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CNRS, GATE Lyon St Etienne, Saint-Etienne, F-42000, France; pascal.billand@univ-st-etienne.fr
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Abstract

We consider an oligopoly setting in which firms form pairwise collaborative links in R&D with other firms. Each

collaboration generates a value that depends on the identity of the firms that collaborate. First, we provide properties

satisfied by pairwise equilibrium networks and efficient networks. Second, we use these properties in two types of

situation (1) there are two groups of firms, and the value of a collaboration is higher when firms belong to the same

group; (2) some firms have more innovative capabilities than others. These two situations provide clear insights

about how firms heterogeneity affects both equilibrium and efficient networks. We also show that the most valuable

collaborative links do not always appear in equilibrium, and a public policy that increases the value of the most

valuable links may lead to a loss of social welfare.
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1 Introduction

R&D collaboration among firms is now quite widespread, especially in industries characterized by

rapid technological change like pharmaceutical, chemical and IT industries. Interestingly vast ma-

jority of these collaborations are bilateral (see for instance Hagedoorn, 2002), prompting questions

about the structural features of the network of R&D collaborations and their impact on industry

performance (Powell et al. 2005). The architecture of these networks is typically asymmetric. More-

over, it is often possible to find the simultaneous co-existence of firms having intense collaborations

with other firms engaging minimally in collaborative activities (Powell et al. 2005). Another key

feature that comes across from the empirical literature is that the identities of the collaborating

firms is important for understanding the resulting networks (see for instance Vonrotas and Okamura,

2009, Vonortas, 2015).

Keeping these stylized facts in mind, our paper develops a model of R&D collaboration among

horizontally related firms where the outcome of the collaboration depends on the characteristics or

identity of the firm (as shown in Mowery et al. 1998 and Gomes-Casseres, Hagendorn and Jaffe,

2006). The paper incorporates an interesting trade-off: while interfirm collaboration lowers costs

of production, it also serves to increase competition among rival firms. Following Goyal and Joshi

(2003; henceforth GJ), we set up a two oligopoly stage model where firm establish their collaborative

links in stage 1 and compete in stage 2. The pairwise collaborative links for R&D purposes in our

model require a commitment of resources on the part of the collaborating firms, viewed as the costs

of link formation, and lead to lower production costs. The cost-reducing impact of collaborations

is link-specific to capture the identity of the firms in question.2

We begin by examining the classic homogeneous product model of quantity competition and

identify properties of the equilibrium and efficient networks for this case. This helps to establish

results for our main question of interest: what is the architecture of stable and efficient networks?

2This value may depend for instance on the geographic or technological proximity of firms.
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Given that our model allows for link specific heterogeneity, a systematic technique is needed to

obtain insights about the pattern of collaborations that will occur in equilibrium networks and

welfare-maximizing networks. We do this by introducing two stylized frameworks where we limit

the heterogeneity in the cost-reduction parameter in a systematic way. These frameworks allow to

take into consideration two types of heterogeneity that are often cited as playing an important role

in the choice of collaborative partners and the result of collaborations (see among others Mowery et

al., 1998, Gomes-Casseres, et al., 2006, Vonortas and Okamura, 2009, Vonortas and Zirulia, 2015,

Blum et al., 2017).

(1) In the Insider-Outsider framework (I-O framework), we assume that firms belong to two

distinct groups and the value of a collaboration between two firms is higher if these firms belong to

the same group than if they belong to different groups. This allows us to have two possible levels

of cost-reduction. Such an heterogeneity highlights the role of different kinds of proximities (e.g.,

technical, geographical, ...) between firms in the choice and the value of interfirm collaboration.

(2) In the High and Low innovative firms framework (H-L framework), we assume that firms

either have high or low innovative potential. The value of collaboration between high innovative

potential firms is higher than the corresponding value between two low innovative potential firms.

The cost of production when a firm with innovative potential collaborates with a firm having low

innovative potential lies in between the other two costs. Thus in this framework, we have three

different cost reduction parameters. This framework relies on the well-established facts that firms

differ in their posture toward innovation and that firms with a more dynamic posture toward

innovation are more attractive as collaborative partners.3

Architectures that arise in equilibrium networks in these two frameworks are either of a group-

dominant type or of a hierarchical type.4 We then identify the architectures of efficient networks

3The I-O framework can be seen as an horizontal heterogeneity and the H-L framework as a vertical heterogeneity.
We thank one of the referees for this distinction.

4In a group-dominant type architecture, there are sets of firms such that firms belonging to a set are linked with
all firms in this set, but have no other links. In a hierarchical type architecture, there is a set of firms N ′ such that
for every firm i that has formed a link, there exists a firm j ∈ N ′ that is linked with i.
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in the I-O and H-L frameworks.5 We establish that in both frameworks efficient networks are of a

nested split graph/network type.6 Finally, we go beyond the linear oligopoly model and demonstrate

how our results can be generalized to a larger class of games that includes both the differentiated

Cournot and Bertrand oligopoly models.

Our paper is a contribution to the study of network formation and cooperation in oligopolies.

The model of collaborative networks we present is inspired by recent research on R&D networks

and is most directly related to GJ (2003). The authors assume that collaborative R&D links

are homogeneous, that is they have the same value in terms of their cost-reducing impact. Our

model depart from this assumption, and considers by allowing for the value of the cost-reducing

parameter to vary across links, and provides a systematic way to obtain insights under links cost

heterogeneity. Additionally, since our model incorporates the identity of the collaborating firms, we

find that the pattern of equilibrium networks is asymmetric, which is closer to reality. In the GJ

model, in equilibrium, either all firms are similar (form a complete network or an empty network),

or there are two groups of firms (in the group-dominant network). However, in the latter case, firms

belonging to a group have the same number of links, therefore have the same marginal cost and

competitiveness in the market. The introduction of link-specific heterogeneity in our paper implies

a much greater variability in the degree of competitiveness among firms. In particular, with just

two different sets of link values, hierarchical architectures already emerge in equilibrium.

Finally, our model also allows us to give some interesting insights over public policy. In the paper,

we find that the most valuable links are not always formed in equilibrium networks. This implies

that more profitable innovations do not always occur in equilibrium. However we show that public

intervention aimed at promoting the most valuable links can be counterproductive.

Our paper also relates to Westbrock (2010) who provides architectures of efficient networks for

5Note that while we only consider two types of firms in the I-O and H-L frameworks, our results are qualitatively
preserved when we allow for a greater number of firm types.

6Roughly speaking in a nested split graph, the neighborhoods of the firms are nested together.
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homogeneous link values. Billand et al. (2015) refine his result and show that efficient networks are

nested split graphs using conditions on individual firm payoffs rather than aggregate payoffs.7 Our

paper finds the conditions on individual payoffs when link values are heterogeneous.

We now briefly point out some other papers to which our work relates as well. Goyal and

Moraga-Gonzales (2001), Goyal, Moraga-Gonzales, and Konovalov (2008) analyze the interaction

between the effort of firms on collaborative links and the effort of firms on other R&D projects,

under link cost heterogeneity. Our paper also complements the work of König et al. (2012) who

examine stability and efficiency of R&D networks in a model with network dependent spillovers.

The presence of both direct and indirect spillovers in the analysis of König et al. is an important

feature of their model that distinguishes it from the GJ’s framework. Not surprisingly, in their

paper, because of the benefits from indirect links, every firm in a connected component has the

same profit.

The rest of the paper is organized as follows. In section 2, we present the model setup. In section

3, we provide the results for a market with homogeneous products under quantity competition. In

section 4, we propose a generalized framework which allows us to deal with differentiated oligopolies.

In section 5, we conclude and also discuss the differences between our framework and heterogeneous

link formation costs.

2 Model setup

Network definitions. We consider an industry with a set N = {1, . . . , n} of firms. In the game

we model, every firm first announces its intended R&D collaboration links: si,j = 1 means that

firm i intends to form a collaborative link with firm j, and si,j = 0 otherwise. Firms only play pure

strategies. Thus a strategy of firm i is given by si = {{si,j}j∈N\{i}}. Let Si denote the strategy set

7For more on the properties of nested split graphs, see the recent paper by König et al. (2014).
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of firm i. The set S = ×j∈NSj is the set of strategy profiles of firms. A link ij between two firms i

and j is formed if and only if si,j = sj,i = 1. A strategy profile s = {s1, s2, ..., sn} therefore induces

a network g[s]. For expositional simplicity we will often omit the dependence of the network on the

underlying strategy profile. A network g is a formal description of the pairwise links, representing

R&D collaboration, that exist between the firms. If firms i and j are linked in g, we say ij ∈ g,

and we say ij 6∈ g otherwise. The number of links in g is denoted by |g|.

Let g(i) be the set of firms with whom i has formed a link. The cardinality of g(i), denoted by

|g(i)|, is called the degree of firm i. We denote by N (g) the set of firms that are involved in at least

one link in g. We set g−i as the network formed when firm i and its links are deleted, g + ij as the

network obtained when the link ij is added to g, and g− ij as the network obtained when the link

ij is removed from g.

Network architectures. The empty network is the network with no links. The complete

network is the network where every firm i is linked with each other firm. In the paper, we also find

other equilibrium network architectures, some of them are illustrated in Figure 1. In the figure,

every circle represents a set of firms who have the same neighbors; these firms have formed the same

number of links. If a circle is shaded in white, then firms belonging to the set associated to this

circle are all linked together, while there are no links between these firms when the circle is shaded

in grey. Moreover, a line between two sets of firms, say N1 and N2, indicates that there is a link

between any two firms i ∈ N1 and j ∈ N2.

In a group-dominant network, there is a set of firms that are all linked together and there are no

other links. In a 2-group-dominant network, there is a partition of N (g) in two sets, such that firms

that belong to a set are linked together, but there are no other links.

In a 2|2-hierarchical network there is a partition of N (g), {N1,N2,N3,N4}, such that firms that

belong to a set are all linked together, and firms in N1 and N2 are linked together. Moreover,

each firm i ∈ N1 is linked with every firm j ∈ N3 and each firm i ∈ N2 is linked with every firm
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j ∈ N4, and there are no other links. Firms in N1 and N2 are called influential firms, and firms in

N3 and N4 are called influenced firms. In a 1|2-hierarchical network there is a partition of N (g),

{N1,N2,N3}, such that firms that belong to a set are all linked together, each firm i ∈ N1 is linked

with every firm in j ∈ N2 ∪ N3 and there are no other links. Firms that belong to N1 are called

influential firms. A 1|(1, 1)-hierarchical network is similar to a 1|2-hierarchical network except that

there are no links between firms in N3.

