficient shRNA sequence which 
has been widely used in previous studies [27].

Without adding excess iron in the growth medium, 
TRX1KD cells exhibited a 1,8-fold increase of both DHE 
(p=0.008) and MitoSOX fluorescence (p=0.01) (Figure 
5B and 5C). Conversely, in this condition, TRX2KD cells 
failed to exhibit significant changes. Hence, Trx1 might be 
a more efficient factor against the oxidative stress detected 
by these probes than Trx2. Under the same conditions, 
NF-κB was not activated in both TRX1KD and TRX2KD 
cells (Figure 5D) as assessed by a luciferase reporter 
assay. The cellular redox equilibrium was challenged by 
adding ferric ammonium sulfate (FAS, 100μM), LD DFX, 
or a conventional antioxidant molecule, N-acetylcysteine 
(NAC 1mM) to the culture medium of K562 cells. In 
CTRL K562 cells, addition of FAS induced a 1.8-fold 
increase of DHE fluorescence (Figure 5E) and a 8-fold 
increase of MitoSOX signal (Figure 5F) in comparison to 
basal conditions (Figure 5B and 5C).

When excess iron (FAS) was added, the fluorescence 
of TRX1KD K562 cells exhibited a 3.1-fold increase 
and 13-fold increase for DHE and MitoSOX signals, 
respectively, as compared to basal conditions (Figure 5E 
and 5F versus 5B and 5C, blue columns). Interestingly, 
LD DFX induced a significant decrease of fluorescence 
(20%) for both DHE (p=0.001) and MitoSOX (p=0.02), 

whereas NAC only decreased DHE fluorescence (p=0.04). 
Furthermore, DFX triggered NF-κB activation (p=0.03) 
in TRX1KD K562 cells in the presence FAS (100 μM) 
(Figure 5G, blue columns), which was consistent with 
the increased nuclear translocation of NF-κB visualized 
by immunofluorescence microscopy (p=0.04) (Figure 5H, 
blue columns). Whereas NAC induced a minor decrease 
of ROS level compared to DFX (Figure 5E), it was not 
associated with an increase of NF-κB activation measured 
by both confocal microscopy and luciferase reporter.

In TRX2KD K562 cells, we observed a 2.6 and 11.8-
fold increase for DHE and MitoSOX signals, respectively, 
as compared to basal conditions (Figure 5E and 5F versus 
5B and 5C, green columns). NAC was not associated with 
any significant decrease of ROS levels. In contrast, LD 
DFX significantly decreased the level measured with the 
DHE probe, although this decrease was not significant 
with MitoSOX. However, DFX and NAC did not induced 
NF-κB activation in TRX2KD K562 cells (Figure 5G and 
5H, green columns).

Collectively, these results indicated that NF-κB 
activation in our iron overload model depended on Trx1. 
NF-κB is finely regulated by the levels of oxidative 
species and it is consistently increased by LD DFX under 
these conditions.

