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Computing control invariant sets in high dimension is easy

Mirko Fiacchini a, Mazen Alamir a,
aUniv. Grenoble Alpes, CNRS, Gipsa-lab, F-38000 Grenoble, France.

Abstract

In this paper we consider the problem of computing control invariant sets for linear controlled high-dimensional systems with constraints
on the input and on the states. Set inclusions conditions for control invariance are presented that involve the N-step sets and are posed
in form of linear programming problems. Such conditions allow to overcome the complexity limitation inherent to the set addition and
vertices enumeration and can be applied also to high dimensional systems. The efficiency and scalability of the method are illustrated
by computing approximations of the maximal control invariant set, based on the 10-step operator, for a system whose state and input
dimensions are 30 and 15, respectively.
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1 Introduction

Invariance and contractivity of sets are central properties in
modern control theory. Although the first important results
on invariance date back to the beginning of the seventies [3],
this topic gained considerable interest in the recent years,
see in particular the works by Blanchini and coauthors [5,7],
mainly due to its relation with constrained control and pop-
ular optimization-based control techniques as Model Predic-
tive Control, see [21].

Iterative procedures are given for the computation of con-
trol invariant sets that permit their practical implementation.
Most of those procedures are substantially based on the one-
step backward operator that associates to any set the states
that can be steered into by an admissible input. Different al-
gorithms based on the one-step operator exist for computing
control invariants, that substantially differs from the initial
set. For instance, if the algorithms are initialized with the
state constraints set, [5,17,27], the one-step operator gen-
erates a sequence of outer approximations of the maximal
control invariant that converges to it under compactness as-
sumptions, see [3]. If, instead, the procedure is initialized
with a control invariant set, a non-decreasing sequence of
control invariant sets are obtained that converges from the
inside to the maximal control invariant set, see the consid-
erations on minimum-time ultimate boundedness problem
in [4,7]. A particular case, suggests to initialize the pro-
cedure with the set containing the origin only (which is a
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control invariant in the general framework), obtaining the
sequence of i-step null-controllable sets, that are control in-
variant and converges to the maximal control invariant set,
see [14,16,22,10].

Thus, although the abstract iterative procedures for obtain-
ing control invariant sets apply also for nonlinear systems,
[12,13], the practical computation of the one-step set, that is
the basis for them, is often prohibitively complex for their
application in high dimension even in the linear context.
Some constructive approaches are based on Minkowski sum
and projection procedure, as in [16,4,6], which are hardly
applicable in high dimension due to their numerical com-
plexity. Other methods are based on conditions involving
the vertices of the sets under analysis, [14,19,22,24], but the
vertices number may grow combinatorially with the space
dimension and the vertices computation is hardly manage-
able in high dimension. The numerical complexity has also
been addressed by considering linear feedback and ellip-
soidal control invariant sets, see the monograph [9], or by
fixing the polyhedral set complexity [8,1,28].

In this paper we address the main problem related to the
complexity of the N-step operator, for discrete-time deter-
ministic controlled systems, with polyhedral constraints on
the input and on the state. Considering polyhedral sets, such
operator can be expressed in terms of Minkowski sum of
polyhedra and then as an NP-complete problem [29], hardly
manageable in high dimension. An algorithm is presented
for determining control invariant sets that is based on a set
inclusion condition involving the N-step set of a polyhedron
but does not require to explicitly compute the Minkowski
sum nor to have the vertices representation of the sets. Such
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condition is posed as an LP feasibility problem, hence solv-
able even in high dimension. Examples that show the low
conservatism and the high scalability of the approach are
provided.