In the paper, we find that efficient networks are nested split graph (NSG) types. Basically, in

a NSG, the neighborhood of a node is contained in the neighborhoods of the nodes with higher

degrees.8 The nested property implies that there is a partition of firms (D0, D1, . . . , Dm) such that

firms which belong to D`, ` ∈ {0, . . . ,m− 1}, have a lower degree that firms which belong to D`+1.

In a 2-NSG there is a partition of N (g), {N1,N2}, such that firms in each set form a NSG. The

NSG property implies that there is a partition of firms in group k, k = 1, 2, (Dk
0 , D

k
1 , . . . , D

k
m) such

that firms which belong to Dk
` have a lower degree that firms which belong to Dk

`+1. A multi-NSG

is a 2-NSG, with firms in N1 and firms in N2 forming a NSG, and each firm i ∈ D1
4 (D2

4) is linked

with all firms i′ that are linked with a firm j ∈ D1
3 (D2

3). A group-NSG is similar to a multi-NSG

except that there are no links between firms in N2.

Values of links. To capture heterogeneity inherent in R&D collaboration, we assume that

each R&D collaboration is valued differently by the firms. Since R&D collaborations (viewed as

link) reduce costs for the firm, we assume that different R&D collaborations can reduce costs to

different extents. This captures the idea that the innovation targeted by one link is different from

the innovation targeted by another link. Let vi,j > 0 be the exogenously given value of the links ij

for the firm i. We assume that a link between two collaborating firms i and j has the same value

for the two firms involved, that is vi,j = vj,i, and we set v̄ = max{vi,j}. In the following, we say

that link ij is more valuable than link i′j′ if vi,j > vi′,j′ .

8In Appendix A, we formally define NSG.
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We associate with each firm i a number Vi(g) =
∑

ij∈g(i) vi,j representing its “flow degree”. We

set V(g) =
∑

ij∈g,i>j vi,j the sum of the flow degree of firms, and V(g−i) = V(g)− Vi(g) the sum of

the flow degree of firms in network g−i.

Structure of the game. The game played by the firms consists of two stages.

1. Stage 1: Firms simultaneously choose the collaborative links they intend to form in order to

decrease their marginal cost.

2. Stage 2: Firms play a simultaneous oligopoly game, given the network formed in the first

stage.

Pairwise equilibrium network. We use the notion of pairwise equilibrium network defined by

Goyal and Joshi (2006) to characterize the architectures of the networks formed by profit maximizing

firms.

First, we define a Nash equilibrium. Let S−i = ×j∈N\{i}Sj be the joint strategy set of all firms

except i, with s−i a typical member of S−i, and let π?
i (g[si,s−i]) be the oligopoly equilibrium profit of

firm i in the second stage, given the strategy profile s = (si, s−i) played by the firms in the first stage.

The strategy si ∈ Si is said to be a best response of firm i to s−i ∈ S−i if π?
i (g[si,s−i]) ≥ π?

i (g[s
′
i,s−i]),

for all s′i ∈ Si. The set of firm i′s best responses to s−i is denoted by BRi(s−i). A strategy profile

s ∈ S is said to be a Nash equilibrium if si ∈ BRi(s−i), for all i ∈ N . In the following, to simplify

notation we replace π?
i (g[s]) by π?

i (g).

Definition 1 (Goyal and Joshi, p. 324, 2006) A network g is a pairwise equilibrium network if

the following conditions hold:

1. There is a Nash equilibrium strategy profile which supports g.

2. For gi,j = 0, π?
i (g + ij)− π?

i (g) > 0⇒ π?
j (g + ij)− π?

j (g) < 0.
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Observe that a pairwise equilibrium network is a refinement of Nash equilibrium: it is a Nash

equilibrium where there does not exist a pair of firms with an incentive to form a link.

Efficient network. We define social welfare as the sum of consumers surplus, CS, and total

profit of firms: W (g) = CS(g) +
∑

i∈N π
?
i (g).

Definition 2 An efficient network is a network that maximizes social welfare.

3 Homogeneous Cournot Game

In this section, we consider the textbook linear oligopoly model. To simplify the analysis, following

much the literature, we assume that the marginal cost function of a firm decreases linearly with its

flow degree:

ci(g) = γ0 − γ
∑
j∈g(i)

vi,j = γ0 − γVi(g), (1)

where γ > 0, γ0 > γ(n−1)v̄. In Equation 1, the flow degree, Vi(g), can be interpreted as the impact

of the innovations from the collaborative links in lowering firm i’s marginal costs.

Demand and profit functions. We assume the following linear inverse demand function:

p = α−
∑
i∈N

qi, α ≥ 0,

where p is the market price of the good and qi is the quantity sold by firm i.

Given any network g, the Cournot equilibrium output is:

q?i (g) =
α− γ0 + nγVi(g)− γ

∑
j∈N\{i} Vj(g)

n+ 1
.
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In this section, we assume that we have α−γ0 > 2γ(n−1)2v̄ (labeled C1), ensuring strictly positive

output for every firm. We can write the Cournot equilibrium output as follows:

q?i (g) = a+ bVi(g)− cV(g−i),

where a = (α− γ0)/(n+ 1), b = γ(n− 1)/(n+ 1), and c = 2γ/(n+ 1).

The second stage Cournot gross profit of firm i is given by:

Π?
i (g) = ϕ(Vi(g),V(g−i)) = (a+ bVi(g)− cV(g−i))

2. (2)

We assume that a collaborative link requires a fixed investment f > 0. Thus, the second stage

Cournot profit of firm i is given by

π?
i (g) = Π?

i (g)− |g(i)|f.

The consumer surplus is equal to

CS(g) = 1/2

(∑
i∈N

q?i

)2

= 1/2

(
n(α− γ0) + 2γV(g)

n+ 1

)2

= φ(V(g)),

Given the extent of heterogeneity allowed in the model, it should be clear that we have many

degrees of freedom which can make it easy to generate many different results. Moreover, this makes

it possibly difficult to obtain insights about what drives the structural properties of equilibrium

and efficient networks. Hence to obtain systematic insights about what heterogeneity may add to

the problem, we introduce two different scenarios based on stylized facts that restrict the set of

collaboration values in a meaningful way.

In the first scenario, called the Insider-outsider model with cost reduction (I-O frame-
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work), we assume that there are two groups of firms, N1
IO and N2

IO, and the value of a link between

two firms i and j is higher when they belong to the same group. It is useful to define Nk
IO(g) ⊂ Nk

IO,

k ∈ {1, 2}, the set of firms in Nk
IO that have formed links in network g. Moreover, we denote by

N12
IO(g) the set of firms which have formed inter-group links. We set vi,j = vI for all i, j ∈ Nk

IO,

k ∈ {1, 2}, and vi,j = vO < vI for all i ∈ Nk
IO, j ∈ Nk′

IO, k 6= k′. The assumption, vO < vI is

in touch with empirical studies. For instance, Gomes-Casseres, Hagedoorn and Jaffe (2006) show

that technological, geographical and business similarities between partners have a positive impact

on the value of collaboration. Likewise, adopting a resource-based view of the firm, Mowery et al.

(1998) argue that some level of technological overlap is required to facilitate knowhow exchange

and development. Finally, Vonortas and Zirulia (2015), show that pre-existing knowledge in the

partner’s field of expertise, and cognitive proximity is required for effective communication and

ability to learn from a collaboration.

In the second scenario, called the High and low innovative firms model with cost re-

duction (H-L framework)9, we assume that there are two groups of firms, NH and NL, with

|NH | = |NL|. Firms which belong to NH have a higher innovative potential, that is a higher ability

to innovate and to exploit innovations. Let Nk(g) ⊂ Nk, k ∈ {H,L}, be the set of firms in Nk that

have formed links in network g. Moreover, we define NHL(g) as the set of firms in H which have

formed links with firms in L in g. We set vi,j = vH for all i, j ∈ NH , vi,j = vL for all i, j ∈ NL, and

vi,j = vM for all i ∈ Nk, j ∈ Nk′ , k 6= k′, and assume that vH > vM > vL. Again this distinction

is a reasonable assumption given what we find in reality. For instance, in an early paper Miller

and Friesen (1982) argue that some firms are conservative with regard to pursuing innovation (low

innovators) while others are more aggressive with regard to innovation (high innovators). Likewise,

Blundel, Griffith and van Reenen (1999) using a sample of British firms find that firms with a

greater market share are simultaneously the more innovative ones. We assume that the value of

9High innovative and low innovative potential firms have been introduced in a context of R&D networks by Persitz
(2014). However, the author’s model does not consider the second stage of our game: the oligopoly game.
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a collaboration is higher between high potential innovative firms. If a high and low innovative

potential collaborate, then we assume that the value of the links lies between the two ranges.

3.1 Pairwise Equilibrium Networks

We begin our analysis with the characterization of equilibria. All the proofs are given in Appendix.

The first proposition provides some conditions satisfied by pairwise equilibrium networks without

any restrictions on the heterogeneity of link value. This proposition is divided into two parts. First,

we provide a condition that leads firm i to have formed a link, with value vi,j, when it has also

formed a link with a value v. This condition is based on the comparison between

• the ratio of the values of links v and vi,j,

• and the ratio of the average slope of the gross profit function ϕ over [Vi(g),Vi(g) + vi,j] and

over [Vi(g)− v,Vi(g)].

Second, we provide a condition that leads firm i′ to have formed a link, with value vi′,j′ , when

another firm has formed a link with value v. This condition is based on the comparison between

the average slope of ϕ over [Vi(g),Vi(g) + v], when i faces V(g−i) links, and the average slope of ϕ

over [Vi′(g),Vi′(g) + vi′,j′ ] when i′ faces V(g−i′) links. Moreover, this condition allows us to identify

a set of situations, defined as the flow degrees of firm i′ in g and the values of links, in which firm

i′ has an incentive to form links with such values when she faces V(g−i′).