Translational application of low dose of DFX

Based on these in vitro results, and because 
deferasirox is currently used treatment of iron overload, its 
effectiveness at low dose (5 mg/kg/day corresponding to 
a plasmatic level of 3μM) in MDS patients was evaluated 
locally in our clinical center. At the usual recommended 
dosage (20 mg/kg/day), DFX usually induces many 
side-effects and poor tolerance. Six anemic patients 
(2 Refractory cytopenia with multilineage dysplasia 
(RCMD), 1 idiopathic cytopenia of undetermined 
significance (ICUS), 1 refractory anemia with ringed 
sideroblasts (RARS), 1 refractory anemia (RA) and one 
MDS with del5q) were followed and treated with 5 mg/
kg/day of DFX. These patients displayed the following 
inclusion criteria: low risk MDS, anemia refractory to 
erythropoiesis stimulating agents or high endogenous level 
of EPO (>500IU/L) and plasma ferritin (< 1000μg/l). They 
were treated prospectively with a low dose of DFX (5 mg/
kg per day) corresponding approximately to the 3μM 
concentration used in the in vitro analyses according to 
blood plasma (6.31μM [1.072-16]) and medullar plasma 
(2μM [1.072-2.546]) level measurements. The plasma 
level of deferasirox was checked ex vivo and corrections of 
its posology were made accordingly. Three of the patients 
included required monthly RBC transfusions before the 
beginning of the DFX treatment. The hemoglobin levels of 
the patients did not reach normal recommended values, but 
they were stabilized leading to transfusion independence 
or diminution of the transfusion frequency (Figure 6A). 
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Figure 5: (A) Western blot analysis of Trx1 and Trx2 protein levels in stable TRX1KD and TRX2KD K562 cells. Trx1 and Trx2: 13 kDa; 
actin: 42 kDa. (B) Flow cytometry analysisof intracellular ROS with DHE staining (n=4) in CTRL and stable TRXKD K562 cells without 
iron overload. (C) Same experiment as in B for mitochondrial ROS with MitoSOX probe (n=4). (D) Assessment of NF-κB activity with a 
luciferase reporter assay (n=4) in TRXKD K562 cells without iron overloaded condition. (E) Same experiment as in B with FAS (100μM) 
and DFX 3μM or NAC 1mM. (F) Same experiment as in C with FAS (100μM) and DFX 3μM or NAC 1mM. (G) Same experiment as in 
D with FAS (100μM) and DFX 3μM or NAC 1mM. (H) Quantification of NF-κB translocation by confocal microscopy for K562 cells 
as described in (G). (FAS: ammonium sulfate to the medium, DFX: deferasirox, NAC: N-acetylcysteine; RFI: ratio of fluorescence; KD: 
knock-down; TRX: thioredoxin; *: <0.05; **: <0.001; ***: <0.0001).
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Currently, after 2 years of follow-up, the median time 
to transfusion independence after DFX treatment was 
9.6 months (Figure 6B). Moreover, if we consider the 
definition of transfusion independence according to IWG 
2006 [28] criteria, all patients treated with LD DFX 
became transfusion-independent. No side-effects were 
reported.

DISCUSSION

In this study, we have demonstrated that low doses 
of deferasirox below 7.5 μM had a beneficial effect on 
erythropoiesis in low risk MDS patients in vitro. The 
higher proliferation rate observed with LD DFX is due to 
the combination of increased cycling cells and protection 

Figure 6: (A) Evolution of the hemoglobin level for 6 anemic patients with low risk MDS and refractory to erythropoiesis stimulating 
agents treated by low dose of deferasirox (DFX) before and after the beginning of DFX; initial hemoglobin level = T0 DFX). (B) Evolution 
of the proportion of untransfused patients after DFX treatment for the 6 anemic patients with low risk MDS and refractory to erythropoiesis 
stimulating agents treated by low dose of DFX.D: day; Hb: hemoglobin level, M: month.
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against apoptosis linked to enhanced NF-κB activation 
regulated by ROS levels.

The aim of our study was to unravel the positive 
effect of LD DFX on erythroid proliferation. Indeed, 
we have tested elevated concentrations of DFX, such 
as 20μM, which is currently measured in the plasma of 
patients taking DFX for iron chelation purpose (between 
20 to 30 mg/kg/day). However these high doses were 
toxic for erythroid progenitors in our cellular model. 
Pullarkat et al [29] have demonstrated a benefit of low 
dose of deferasirox (5μM) on proliferation and toxicity 
for hematopoietic progenitors at higher doses, which was 
confirmed herein. Moreover, Messa et al [30] observed that 
a higher dose of DFX (50μM) induced apoptosis in two 
leukemic cell lines. Paubelle et al [31] had successfully 
used high doses of DFX (30 mg/kg) for treating elderly 
leukemic patients attesting the antileukemic effects 
of these doses. Altogether, these controversial results 
stressed that DFX displays a biphasic mode of action, 
with erythroid proliferation of progenitors of MDS 
patients at low doses and inhibition at the highest doses. 
For better understanding of the consequences of a LD 
DFX treatment on hematopoiesis, we have followed the 
clonal expansion of a mutated clone in the implemented 
liquid culture model. Regarding the results of the NGS 
experiments, we could rule out this possibility. LD DFX 
seemed unable to promote clonal hematopoiesis despite 
NF-κB activation which has been proved to be activated 
in high risk MDS [30]. Therefore, LD DFX maintained a 
normal hematopoiesis expansion.