In order to present this proposition, we introduce: (i) the set (Vi(g), v;V(g−i))≥ of pairs (Vi(g′), v′)

which provide to firm i a marginal profit higher or equal to the pair (Vi(g), v), given the sum of

flows degree V(g−i);
10 and (ii) the average of the derivative of function ϕ at (x + h, y) and (x, y),

ϕ̄′1(x, y;h) =
ϕ′1(x+h,y)+ϕ′1(x,y)

2
.11 Finally, let Mv(g) = {i ∈ N : there exists ij ∈ g such that vi,j =

10i.e. (Vi(g), v;V(g−i))≥ = {(X,x) ∈ R2
+ : ϕ(X + x,V(g−i))− ϕ(X,V(g−i)) ≥ ϕ(Vi(g) + v,V(g−i))

−ϕ(Vi(g),V(g−i))} .
11In the appendix, we establish that in our context, the average slope of φ over [x, x+ h], given y, is captured by

ϕ̄′1(x, y;h).
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v}.

Proposition 1 Let g be a pairwise equilibrium network. We assume that firm i belongs to the set

Mv(g) and firm j belongs to the set Mv′(g), with v ≥ v′.

1. If

v

vi,j
≤ ϕ̄′1(Vi(g),V(g−i); vi,j)

ϕ̄′1(Vi(g)− v,V(g−i); v)
, (3)

then there is a link between firms i and j in g.

2. Suppose that there is a link between i and j in g with vi,j = v, and Vj′(g) ≥ Vi′(g), and

Vi(g) − v = V. Moreover, suppose that Vi′(g) = V, and vi′j′ = v′ ≥ v, and vi′j′ satisfies

ϕ̄′1(Vi′(g),V(g−i′); v
′) ≥ ϕ̄′1(Vi′(g), V(g−i′)− v; v). Then i′j′ ∈ g.

Suppose now that vi′j′ 6= v′, and Vi′(g) 6= Vi(g) − v. If (Vi′(g), vi′,j′) ∈ (V , v′;V(g−i′))≥, then,

i′j′ ∈ g.

Because the ratio of the average of the slopes measures the convexity of ϕ, the first part of the

proposition states that the more ϕ is convex in the benefit of link formation, the less vi,j can be

relatively to v in a pairwise equilibrium network which does not contain a link between i and j.12

Consider now network g where i, i′ and j are not linked, network g′ = g + ij, Vi(g) = Vi′(g), and

vi,j = vi′,j = v. The second part of the proposition states that if firm i forms a link with firm j,

then firm i′ does not always have an incentive to form a link with j in g′. Let us illustrate this

point through an example.

Example 1 We assume that a = 10, b = 2 c = 1, and f = 23. Consider that g is such that

Vi(g) = 3, V−i(g) = 4 and i has formed a link with value 0.5. If Vi′(g) = 2.5, then firm i′ has an

12Note that the convexity in the benefit of link formation is in line with findings in the literature which show that
firms with more collaborations are more likely to enter further collaborative agreements (see Novortas and Ziruela,
2015, for instance). Several explanations have been proposed for this phenomenon. For instance, the collaborating
process allows firms to learn how to benefit from collaboration and thus collaborating firms have greater incentives
to form additional links. Moreover, collaboration with partners is a source of information about new opportunities
for alliances and new partners, and is conducive to the formation of new collaborations. Proposition 1 shows that
the convexity property can be satisfied even without these factors.
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incentive to form a link with j′ only when vi′,j′ ≥ 0.5217. It is worth noting that firms i′ has the

same total flow than i when the latter added the link with value 0.5.

We now present a corollary that captures important features of pairwise equilibrium networks.

First, if firm i has formed a link with value vi,j, then it has an incentive to form a link with a value

v ≥ vi,j. It follows that if a link between two players is at least as valuable than any other link

they have formed, then the link between the players must exist in the pairwise equilibrium network.

Second, if firm j has formed a link with value v, when it has a total flow equal to Vj(g), then i has

an incentive to form a link with value vi > v when it has a total flow Vi(g) ≥ Vj(g).

Corollary 1 Let g be a pairwise equilibrium network. We assume that firm i belongs to the set

Mv(g) and firm j belongs to the set Mv′(g), with v ≥ v′.

1. If vi,j ≥ v, then i and j are linked in g.

2. If Vj′(g) ≥ Vi′(g) ≥ Vi(g) and vi′,j′ ≥ v, then i′ and j′ are linked in g.

It follows from Corollary 1 that if a link between two firms is at least as valuable than any other

link they have formed, then the link between these firms must exist in the pairwise equilibrium.

We now use the results obtained in Proposition 1 and Corollary 1 to provide the architectures of

pairwise equilibrium networks in the I-O and H-L frameworks.

Corollary 2 Suppose that the assumptions of the I-O framework are satisfied. If g is a non-empty

pairwise equilibrium network, then it is a group-dominant network, or a 2-group-dominant network,

or a 2|2-hierarchical network, or a 1|2-hierarchical network. Moreover,

1. if g is a 2-group-dominant network, then each component consists of firms which belong to the

same group Nk
IO, k ∈ {0, 1};

2. if g is a 2|2-hierarchical network, then for any k ∈ {1, 2}, some firms in Nk
IO(g) have formed

links only with all other firms in Nk
IO(g), and some other firms in Nk

IO(g) have formed links
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with firms in N−kIO (g), with −k ∈ {1, 2} \ {k};

3. if g is a 1|2-hierarchical network, then firms in Nk
IO(g), k ∈ {1, 2}, have formed links with all

other firms in Nk
IO(g). Moreover, some firms in Nk

IO(g) have formed links with all other firms

in N−kIO (g), with −k ∈ {1, 2} \ {k}.

Note that in equilibrium, firms in Nk
IO, k ∈ {1, 2}, which have formed links with firms in N \Nk

IO

are also linked with all firms in Nk
IO that have formed links.

Corollary 3 Suppose that the assumptions of the H-L framework are satisfied. If g is a non-empty

pairwise equilibrium network, then it is a group-dominant network, or a 2-group-dominant network,

or a 1|2-hierarchical network, or a 1|(1, 1)-hierarchical network. Moreover,

1. if g is a 2-group-dominant network, then each component consists of firms which belong to the

same group Nk, k ∈ {H,L}, and we have |NH(g)| < |NL(g)|;

2. if g is a 1|2-hierarchical network, then some firms in NH(g) have formed links only with firms

in NH(g), and every firm in NL(g) has formed links with all firms in NL(g) and some firms

in NH(g). Moreover, we have |NH(g) \NHL(g)| < |NL(g)|;

3. if g is a 1|(1, 1)-hierarchical network, then every firm in NH(g) has formed links with all other

firms that have formed links, and some firms in NL(g) have formed links only with firms in

NH(g).

Note that in a 1|2-hierarchical network or a 1|(1, 1)-hierarchical network, influential firms belong

to NH . Moreover, Proposition 1 allows us to provide additional information. For instance, let g be

a 2 group-dominant pairwise equilibrium network, where NH(g) = 3, NL(g) = 4, a = 10, b = 3/4,

c = 1/4, vH = 1 and vL = 1/2. Then, due to point 1 of Proposition 1, we have vM ∈ [0.94, 1].

Corollaries 2 and 3 show that once we allow for two different values of links, pairwise equilibrium

networks will always tend toward group-dominant or hierarchical networks. Note that the group-
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dominant type result is in line with some empirical studies (see Mowery et al., 1998,13 Vonortas and

Okamura, 200914). These studies find that firms similar − in a technological sense or a geographical

proximity sense − are more likely partners. As a result, the networks formed by firms will consist

of groups of (relatively similar) firms, densely connected internally, with few links between firms

belonging to different groups.

There is also empirical evidence for hierarchical structures. Vonortas and Okamura (2013) examine

the ICT sector using data from the last two rounds of the European Research Framework Program.

They find that there is a small group of hub firms that are crucial for keeping the network together

while another group of non-hub firms provides significant networking activity.

We now show by means of an example a interesting aspect of the H-L framework: there exist

parameter ranges where the most valuable links may not always be formed.

Example 2 Suppose that the assumptions of the H-L framework are satisfied with NL = {1, . . . , 4}

and NH = {5, . . . , 8}, a = 10, b = 3
4
, and c = 1

4
. Let vL = 2.5, vM = 2.7, and vH = 3. If f = 35,

then network g drawn in Figure 2 is a pairwise equilibrium network, where the links that can reduce

costs the most do not exist in g.

1 2

3 4

5 6

7 8

Figure 2: Pairwise equilibrium network without the most valuable links

Given this outcome, one could easily imagine that in order to improve efficiency of the equi-

librium, public authorities may device policies that help the firms with the most valuable links to

improve the value of these links, say by providing additional resources. However the next example

shows that such a policy can lead to an equilibrium where the links that are formed are less valuable

13The authors use a sample of joint ventures taken from the Cooperative Agreements and Technology Indicators
database, a dataset that contains information on over 9000 alliances

14The core data for Vonortas and Okamura analysis is drawn from the Innovation Network Databank (INNET).
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and, as a result, the social welfare is lower. To simplify the construction of the example, we deal

with groups of links instead of groups of firms regarding the differences in the value of links. We

assume that because of the public policy, the value of the most valuable links is kv̄ instead of v̄,

with k > 1.

Example 3 Let N = {1, . . . , 6}, a = 490
7

, b = 5
7
, c = 2

7
, v2 = 0.9, v1 = 0.8918244, and f =

89.752038. Suppose vi,j = v2 for ij ∈ {12, 13, 45}, vi,j = v1 for ij = 23, and vi,j = 0 for all other

links. Network g in Figure 3 is the unique pairwise equilibrium network. If k = 1.000111, then, due

to the public policy, network g′ in Figure 3 becomes the unique pairwise equilibrium network. We

can check that the total firms’ profit and the consumers’ surplus are higher in g′ than in g. Thus,

in this example, increasing the value of the most valuable links leads to an equilibrium where less

valuable links are formed, and social welfare is lower.

1 2

3 4

5

6

1 2

3 4

5

6

Network g Network g′

Figure 3: Example of non-monotonicity

We now explain the intuition behind Example 3. First, the link 23, which is not the most

valuable, is not formed in g but is formed in g′. This result follows from the convexity of the

function φ with Vi(g): the increase in the value of the links 12 and 13 makes the formation of the

link 23 more attractive for firms 2 and 3. Second, one of most valuable links, the link 45 is formed

in g but is not formed in g′. This results from two opposing forces affecting the incentives to form

the link 45: (1) the value of the link 45 is higher, that makes this link more profitable; (2) the

number of links formed by firms j ∈ N \ {4, 5} in g has increased, so forming the link 45 is less

profitable for firms 4 and 5. The result in Example 3 follows from the fact that the first force is
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lower than the second one.

Example 3 establishes that there are situations where an increase in the value of the most

profitable links by public authorities can be counterproductive since it leads to a decrease in the

social welfare. Thus it is important to have a precise idea concerning the properties of networks

that maximize the social welfare, and this is done next.

3.2 Efficient Networks

We begin with a proposition which establishes that in an efficient network if firm i has formed a

link with firm j, then firm i has also formed a link with all firms that (a) have a lower marginal

cost than j, and (b) whose collaboration with i has a higher value than the collaboration between

i and j.

Proposition 2 Let g be an efficient network that contains a link between firms i and j. If cj(g) ≥

cj′(g) and vi,j ≤ vi,j′, then there is a link between firms i and j′ in g.

The intuition behind Proposition 2 is as follows. First, suppose that firm j′ has a marginal cost

that is lower than j in g. Straightforward calculations show that if the link ij′ has the same value

as the link ij, then the addition of ij′ in g implies an increase in welfare that is higher than the

increase in welfare associated with the addition of the link ij in g − ij. Second, if the link ij′ has

a higher value than the link ij, then it is equivalent to a situation where the link ij′ has the same

value as the link ij, and a costless link is added to firms i and j′. This link allows them to decrease

their marginal cost. Since the marginal cost of some firms decrease and the marginal cost of other

firms is unchanged, the welfare increases.

We now use Proposition 2 to identify the architectures of efficient networks in different situations.

Efficient networks in the framework of cost-reducing collaboration in a homogeneous Cournot game

has been studied by Westbrock (Proposition 1, 2010) in situation where links have the same value.

His result has been refined by Billand et al. (2015) who show that efficient networks in this
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1L 1H

2L 3L

2H

3H

0.5 0.9

0.90.50.5

Figure 4: Relationship between flow degree and firms degree in efficient networks

framework are NSG. Here we extend the analysis to the I-O and H-L frameworks where links

have different values.

Corollary 4 Suppose that the assumptions of the I-O framework are satisfied. If g is a non-empty

efficient network, then it is a NSG, or a 2-NSG, or a group-NSG, or a multi-NSG.

Corollary 5 Suppose that the assumptions of the H-L framework are satisfied. If g is a non-empty

efficient network, then it is a NSG, or a group-NSG, or a multi-NSG. Moreover, if g[NH ] = ∅, then

g[NL] = ∅.

We observe that in both the I-O and H-L frameworks, efficient networks are variations of NSG.

We now give the intuition behind this result. Consider Figure 4 in the H-L framework. The flow

degree of firm 1H is 2.4 and the flow degree of firm 2H is 1.8; the degree of 1H is 4 while the degree

of 2H is 2. By Proposition 2, network g cannot be an efficient network since firm 1H has to add a

link with firm 3H . The resulting network is a NSG which is a candidate to be an efficient network.

Since NSG are defined thanks to a property on degrees, this illustrates that the requirement on flow

degree for efficiency translates to a requirement on degrees.

The H-L framework provides an easy way to see the possibility of conflict between pairwise

equilibrium networks and efficient networks. In particular, in an efficient network, firms in NL will

not form links when it is not worthwhile for firms in NH to form links. By contrast, there are

pairwise equilibrium where firms in NL form links while firms in NH have no links.
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Moreover, Lemma 1 (in Appendix) provides an interesting result for public authorities in the

H-L framework. Indeed, let g be a two-group-dominant pairwise equilibrium network. It results

from Lemma 1 that social welfare can be increased if the R & D collaborative links formed by firm

i ∈ NL with a subset of firms in AL ⊂ NL in g are replaced by links formed by firm j ∈ NH with

firms in AL ⊂ NL.

Conflict between pairwise equilibrium networks and efficient networks also arises in the I-O

framework, and public authorities can act to increase social welfare. For instance, consider a group-

dominant network such that the dominant group, as well as the set of isolated firms, contains firms

which belong to the two groups. It is easy to show that this network can be a pairwise equilibrium

network for some values of the parameters. The following proposition shows how social welfare

can be increased in this case. In this proposition, we denote by C(g) the dominant group in the

group-dominant network g, and by Nk
IO(C(g)) the set of firms in the dominant group C(g) which

belong to group k, k = 1, 2.

Proposition 3 Let g be a group-dominant network such that 0 < N1
IO(C(g)) < N1

IO and 0 <

N2
IO(C(g)) ≤ N2

IO. Wlog suppose N1
IO(g) ≥ N2

IO(g). Suppose i ∈ N1
IO \ N1

IO(C(g)) and j ∈

N2
IO(C(g)). Let g′ be a group-dominant network such that C(g′) = C(g) ∪ {i} \ {j}. We have

W (g′) > W (g).

Moreover, when the size of the two groups are equal, that is N1
IO = N2

IO, we obtain the following

corollary.

Corollary 6 Suppose N1
IO = N2

IO. Let g be a group-dominant network such that 0 < N1
IO(g) < N1

IO

and 0 < N2
IO(g) < N2

IO. Wlog suppose N1
IO(g) ≥ N2

IO(g). Let g′ be a a group-dominant network

such that N1
IO(g) = N1

IO, and N2
IO(g) = ∅. Then, we have W (g′) > W (g).
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4 Results for a Larger Class of Oligopoly Games

In this section, we establish results for cases where the profit function satisfies some general prop-

erties. These properties are satisfied not only by our previous model, but also by models of cost-

reducing collaboration in differentiated (Cournot and Bertrand) oligopolies. In the following, we

assume that the gross profit function of firm i depends on its flow degree and the flow degree

generated by the links in which firm i is not involved:

Πi(g) = σ(Vi(g),V(g−i)). (4)

We assume that the profit function of firm i is πi(g) = Πi(g) − |g(i)|f , where f > 0 is the cost of

link formation.

Broadly speaking, for a given value, v, two types of externality effects arise in our context: an

externality across flow degree generated by the links in which firm i is involved, and an externality

across flow degree generated by the links in which firm i is not involved. This motivates the following

definitions.

Definition 3 The profit function, σ, is strictly convex in its first argument if for all y, σ(x+v, y)−

σ(x, y) > σ(x, y)− σ(x− v, y) for all x and v such that x ≥ v > 0.

This definition means that for a given value of links, the higher the flow degree generated by

the links in which firm i is involved, the higher is the incentive of firm i to form an additional link.

The next definition captures externality across flow degree of different firms.

Definition 4 The gross profit function, σ, is strictly sub-modular if for all x > v, and for all y′ > y

σ(x+ v, y′)− σ(x, y′) < σ(x+ v, y)− σ(x, y).

This definition means that for a given value of links, the higher the flow degree generated by the

links in which other firms are involved, the higher is the incentive of firm i to form an additional
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link.

First, we state a proposition that provides necessary conditions for a pairwise equilibrium net-

work. This result complements the work of Goyal and Joshi (Proposition 3.1, p. 327, 2006), when

we allow heterogeneity in the values of the links. It is worth noting that our result highlights the

fact that a pairwise equilibrium network does not always contain the most valuable links.

Proposition 4 Suppose that the gross payoff function is given by (4) where σ is strictly increasing

and strictly convex in its first argument, and sub-modular. Let g be a pairwise equilibrium network,

with ij ∈ g and ij′ /∈ g. Then, Vj(g) > Vj′(g) or vi,j > vi,j′.

Proposition 4 states that it is not possible to have a situation where simultaneously (a) two

unlinked firms i′, j′ have a cost competitive advantage, and (b) the link between them is more

valuable than the links that have already been formed.

We now provide two examples of more general oligopoly models that satisfy the conditions of

Proposition 4. For both examples, we assume that the cost function is given by equation 1.

Example 4 Differentiated Cournot Oligopoly. Suppose each firm i faces the following linear inverse

demand function: pi = α − qi − β
∑

j 6=i qj, where pi is the price of the product sold by firm

i, α > 0, and β ∈ (0, 1). In the Cournot equilibrium, the gross profit for firm i is given by:

Πd
i (g) = θ(Vi(g),V(g−i)) = (a1 +a2Vi(g)−a3 V(g−i))

2, with a1, a2, and a3 as positive parameters.15

Moreover, to ensure that each firm produces a strictly positive quantity in equilibrium, assume that

a1 > a3V(g−i) for all V(g−i).

Example 5 Differentiated Bertrand Oligopoly. Suppose the demand function is similar to those

given in Example 4. In the Bertrand equilibrium, the gross profit for firm i is given by: ΠB
i (g) =

θi(Vi(g),V(g−i)) = λ(a1 + a2Vi(g)− a3V(g−i))
2, with λ, a1, a2, and a3 as positive parameters.

15Due to their cumbersome nature, the values of the parameters for Examples 4 and 5 are given in Appendix D.
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It is worth noting that Example 3 was based on the fact that the profit function is convex in

its first argument and sub-modular. It follows that when σ satisfies these two properties, as in

Examples 4 and 5, a policy designed to increase the value of the most valuable links may lead

to equilibrium networks that do not have them, while equilibrium networks obtained without this

policy may have these links in equilibrium. This suggests caution regarding public policy aimed at

promoting R&D collaboration.

To study efficient networks, we need an additional condition on σ regarding the role played by

the links of other firms in the profit function of each firm.

Definition 5 The gross profit function, σ, is strictly convex in its second argument if for all x,

v > 0, σ(x, y + v)− σ(x, y) > σ(x, y)− σ(x, y − v) for all y.

It is worth noting that Examples 4 and 5 satisfy this convexity property. Moreover, for efficient

networks we also need two simple additional monotonicity preserving type assumptions, the first

one on the consumer surplus part (Property PCS), the second one on the social welfare (Property

PW).

Property PCS: Let the marginal cost of firms ` and `′ be lower than the marginal cost of firms

j and j′ respectively. Suppose that first we decrease the marginal cost of j and j′ by v, then we

decrease the marginal cost of ` and `′ by v. Then, the change in the consumer surplus is higher in

the second case than in the first case.

Note that Property PCS is satisfied by the demand functions presented in this paper, for cost

function given by (1).

Property PW: If the marginal costs of two firms decrease without any cost of link formation,

then the social welfare increases.
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Property PW implies that for a given network, it is always efficient to increase the value of the

links formed by the firms.

The next proposition establishes that if (a) two firms j and j′ have higher flow degree than firms

i and i′ respectively, and (b) the value of the link jj′ is sufficiently high with regard to those of ii′,

then in an efficient network firms j and j′ are linked when firms i and i′ are linked.