One of the main aspects of our work was to 
investigate more deeply the connections between 
exposure to LD DFX and iron homeostasis by measuring 
the Iron Regulatory Proteins (IRP) activity: the lower the 
functionally available iron, the higher the IRP activity 
[21]. Recently, Pourcelot et al [21] have introduced the 
notion of functional intracellular iron concentration 
(FIC). FIC is the needed iron for cell homeostasis and IRP 
activity is the better way to measure it. In contrast, labile 
iron concentration (LIC) is the redox fraction implicated in 
Fenton reaction. In this study, our results indicate that LD 
DFX induced a decrease of total cellular iron leading to 
ROS protection probably due to a decrease of LIC but this 
decrease did not change the availability of FIC detected 
by the activity of the IRP. Herein, we demonstrate that 
LD DFX functional effects on iron loaded hematopoietic 
progenitors are not due mainly to the iron chelation 
properties of the drug but essentially to the protective 
effect of LD DFX on oxidative stress. Reactive oxygen 
species play an important role in the physiopathogenesis of 
MDS [32] and in other myeloid malignancies [33]. In our 
study, we showed that MDS progenitors, in the presence 
of iron excess, produce high levels of cytoplasmic and 
mitochondrial ROS. Malondialdehyde (MDA), the most 
mutagenic product of lipid peroxidation of polyunsaturated 

fatty acids, also interacts with and modulates proteins. 
We highlighted that LD DFX decreased MDA levels. 
Lipid peroxidation, associated with decreased GPx4 
activity, is a hallmark of ferroptosis which is a form of 
non-apoptotic programmed cell death induced by iron 
excess and dependent on GSH depletion [34]. We did not 
observe any modification in genes specifically involved in 
ferroptosis after DFX treatment, suggesting that LD DFX 
might protect cells from death by inhibiting apoptosis but 
not ferroptosis. Besides, we suggest that the protecting 
effects of DFX on lipid peroxidation is tightly correlated 
with ROS downregulation.

The main signaling pathways activated in erythroid 
progenitors are PI3K/AKT, mTOR, MAPkinase and NF-
κB [35, 36]. In our cell model, we observed enhanced 
NF-κB nuclear translocation followed by activation 
of specific target genes strengthening that NF-κB was 
directly activated by LD DFX. Interestingly, we detected 
the repression of genes required during apoptosis and 
others involved in the inflammatory response of NF-
κB mediated by IL-1 and TLR stimuli. In the context of 
increased inflammatory signals triggered by the S100A9 
protein via TLR4 and the inflammasome NLRP3 [37], it 
was noteworthy that LD DFX inhibited both IL1R1 and 
TLR4 expressions.

NF-κB is one of the first transcription factor that 
was recognized to be redox-regulated. While some NF-κB-
regulated genes are key factors in redox homeostasis, ROS 
can act as secondary messengers and interfere with NF-κB 
signaling pathways. Among the diversity of mechanisms 
controlling NF-κB activities, a major one depends on IκB 
inhibitors and IκB kinases (IKKs) for governing NF-κB 
activation, degradation, DNA binding and transcriptional 
activity [38]. While oxidative stress generally activates 
NF-κB [39], recent studies suggested that ROS could 
repress NF-κB pathway. Indeed, ROS appeared to activate 
NF-κB DNA binding activities during the early phase of 
oxidative stress, mainly by abrogating the inhibitory action 
of IκB inhibitors [40]. In later phases of oxidative injury, 
ROS may repress NF-κB. One possible mechanism is 
oxidation of IKKs, blocking IκK phosphorylation, and 
then hampering NF-κB activation [41]. In our model, it 
appears that decreased ROS levels induced by LD DFX 
can restore NF-κB activity through such a mechanism.