Proposition 5 Let g be a non-empty efficient network with Vi(g) ≤ Vj(g) and Vi′(g) ≤ Vj′(g).

Suppose σ is strictly convex in its first and second arguments, σ is sub-modular, and the properties

PCS and PW are satisfied. If there exists a link between firms i and i′ and vi,i′ ≤ vj,j′, then there

exists a link between firms j and j′.

Note that if we set j = i, then we can obtain a result in line with Proposition 2.

Proposition 5 shows that two elements play a role in the existence of a link between two firms i

and j in an efficient network: the first one is the flow of knowledge that accrues to these two firms

due to their collaborations with other firms in the network, relative to the flow of knowledge that

accrues to other linked firms; the second one is the value of the link between i and j relative to the

value of the existing links.

5 Concluding remarks

This paper extends the work of Goyal and Joshi (2003) on collaborative R&D network formation

by assuming that cost reducing innovations between pairs of firms are heterogeneous. Clearly if

every link takes a different value, the model has many degrees of freedom and can easily generate a

rich set of results. Hence after providing a necessary condition to check for a pairwise equilibrium

network or an efficient network when all links can have different values, we limit the set of values

in a systematic way, and provide the architectures of pairwise equilibrium networks for two stylized
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frameworks, the I-O and H-L frameworks. Not surprisingly, we find that results of Goyal and Joshi

(2003), Westbrock (2010) and Billand et al. (2015) as special cases, since all links have the same

value in these models. We then provide results for a larger class of games like differentiated Cournot

and Bertrand games.

An interesting result regarding public policy is that when this policy is used to increase the value

of links having the highest value, this policy can lower welfare, given that some of the most valuable

links may disapear in equilibrium. This result highlights the difference between our framework and a

framework without links value heterogeneity, that is vi,j = 1 for all firms i, j, but with heterogeneous

costs of forming links.16 Recall that the result in Example 2 uses the fact that when we make the

most valuable links better some firms that have formed these links have strong incentives to form

additional links, including less valuable ones. Consequently, if some firms add links, then other firms

may remove some of their links, including the most valuable links. Hence, due to the substitution of

less valuable links for some of the most valuable ones, public policy aimed at increasing the worth

of the most valuable links may lead to welfare loss. Observe that links value heterogeneity is crucial

for this type of non-monotonicity result. Moreover, this result cannot be obtained in a framework

where the costs of forming links are heterogeneous. Indeed, in that case, firms that benefit from a

policy subsidizing the cheapest existing links, do not have any incentive to form additional links,

and the mechanism that leads to a welfare loss in the value heterogeneity framework cannot occur

in the cost heterogeneity framework.

In our model, we have assumed that when two firms collaborate and innovate, each of them benefits

in an identical manner from the innovation. In practice this may not be so. As a final point, we

now illustrate what happens if we relax this assumption. Suppose that when the link ij is added to

network g, the marginal cost of firm i is reduced by τi and the marginal cost of firm j is reduced by

τj where τi 6= τj. Obviously, if τi is sufficiently high relative to τj, then firm j will never accept to

16In the theoretical literature on network formation, several papers examine this type of heterogeneity (see for
instance Galeotti, Goyal, and Kamphorst, 2005 ; Billand, Bravard and Sarangi, 2011, 2013).
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form the link with i. Indeed, link ij improves the competitiveness of firm i so much more than the

competitiveness of firm j that the latter firm will lower its profit by forming the link ij. Due to this

mechanism, firms have an incentive to form links only with other firms that will not increase their

competitiveness by a too substantial amount. Therefore, we can obtain a “tyranny of the weakest”

situation, that is a situation in which the least able firms to take advantage of R&D collaboration

form links with each other, leaving out the most able firms. A detailed examination of this issue is

left for future research.
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Appendix

Appendix A. Definitions

Nested Split Graph (Mahadev and Peled, 1995) Let g be a network whose distinct positive degrees

are δ1 < . . . < δm, and let δ0 = 0 (even if no firm of degree 0 exists). Let Dk(g) = {i ∈ N : |gi| = δk}

for k ∈ {0, . . .m}. The sequence D0(g), . . . , Dm(g) is called the degree partition of G. In a nested

split graph (NSG) g, we have for each firm i ∈ D`(g), ` ∈ {1, . . . ,m},

g(i) =


⋃`

j=1Dm+1−j(g), if ` = 1, . . . ,
⌊
m
2

⌋
,

⋃`
j=1Dm+1−j(g) \ {i}, if ` =

⌊
m
2

⌋
+ 1, . . . ,m.
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Appendix B. Homogeneous Cournot Game

In Appendix B and C, we let ∆1ϕ(Vi(g),V(g−i); vij) = ϕ(Vi(g) + vi,j,V(g−i))−ϕ(Vi(g),V(g−i)) and

∆2ϕ(Vi(g), V(g−i); v`,j) = ϕ(Vi(g),V(g−i) + v`,j)− ϕ(Vi(g),V(g−i)). Moreover, we let Sϕ(x, y, h) =

ϕ(x+h,y)−ϕ(x,y)
h

.

First, note that in the homogeneous Cournot game ∆1ϕ is increasing in its first argument and

decreasing in its second argument.

Proof of Proposition 1 First, note that since ϕ(x, y) = (a+ bx− cy)2, we have:

Sϕ(x, y;h) = ϕ̄′1(x, y;h).

Second, since g is a pairwise equilibrium network where player i and j have formed a link, we have

∆1ϕ(Vi(g)− vij,V(g−i); vij) ≥ f.

We now prove successively the two parts of the proposition

1. Suppose that

v

vi,j
≤ ϕ̄′1(Vi(g), V(g−i); vi,j)

ϕ̄′1(Vi(g)− v, V(g−i); v)
.

Then, we have

v

vi,j
≤ Sϕ(Vi(g),V−i(g); vi,j)

Sϕ(Vi(g)− v,V(g−i); v)
,

and so ∆1ϕ(Vi(g),V(g−i); vi,j) ≥ ∆1ϕ(Vi(g)− v,V(g−i); v). It follows that ∆1ϕ(Vi(g), V(g−i);

vi,j) ≥ f , and firm i has an incentive to form a link with firm j. By using similar arguments,

we obtain that firm j has an incentive to form a link with firm i. Consequently, g is not a

pairwise equilibrium, a contradiction.

2. We assume that firms i, j ∈ N \ {i′, j′} are linked in g, and vi′,j′ ≥ v. Moreover, suppose that

Vj′(g) ≥ Vi′(g), and Vi′(g) = Vi(g)−v, and ϕ̄′1(Vi′(g), V(g−i′); vi′,j′) ≥ ϕ̄′1(Vi′(g), V(g−i′)−v; v).
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To introduce a contradiction, we assume that i′j′ 6∈ g. Since ϕ̄′1(Vi′(g), V(g−i′); vi′,j′) ≥

ϕ̄′1(Vi′(g), V(g−i′)− v; v), we have: Sϕ(Vi′(g),V(g−i′); vi′,j′) ≥ Sϕ(Vi′(g),V(g−i′)− v; v). There-

fore, we have vSϕ(Vi′(g),V(g−i′); vi′,j′) ≥ vSϕ(Vi′(g),V(g−i′) − v; v). Since vi′,j′ ≥ v, we have

vi′,j′Sϕ(Vi′(g),V(g−i′); vi′,j′)) ≥ vSϕ(Vi′(g),V(g−i′); vi′,j′)). Consequently, we have ∆1ϕ(Vi′(g),

V(g−i′); vi′,j′) ≥ ∆1ϕ(Vi′(g),V(g−i′) − v; v) = ∆1ϕ(Vi(g) − v,V(g−i); v) ≥ 0. It follows that

firm i′ has an incentive to form a link with j′ in g. By using similar arguments, we obtain that

j′ has an incentive to form a link with i′ in g. Consequently, g is not a pairwise equilibrium

network, a contradiction.

Finally, by construction all the pairs in (V , v′;V(g−i′))≥ lead to marginal net profits higher

or equal to ∆1ϕ(V ,V(g−i′); v
′). Since we have (Vi′(g), vi′,j′) in (V , v′;V(g−i′))≥, it follows that

firm i′ has an incentive to form a link with j′. Since Vj′(g) ≥ Vi′(g) and V(g−j′) ≤ V(g−i′),

we have ∆1ϕ(Vj′(g),V(g−j′); vi′,j′) ≥ ∆1ϕ(Vi′(g),V(g−i′); vi′,j′). Consequently, firms i′ and j′

have an incentive to form a link in g.

�

Proof of Corollary 1 We prove successively the two parts of the proposition.

1. Suppose that vi,j ≥ v. Then, we have

ϕ̄′1(Vi(g),V(g−i); vi,j)

ϕ̄′1(Vi(g)− v,V(g−i); v)
= 1 +

b(vi,j + v)

2(a+ bVi(g)− cV(g−i))− bv
> 1 ≥ v

vi,j
,

because b > 0 and 2a+ 2bVi(g)− 2cV(g−i)− bv > 0. The result follows by Proposition 1.1.

2. Suppose that Vj′ ≥ Vi′ ≥ Vi and vi′,j′ ≥ v. We are in special case of Proposition 1.2. We have

∆1ϕ(Vi′(g),V(g−i′); vi′,j′) = 2bvi′,j′(a+ bVi′(g)− cV(g−i′)) + b2v2i′,j′

≥ 2bv(a+ bVi(g)− cV(g−i))− b2v2

= ∆1ϕ(Vi(g)− v,V(g−i); v)

≥ f ,
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because Vi′(g) ≥ Vi(g), V(g−i′) ≤ V(g−i), and vi′,j′ ≥ v.

It follows that firm i (resp. j) has an incentive to form a link with j (resp. i). Consequently,

g is not a pairwise equilibrium network, a contradiction.

�

Proof of Corollary 2. Let g be a non-empty pairwise stable network. First, we establish that g

is a group-dominant network, or a 2-group-dominant network, or a 2|2-hierarchical network, or a

1|2-hierarchical network. By Corollary 1.1, if firm i ∈ Nk
IO, k ∈ {1, 2}, is involved in a link with

firm j ∈ Nk
IO in g, then i has an incentive to form a link with all other firms in Nk

IO. Moreover, by

Corollary 1.1 and the fact that vI > vO, if firm i ∈ Nk
IO, k ∈ {1, 2}, is involved in a link with a firm

j ∈ N−kIO , then i has an incentive to form a link with all firms in N . It follows that (i) two firms

which belong to the same group and have formed links must be linked together, (ii) two firms that

have formed inter-groups links must be linked together. Let us now establish successively the three

parts of the proposition.

1. Let g be a 2-group-dominant network. Moreover, suppose that |N1
IO(g)| ≤ |N2

IO(g)|. We show

that each component consists of firms which belong to the same group Nk
IO. To introduce a

contradiction, suppose that there exists a link between firm i ∈ N1
IO and firm j ∈ N2

IO. Since

there are two components there exists firm i′ which has formed a link in g and which is not

connected with i and j. Wlog, we suppose that i′ ∈ N1
IO. By Corollary 1.1, firms i and i′

have an incentive to form a link. Consequently, g is not a pairwise equilibrium network, a

contradiction.

2. Let g be a 2|2-hierarchical network. First, note that if firm i ∈ Nk
IO has formed a link with

firm j′ ∈ N−kIO , then i has an incentive to form a link with all firms in N by Corollary 1.1.

Moreover, by Corollary 1.1, if firm i has formed a link with firm j ∈ Nk
IO, then i has an

incentive to form a link with all firms in Nk
IO(g).
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3. Let g be a 1|2-hierarchical network where some firms in Nk
IO(g) have formed links with all

other firms in N−kIO (g). We use the same type of arguments as in point 2.

�

Proof of Corollary 3. Let g be a non-empty pairwise stable network. First, we establish that

g is a group-dominant network, or a 2-group-dominant network, or a 1|(1, 1)-hierarchical network,

or a 1|2-hierarchical network. Consider firm i ∈ NH that has formed a link with firm j ∈ NL. By

Corollary 1.1 and the fact that vH > vM , firm i has an incentive to form a link with all firms in N .

Consider firm i ∈ NH that has formed a link with i′ ∈ NH and has formed no links with firms in

NL. Then, by Corollary 1.1 firm i has formed a link with all firms in NH(g). Consider firm j ∈ NL

that has formed a link with j′ ∈ NL. Then, by Corollary 1.1, firm i has formed a link with every

firm j′ ∈ NL(g). The result follows. Moreover, these arguments allow to prove the last part of the

proposition. We now establish successively the two first parts of the corollary.

1. Let g be a 2-group-dominant network. Then there are two components C1 and C2. Consider

that component C1 contains only firms NH and component C2 contains only firms in NL. To

introduce a contradiction suppose that C1 contains a firm i ∈ Nk and C2 contains j ∈ Nk,

then by Corollary 1.1, i and j are linked in g. Let us now show that |NH(g)| < |NL(g)|.

To introduce a contradiction suppose that |NH(g)| ≥ |NL(g)|. We know that vH > vL. We

have for firms i ∈ NH(g) and i′ ∈ NL(g), Vi(g) ≥ Vi′(g). By Corollary 1.1 and the fact that

vM > vL, it follows that firm i′ has an incentive to form a link with firm i. Moreover by

Corollary 1.2 and the fact that vM > vL, firm i has an incentive to form a link with firm i′.

It follows that i and i′ are linked in g, a contradiction.

2. Let g be a 1|2-hierarchical network. Since firms in NL(g) have an incentive to form links with

all firms, we obtain the result. We now establish that |NH(g)\NHL(g)| < NL(g). To introduce

a contradiction, suppose that |NH(g)\NHL(g)| ≥ NL(g). Then, for firms i ∈ NH(g)\NHL(g)

and j ∈ NL(g) , we have Vi(g) = (|NH(g)|−1)vH = (|NH(g)\NHL(g)|−1)vH +|NHL(g)|vH >
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(|NL(g)| − 1)vL + |NHL(g)|vM = Vj(g). It follows that firm i has an incentive to form a link

with j, a contradiction.

�

Appendix C. Welfare and Networks

Appendix C1.

Proof of Proposition 2. Let g be an efficient network which contains the link between i and j. Let

vi,j = v and vi,j′ = v′, with v′ ≥ v. To introduce a contradiction, we suppose that cj(g) ≥ cj′(g), i.e.,

Vj(g) ≤ Vj′(g), and there is no link between i and j′. Consider network g′ = g+ij′. In the following,

we show that the incremental welfare associated with link ij′ in g is higher than the incremental

welfare associated with link ij in g−ij. It is sufficient to show thatW (g′)−W (g) > W (g)−W (g−ij).

The proof is divided into two steps. First, we establish that W (g′) −W (g) > W (g) −W (g − ij)

where vij′ = vij. Second, let g′′ be the network similar to g′ except that v′ = vij′ > vij = v. We

show that W (g′′)−W (g′) ≥ 0.

1. We show that W (g′)−W (g) > W (g)−W (g − ij).

First, we establish that the total profit of the firms increases if the link between firms i and j′ is

added.

We deal with firms j and j′. We show that ∆1ϕ(Vj′(g),V(g−j′); v) + ∆2ϕ(Vj(g),V(g−j); v) ≥

∆1ϕ(Vj(g)− v,V(g−j); v) + ∆2ϕ(Vj′(g),V(g−j′)− v; v). Since Vj′(g) ≥ Vj(g) and V(g−j) ≥ Vi(g−j′),

we have ∆1ϕ(Vj′(g),V (g−j′); v)−∆1ϕ(Vj(g)−v,V(g−j); v) = 2vb(bv+b(Vj′(g)−Vj(g))+c(V(g−j)−

V(g−j′)) > 0 and ∆2ϕ(Vj(g),V(g−j); v)−∆2ϕ(Vj′(g),V(g−j′)−v; v) = 2cv(cv+c(V(g−j)−V(g−j′))+

b(Vj′(g)−Vj(g)) > 0. We now deal with firm i, we have ∆1ϕ(Vi(g),V(g−i); v)−∆1ϕ(Vi(g)−v,V(g−i);

v) = 2b2v2. Consequently, the incremental profits of firm i, j and j′ associated with the link ij′ is

higher than the incremental profits of firms i, j and j′ associated with the link ij.
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We now deal with firms in N \ {i, j, j′}. For each firm i′ ∈ N \ {i, j, j′}, ∆2ϕ(Vi′(g),V(g−i′); v) −

∆2ϕ(Vi′(g),V(g−i′)−v; v) = 2(cv)2 > 0. Therefore, the incremental loss incurred by i′ ∈ N \{i, j, j′},

when the link ij′ is formed, is lower than the incremental loss incurred by i′, when the link ij is

formed. To sum up, if the total profit increases when the link ij is added, then the total profit also

increases when the link ij′ is added.

Second, we show that the incremental consumer surplus when the link ij′ is added is higher than the

incremental consumer surplus when the link ij has been added. We have φ(V(g) + v)− φ(V(g))−

(φ(V(g))− φ(V(g)− v)) = (2γv/(n+ 1))2 > 0.

The result follows.

2. We now show that W (g′′)−W (g′) ≥ 0. Let v′′ = v′ − v.

The addition of the costless link between firms i and j′ increases the profits of i and j′ by

(
γv′′(n− 1)

(n+ 1)2

)4(α− γ0) + 2γ(n− 1)v′′ + 2γ(n− 1)(Vi + Vj′)− 4γ
∑

j∈N\{i,j′}

Vj

 ,

and decreases the profits of other firms by

−
(

γv′′

(n+ 1)2

)(4(α− γ0)− 4γv′′)(n− 2)− 4γ(n− 2)(Vi + Vj′) + 12γ
∑

j∈N\{i,j′}

Vj

 .

The addition of the link between firms i and j′ increases the consumer surplus by

2γv′′

(n+ 1)2
(n(α− γ0) + γ

∑
i∈N

Vi + γv′′).

We have A = (4(n − 1) − 4(n − 2) + 2n)(α − γ0) = 2(n + 2)(α − γ0) ≥ 4γ(n + 2)(n − 1)2v̄

by (C1). Moreover, we have (−4(n − 1) − 12 + 2)γ
∑

j∈N\{i,j′} Vj=−2γ(2n + 3)
∑

j∈N\{i,j′} Vj ≥

−2γ(2n+3)(n−2)(n−1)v̄ = −B. Since 4γ(n+2)(n−1)2v̄ > 2γ(2n+3)(n−2)(n−1)v̄, we haveA > B.

35



Moreover, we have 2γ((n−1)2 +2(n−2)+1)(Vi(g)+Vj′) ≥ 0, and 2γ((n−1)2 +2(n−2)+1)v′′ ≥ 0.

The welfare increases if a costless link is added in the network.

It follows that W (g′′) − W (g) ≥ W (g′) − W (g) > W (g) − W (g − ij), and g is not an efficient

network, a contradiction. �

Proof of Corollary 4. Let g be an efficient network.

1. We show that if i, j ∈ N t, t ∈ {1, 2}, and Vi(g) ≥ Vj(g), then g(i) ⊇ g(j).

If Vi(g) ≥ Vj(g), then ci(g) ≤ cj(g). If j′ ∈ g(j), then firm j′ has formed a link with j in g.

By Proposition 2 since ci(g) ≤ cj(g) and vj′,j = vj′,i = v, then there is a link between firms j′

and i in g, that is j′ ∈ g(i).

2. We show that if i, j ∈ N t, t ∈ {1, 2}, then we have either g(i) ⊇ g(j) or g(j) ⊇ g(i).

For all i, j ∈ N t, we have Vi(g) ≥ Vj(g), or Vj(g) ≥ Vi(g). By 1., in the first case we have

g(i) ⊇ g(j), and in the second case we have g(j) ⊇ g(i).

3. We deal with sub-networks g[N t], t ∈ {1, 2}. Let a binary relation � on N t be defined as in

(??). Then � is the vicinal preorder of g[N t], t ∈ {1, 2}. We consider the following morphism:

i � j ⇔ Vi(g) ≥ Vj(g). By point 2., the vicinal preorder, �, of g[N t] is total. It follows that

g[N t], t ∈ {1, 2}, is a NSG (see Appendix A).

4. We now show that a non-empty efficient network g cannot be such that g[N1] = g[N2] = ∅. To

introduce a contradiction, suppose a non-empty efficient network g such that g[N1] = g[N2] =

∅. Consider a firm i ∈ N such that |g(i)| ≥ |g(j)|, i.e., Vi(g) ≥ Vj(g) for every firm j ∈ N .