Our results supported that NF-κB signaling was 
modulated by a fine-tuning of the intracellular redox 
state. Because thioredoxins (Trx) are among the major 
endogenous redox-regulating molecules with thiol 
reducing activity, we have engineered stable K562 cells 
silenced for TRX1 or TRX2 genes [40]. The literature 
reveals controversial data concerning thioredoxin and 
NF-κB signaling. Trx could play dual and opposite roles 
toward NF-κB activities depending on its subcellular 
localization (cytoplasmic versus nuclear compartments). 
Trx1 could trigger NF-κB nuclear translocation and 
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activation through a tight interaction with p50/RelA sub-
units, protecting critical cysteines from oxidative injuries 
[42, 43]. Older studies also pointed out the negative and 
positive regulation of NF-κB by Trx [43–45]. In our 
cell model, we combined TRX1 and TRX2 knock-down 
with FAS culture conditions to modulate total cellular 
and mitochondrial ROS. We showed that DFX reduced 
the ROS amount and induced NF-κB activation in a 
Trx1-dependent manner. NAC induced decrease of ROS 
levels in TRX(1-2)-/- conditions, but this decrease was 
not as important as that induced by low dose DFX. We 
can hypothesize that ROS levels need to be sufficiently 
decreased to induce NFKB activation.

The translational application in our center of 
low dose of DFX for 6 low risk MDS patients showed 
improvement of erythropoiesis and a longer median time 
to transfusion dependence: 9.6 versus 6.1 months, if we 
consider the results obtained in the European cohort 
concerning MDS EPO refractory patients [46]. These 
results provide a rationale for a French prospective clinical 
trial which will propose LD DFX (5 mg/kg/day) in MDS 
patients refractory to erythropoiesis stimulating agents (N° 
EudraCT: 2017-001258-33).

To summarize, we have shown novel effects of LD 
deferasirox on NF-κB by fine modulation of ROS levels 
in low risk MDS erythroid progenitors. These results 
suggest that protection of MDS patients’ bone marrow 
from oxidative stress should be considered early in the 
course of their disease, and before the development of a 
significant iron overload which requires high dose of DFX 
which does not result in erythroid improvement.

MATERIALS AND METHODS

Cell samples

Bone marrow from low risk myelodysplastic patients 
and healthy donors were collected by bone marrow 
aspiration after signed consent and approval by our local 
ethical committee. Bone marrow aspirations were done for 
MDS diagnosis and also for the exploration of all kinds of 
cytopenia. When bone marrow morphology was normal, 
it was considered as healthy donor. CD34+ selection is 
described in supplementary methods. The K562 chronic 
myelogenous leukemia cell line was originally obtained 
from the ATCC biological resource. The K562 cells were 
grown in RPMI medium, supplemented with 10% fetal 
bovine serum, 1% L-glutamine, 100 UI of penicillin/ml 
and 0.1 mg streptomycin/ml at 37°C with 5% CO2.

Cell culture procedure for erythropoiesis study

We used a 2 step-liquid culture procedure as already 
described [47, 48]. Details are given in supplementary 
methods.

Other methods

Description for all other assays and techniques are 
given in supplementary methods.

Statistical methods

The significance of the experimental results was 
determined with a 2-tailed paired Student test. p≤0.05 was 
considered statistically significant. All statistical analyses 
were done with GraphPad Prism 5 software (http://www.
graphpad.com/scientific-software/prism/). Data are mean 
with SEM.
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