Assume w.l.o.g. that i ∈ N1. We distinguish between two cases. First, i is the only firm in N1

who has formed links. Consider a link ij ∈ g with j ∈ N2 and a firm k ∈ N1. We build the

network g′ with g′ = g − ij + ik. Suppose that vI = vO. It is clear that W (g′) = W (g). Since

vI > vO, by using the arguments given in the second part of the proof of Proposition 2, we

have W (g′) > W (g) which contradicts the fact that g is an efficient network. Second, consider
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a firm k ∈ N1\{i} linked with a firm j ∈ N2. Since Vi(g) ≥ Vj(g) and vki = vI > vO = vkj,

by Proposition 2, if the link kj exists in an efficient network, then the link ki exists. This

contradicts the fact that g is an efficient network.

5. We deal with the links between sub-networks g[N t], t ∈ {1, 2}. Let δt1 < . . . < δtm be the

distinct positive degrees of firms in g[N t], t ∈ {1, 2}, and let δt0 = 0 (even if no firm of

degree 0 exists). let Dt
k(g) = {i ∈ N : |gi| = δk} for k ∈ {0, . . .mt}. The sequence Dt =

Dt
0(g), . . . , Dt

m(g) is called the degree partition of g[N t]. Since [i, j ∈ N t, Vi(g) ≥ Vj(g)] ⇒

[g(i) ⊇ g(j)], if i ∈ Dt
k and j ∈ Dt

k′ in g[N t], with k > k′, then g(i)∩(N \N t) ⊇ g(j)∩(N \N t).

To sum up, suppose that g[N1] 6= ∅ and g[N2] 6= ∅. There are two possibilities: either there are no

links between g[N1] and g[N2] and g is a 2-NSG by point 3., or there are links between g[N1] and

g[N2], and g is a multi-NSG, by points 3. and 5. Suppose that g[N t] 6= ∅ and g[N \N t] = ∅. Then

by point 1., g is a NSG or by point 5. g is a group-NSG. Suppose that g[N t] = ∅ and g[N \N t] = ∅,

for t = 1 or t = 2. Then by point 4., g is empty. �

The proof of Corollary 5 needs the following lemma.

Lemma 1 Let the assumptions of the H-L framework be satisfied. Suppose that network g is such

that g[NL] and g[NH ] are non-empty NSGs and there are no link between these subnetworks. Con-

sider a firm i ∈ NL with k > 0 links and a firm j ∈ NH . Let g′ be similar to g except that each link

i` ∈ g is replaced by a link j`. Then W (g′) > W (g).

Proof We set λ = α − γ0. Let Λ = W (g′)−W (g) be the difference of welfare in networks g and

g′ times (n+ 1)2. We have

Λ =
∑

i∈N

(
λ+ nγVi(g′)− γ

∑
j∈N\{i} Vj(g′)

)2
+ 1/2 (nλ+ 2γV(g′))2

−
∑

i∈N

(
λ+ nγVi(g)− γ

∑
j∈N\{i} Vj(g)

)2
+ 1/2 (nλ+ 2γV(g))2 .
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Since the number of links is the same in g and g′, it is sufficient to show that Λ > 0 to establish the

lemma. We do this in two steps.

1. First, let vM = vL. In this case, we have

Λ = 2γ2(n+ 1)2kvLVj(g) ≥ 0.

2. Second, by using the same reasoning as in the proof of Proposition 2, point 2., we can conclude

that Λ ≥ 0 for vM = vL implies Λ > 0 for vM > vL.

�

Proof of Corollary 5. Let g be an efficient network.

1. By using similar arguments as in the proof of Corollary 4, we establish that if i, j ∈ N t,

t ∈ {H,L}, and Vi(g) ≥ Vj(g), then g(i) ⊇ g(j). It follows that if sub-network g[N t],

t ∈ {H,L} is non-empty, then it is a NSG.

2. We now establish that a 2-NSG cannot be an efficient network. To introduce a contradiction

suppose that g is a 2-NSG that is g[NL] and g[NH ] are NSG and there is no link between

firms in NL and firms in NH . By construction, there exists a firm, say iL ∈ NL, such that

g(iL) 6= ∅. We now build the network g′ similar to g except that every firm jL ∈ g(iL) replaces

its link with iL by a link with iH ∈ NH . By Lemma 1, W (g′) > W (g), a contradiction.

3. We now show that a non-empty efficient network g cannot be such that g[NH ] = g[NL] = ∅.

To introduce a contradiction, suppose that g[NH ] = g[NL] = ∅. First, suppose g is such

that for firm iH ∈ NH we have |g(iH)| ≥ |g(iL)| > 0 for some iL ∈ NL. By applying the

same arguments as in the proof of point 4 of Corollary 3, we obtain a contradiction. Second,

if g is such that for each iH ∈ NH we have |g(iH)| < |g(iL)| for all iL ∈ NL. Consider a

network g′ built as follows: each iH ∈ NH becomes iL ∈ NL and reciprocally. Observe that
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W (g′) = W (g). And g′ is such that for a firm iH ∈ NH we have |g′(iH)| ≥ |g′(iL)| > 0 for

some iL ∈ NL. By applying the same arguments as in the previous case, the result follows.

4. We now show that if g[NH ] = ∅, then g[NL] = ∅. To introduce a contradiction suppose that

g[NH ] = ∅ and g[NL] 6= ∅. By construction, there exists a firm, say iL ∈ NL, such that

g(iL) 6= ∅. By using the same argument as in point 2, we obtain a contradiction.

To sum up, suppose that g[NH ] 6= ∅ and g[NL] 6= ∅. By point 2., there are links between g[NH ] and

g[NL] and by 1., g is a multi-NSG. Suppose that g[N t] 6= ∅ and g[N \ N t] = ∅. Then by point 4.,

N t = NH , and by point 1. g is a NSG or a group-NSG. Suppose that g[N t] = ∅ and g[N \N t] = ∅.

Then by point 3., g is empty. �

Appendix C2.

In the following, we will deal with situations where the number of links is given. Therefore, for

the profits of firms, we need to deal only with the gross profit function. Let A = α − γ0, and let

V = (V1,V2, . . . ,Vn) be the vector of flow degrees of firms. Moreover, since the gross profit of a firm

i ∈ N depends on its flow degree, and the sum of the flow degrees of the other firms, for convenience,

we denote the gross profit function of i as Π̂i(Vi,
∑

j 6=i Vj), and the Cournot equilibrium gross profit

function of i as ϕ̂i(Vi,
∑

j 6=i Vj). Moreover, since the consumers surplus depends on the total flow

degrees of firms, for convenience, we denote the consumers surplus function as ĈS(
∑

i∈N Vi). Finally,

denote the social welfare function as Ŵ (V) = Π̂i(Vi,
∑

j 6=i Vj) + ĈS(
∑

i∈N Vi).

To establish Proposition 3, we need the two following lemmas.

Lemma 2 Let V and V ′ be such that for two firms i ∈ N and j ∈ N , and t > 0, we have V ′i = Vi+t,

and V ′j = Vj−t, and for all firms k ∈ N, k 6= i, j, we have V ′k = Vk. If V ′i ≥ Vj, then Ŵ (V ′) ≥ Ŵ (V).

Proof
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First, since
∑

i∈N V ′ =
∑

i∈N V , we have ĈS(
∑

i∈N V ′i) = ĈS(
∑

i∈N Vi). Second, for each

firm k 6= i, j, we have V ′k = Vk, and
∑

j 6=k V ′j =
∑

j 6=k Vj. It follows that ϕ̂k(V ′k,
∑

j 6=k V ′j) =

ϕ̂k(Vk,
∑

j 6=k Vj).

Third, if V ′i ≥ Vj, we have:

ϕ̂i

(
V ′i,
∑
` 6=i

V ′`
)
− ϕ̂i

(
Vi,
∑
` 6=i

V`
)

+ ϕ̂j

(
V ′j,
∑
`6=j

V ′`
)
− ϕ̂j

(
Vj,
∑
`6=j

V`
)

= 2γ2t(n+ 1)2(V ′i − Vj) ≥ 0.

The result follows

�

Lemma 3 Let V and V ′ such that for a firm i ∈ N , we have V ′i = Vi + t, and for all firms

k ∈ N, k 6= i, we have V ′k = Vk. Then, we have Ŵ (V ′) > Ŵ (V).

Proof

By computation, we have:

Ŵ (V ′)− Ŵ (V) =
1

2
γtX,

where X = 2γ(2n2Vi + 2nVi − 1) + γt(2n2 + 2n− 1) + 2(n+ 4)A− 2γ(2n+ 3)
∑

k 6=i Vk.

By (C1), we have A > 2γ(n − 1)2vI . Moreover, since for all k 6= i, we have Vk < (n − 1)vI , it

follows that we have
∑

k 6=i Vk < (n− 1)2vI . Then we have:

X > 2γ(2n2Vi + 2nVi − 1) + γt(2n2 + 2n− 1) + 10γ(n− 1)2vI > 0.

Since X > 0, we have Ŵ (V ′)− Ŵ (V) = 1
2
γtX > 0. The result follows.

�

Proof of Proposition 3.
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Let nk = |Nk
IO|, k = 1, 2, and nk(g) = |Nk

IO(g)|, k = 1, 2. We write the set of the n firms as N =

{i1, i2, . . . , in1(g), in1(g)+1, . . . , in1 , in1+1, . . . , in1+n2(g), in1+n2(g)+1, . . . , in}, with N1 = {i1, . . . , in1}, and

N2 = {in1+1, . . . , in}. Denote by V(N) the vector of firms flow degrees in g associated to the set N :

V(N) = (Vi1 ,Vi2 , . . . ,Vin1(g)
,Vin1(g)+1

, . . . ,Vin1 ,Vin1+1
, . . . ,Vin1+1+n2(g)

,Vin2(g)+1
, . . . ,Vin).

Let the group-dominant networks g and g′ be such that C(g) = {i1, . . . , in1(g), in1+1, . . . , in1+n2(g)}.

Set i = in1(g)+1 and j = in1+1. Hence, we have C(g′) = C(g) ∪ {in1(g)+1} \ {in1+1}.

To show that W (g′) > W (g), we use the following process.

Let V0 = V(N). Let V t be the vector of firms’ flow degrees associated to the set of firms N at

Step t, and V t
i be firm’s i flow degree at Step t. Note that in the following the vector V t is only

a sequence of flow degrees and is not particularly associated to a meaningful network in the I-O

model.

Step 1. Define V1 as follows: V1
in1(g)+1

= V0
in1+1

, V1
in1+1

= V0
in1(g)+1

, and V1
k = V0

k for all k 6=

in1(g)+1, in1+1. It is obvious that we have Ŵ (V1) = Ŵ (V0).

Step 2. Define V2
in1(g)+1

= V1
in1(g)+1

+(n1(g)−n2(g)+1)(vI−vO), and V2
k = V1

k for all k 6= in1(g)+1.

Since (n1(g)− n2(g) + 1)(vI − vO) > 0, by Lemma 3, we have Ŵ (V2) > Ŵ (V1).

If n2(g) = 1, then we go to Step 4. Otherwise, we go to Step 3.

Step 3. Fix ` = 1. Define V`+2
i`

= V`+1
i`

+ (vI − vO), V`+2
in1+1+`

= V`+1
in1+1+`

− (vI − vO), and

V `+2
k = V `+1

k for all k 6= i`, in1+1+`.

We can check that V`+2
i`
≥ V`+1

in1+1+`
. Therefore, by Lemma 2, we have Ŵ (V`+2) ≥ Ŵ (V`+1).

We repeat Step 3 for ` := `+ 1 until ` = n2(g).

Step 4. Fix ` = n2(g). Define V`+2
i`

= V`+1
i`

+ (vI − vO), and V `+2
k = V `+1

k for all k 6= i`.
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Since vI − vO > 0, by Lemma 3, we have Ŵ (V`+2) > Ŵ (V`+1).

We repeat Step 4 for ` := `+ 1 until ` = n1(g) + 1.

We can check that the vector Vn1(g)+2 is associated to the network g′. The result follows.

�

Proof of Corollary 6. Let nk, nk(g), N,V(N), and C(g) be defined as in the proof of Proposition

3. Let C(g′) be the dominant group in g′ and C(g`) be the dominant group in group-dominant

network g`.

To show that W (g′) > W (g), we construct a sequence of group-dominant networks that allows to

transit from the dominant group C(g) to the dominant group C(g′). We show that each transition

from one group-dominant network to the following in this sequence induces an increase of the social

welfare.

Let C(g0) be the first dominant group in the sequence. We set C(g0) = C(g). Subsequently,

each dominant group in the sequence is defined from the previous one as follows. Fix ` = 1. Define

C(g`) = C(g`−1)\{in1+`} ∪ {in1(g)+`}. We repeat this construction for ` := `+ 1 until ` = n2(g) + 1.

Observe that the number of links remains constant throughout the sequence. By Proposition 3,

we know that W (g`) > W (g`−1). And, by construction, C(gn
2(g)) corresponds to C(g′).

�

Appendix D. Results for a Large Class of Oligopoly Games

Proof of Proposition 4. First, we note that vi,j > 0 otherwise firm i has formed a costly link that

does not increase its gross profit. Second, to introduce a contradiction assume a pairwise equilibrium

network g that does not satisfy the condition given in the proposition. Hence, Vj(g) ≤ Vj′(g) and
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vi,j ≤ vi,j′ . Since Vj(g) ≤ Vj′(g), we have V(g−j) ≥ V(g−j′). So,

Πj′(g + ij′)− Πj′(g) = ∆1σ(Vj′(g),V(g−j′); vij′) ≥ ∆1σ(Vj′(g),V(g−j); vij′)

≥ ∆1σ(Vj(g),V(g−j); vij′) ≥ ∆1σ(Vj(g),V(g−j); vij)

> ∆1σ(Vj(g)− vij,V(g−j); vij) = Πi(g)− Πi(g − ij)

The first inequality comes from the fact that V(g−j) ≥ V(g−j′) and σ is sub-modular. The second

inequality comes from the fact that Vj(g) ≤ Vj′(g) and σ is strictly convex in its first argument. The

third inequality comes from the fact that vij′ ≥ vij and σ is strictly increasing in its first argument.

The strict inequality comes from the fact that vij > 0 and σ is strictly convex in its first argument.

For firm i, by using similar argument as above we have ∆1σ(Vi(g),V(g−i); vij′) ≥ ∆1σ(Vi(g),

V(g−i); vij) > ∆1σ(Vi(g)−vi,j,V(g−i); vij). Since Πi(g)−Πi(g− ij) ≥ f and Πj(g)−Πj(g− ij) ≥ f ,

firms i and j′ have an incentive to form a link together. Therefore, network g is not a pairwise

equilibrium network, a contradiction. �

Values of the parameters of Example 4 (Differentiated Cournot Oligopoly). The equilibrium

gross profit for firm i ∈ N is given by Πd
i (g) = θ(Vi(g),V(g−i)) = (a1 + a2Vi(g)− a3 V(g−i))

2, where

a1 = (α− γ0)/(2 + β(n− 1)),

a2 = γ((n− 2)β + 2)/((2− β)(2 + β(n− 1)),

a3 = γβ/((2− β)(2 + β(n− 1)).

Values of the parameters of Example 5 (Differentiated Bertrand Oligopoly). The equilib-

rium gross profit for firm i ∈ N can be written as: ΠB
i (g) = θi(Vi(g),V(g−i)) = λ(a1 + a2Vi(g) −
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a3V(g−i))
2, where

λ =
(1− β)(1 + (n− 1)β)

1 + (n− 2)β
,

a1 =
(1 + (n− 2β))

(2 + (n− 3)β)(1 + (n− 1)β)
(α− γ0),

a2 = γ
2 + (5n− 11)β + (4n2 − 19n+ 21)β2 + ((n2 − 8n+ 19)n− 14)β3

(2 + (n− 3)β)(1 + (n− 1)β)(1− β)(2 + (2n− 3)β)
,

a3 = 2γ
β + (2n− 4)β2 + (n2 − 4n+ 4)β3

(2 + (n− 3)β)(1 + (n− 1)β)(1− β)(2 + (2n− 3)β)
.

To prove Proposition 5 we need the following lemma.

Lemma 4 Let g be a network that maximizes the total profit, where Vi(g) ≤ Vj(g) and Vi′(g) ≤

Vj′(g). If there exists a link between i and i′ in g, and vi,i′ = vj,j′, then jj′ ∈ g.

Proof The method of proof used here is borrowed from Billand et al. (Proposition 1, 2015).

Let g be a network that maximizes the total profit. To introduce a contradiction suppose that

Vi(g) ≤ Vj(g), Vi′(g) ≤ Vj′(g), vi,i′ = vj,j′ = v and there is no link between j and j′. First, we

establish that if the link between firms j and j′ is added, then the total profit of the firms increases.

Note that V(g−i) ≥ V(g−j). We have

∆1σ(Vj(g),V(g−j); v) ≥ ∆1σ(Vj(g),V(g−i); v) > ∆1σ(Vi(g − ii′),V(g−i); v).

The first inequality follows the fact that σ is sub-modular and the second inequality follows the

fact that σ is strictly convex in its first argument. It follows that the impact of the link ii′ on the

profit of firm i is lower than the impact of the link between jj′ on the profit of firm j. Using similar

arguments will give us this result is true for firms i′ and j′.

Moreover, we have

∆2σ(Vi(g),V(g−i); v) ≥ ∆2σ(Vj(g),V(g−i); v) ≥ ∆2σ(Vj(g),V(g−j); v))
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The first inequality follows the fact that σ is sub-modular. Second inequality follows the fact that

σ is strictly convex in its second argument.

It follows that the loss of firm i associated with jj′ is lower than the loss of j associated with ii′.

Using similar arguments, it can be easily shown that this result is true for firms i′ and j′.

Moreover, for each firm ` ∈ N \ {i, i′, j, j′}, by the strict convexity in the second argument of σ we

have ∆2σ(V`(g),V(g−`); v)) ≥ ∆2σ(V`(g),V(g−`) − v; v). Therefore, the incremental loss incurred

by `, when the link jj′ is formed, is lower than the incremental loss incurred by `, when the link ii′

is formed.

Let πt(g) the total profit function given g. Since g maximizes the total profit, we have π(g) −

π(g − ii′) ≥ 0. We have established that π(g + j′j′) − π(g) > π(g) − π(g − ii′). It follows that

π(g + j′j′)− π(g) > 0, a contradiction. �

Proof of Proposition 5. Let V(g) = (Vi1(g), . . . ,Vi`(g), . . . ,Vin(g)), with Vi`(g) ≥ Vi`+1
(g);

and let V(g; vi`,i`′ ) be the n-uple identical to V(g) except that Vi`(g) and Vi′`(g) are replaced by

Vi`(g) + vi`,i`′ and Vi′`(g) + vi`,i`′ respectively. Similarly, let V(g;−vi`,i`′ ) be the n-tuple identical to

V(g) except that Vi`(g) and Vi′`(g) are replaced by Vi`(g)− vi`,i`′ and Vi′`(g)− vi`,i`′ respectively. We

denote by CS(g) = Ψ(V(g)) the consumer surplus function associated with g and πT (V(g), |g|) =∑
i∈N σ(Vi(g),V(g−i)) the total profit function. The welfare function is given by: W (V(g), |g|) =

Ψ(V(g)) + πT (V(g), |g|).

We now write Properties PCS and PW in a formal form.

Property PCS: If ` > j, `′ > j′, vi`,i`′ = vij ,ij′ = v, then Ψ(V(g; vi`,i`′ )) − Ψ(V(g)) >

Ψ(V(g))−Ψ(V(g;−vij ,ij′ )).

Property PW: For vi,j > 0, W (V(g; vi,j), |g|) > W (V(g), |g|).

Let g be a network, with ii′ ∈ g and jj′ 6∈ g. To introduce a contradiction suppose that g is

efficient. We assume that Vi(g) ≤ Vj(g), Vi′(g) ≤ Vj′(g)

45



1. Suppose vi,i′ = vj,j′ = v. By Lemma 4, given in Appendix D, we know that network g′

that maximizes the total profit contains a link between firms j and j′ since it contains a

link between firms i and i′. Moreover, since the assumptions of Property PCS are satisfied,

network g′ that maximizes the total consumer surplus contains a link between firms j and

j′ since it contains a link between firms i and i′. It follows that if vi,i′ = vj,j′ = v, then

W (V(g; vj,j′), |g|+ 1) > W (V(g), |g|), a contradiction.

2. Suppose vj,j′ > vi,i′ . Let v′j,j′ = vj,j′ − vi,i′ > 0. By the previous point we have W (V(g; vj,j′ −

v′j,j′ , |g|+1) > W (V(g), |g|), and by property PW, we haveW (V(g; vj,j′ , |g|+1) > W (V(g; vj,j′−

v′j,j′ , |g|+ 1), a contradiction.

�
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