Notations Denote with R+ the set of nonnegative real
numbers. Given n∈N, define Nn = {x∈N : 1≤ x≤ n}. The
i-th element of a finite set of matrices or vectors is denoted
as Ai. Using the notation from [26], given a mapping M :
Rn ⇒ Rm, its inverse mapping is denoted M−1 : Rn ⇒ Rm.
If M is a single-valued linear mapping, we also denote, with
slight abuse of notation, the related matrices M ∈Rn×m and,
if M is invertible, M−1 ∈ Rm×n. Given a ∈ Rn and b ∈ Rm

we use the notation (a,b) = [aT bT ]T ∈ Rn+m. The symbol
0 denotes, besides the zero, also the matrices of appropriate
dimensions whose entries are zeros and the origin of a vecto-
rial space, its meaning being determined by the context. The
symbol 1 denotes the vector of entries 1 and I the identity
matrix, their dimension is determined by the context. The
subset of Rn containing the origin only is {0}. The symbol
⊕ denotes the Minkowski set addition, i.e. given C,D⊆Rn

then C⊕D = {x+ y ∈ Rn : x ∈C, y ∈ D}. To simplify the
notation, the propositions involving the existential quanti-
fier in the definition of sets are left implicit, e.g. {x ∈ A :
f (x,y)≤ 0, y ∈ B} means {x ∈ A : ∃y ∈ B s.t. f (x,y)≤ 0}.
The unit box in Rn is denoted Bn.

2 Problem formulation and preliminary results

The objective of this paper is to provide a constructive
method to compute a control invariant set for controlled lin-
ear systems with constraints on the input and on the state. We
would like to obtain a polytopic invariant set that could be
computed through convex optimization problems. The main
aim is to provide a method to obtain admissible control in-
variant sets for high-dimensional systems, thus no complex
computational operations are supposed to be allowed.

The system is given by

x+ = Ax+Bu (1)

where x ∈ Rn is the state and u ∈ Rm is the input, with
constraints

x ∈ X = {y ∈ Rn : Fy≤ f}, u ∈U = {v ∈ Rm : Gv≤ g}.
(2)

Assumption 1 The matrix A is nonsingular.

Assumption 1, not necessary but imposed here to easy the
presentation, is not very restrictive. Recall for instance that
every discretized linear system with no delay satisfies it.
Anyway, the case of nonsingular A is developed in [11].

Some basic properties and methods, well assessed in the lit-
erature, concerning control invariant sets are recalled here-
after. Consider the set Ω containing the origin, i.e. 0 ∈ Ω,
and Qk(Ω,U) defined as

Qk(Ω,U) = {x ∈ Rn : Akx+
k−1

∑
i=0

Ak−1−iBuk−i ∈Ω,

ui ∈U ∀i ∈ Nk}.
(3)

The basic algorithm for obtaining a control invariant set
consists in searching, given Ω, for the minimal N such that

Ω⊆ co

(
N⋃

k=1

Qk(Ω,U)

)
. (4)

As a matter of fact, all the N for which (4) holds, lead to
a control invariant set. Moreover, if (4) is satisfied, then it
is satisfied for every K ≥ N, leading to a non-decreasing
sequence of nested control invariant sets.

Thus, the algorithm computes the preimages of Ω until the
stop condition (4) holds and then all the states in

Q̄N(Ω,U) = co

(
N⋃

k=1

Qk(Ω,U)

)
(5)

can be steered in Ω, thus in Q̄N(Ω,U), in N steps at most.

Given the initial set Ω, a condition characterizing an invari-
ant set, alternative to (4), is the following

Ω⊆ QN(Ω,U), (6)

which is equivalent to the fact that every state in QN(Ω,U)
can be steered in Ω in exactly N steps. This means that (6)
implies, but is not equivalent to (4) and the resulting invari-
ant set would be Q̄N(Ω,U) as in (5). Condition (6), which
will be referred to as N-step condition in what follows, is
just sufficient for (4) to hold but it does not require the com-
putation of the convex hull of several sets at every iteration.

Now, to obtain estimations of the maximal control invariant
set contained in X , consider

Qx
k(Ω,U,X) = {x ∈ X : Akx+

k−1

∑
i=0

Ak−1−iBuk−i ∈Ω,

A jx+
j−1

∑
i=0

A j−1−iBu j−i ∈ X ∀ j ∈ Nk,

ui ∈U ∀i ∈ Nk},

(7)

that is the set of states x ∈ X for which an admissible se-
quence of input of length k exists driving the state in Ω in k
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steps by maintaining the trajectory in X . The resulting con-
trol invariant set would then be given by

Q̄x
N(Ω,U,X) = co

(
N⋃

k=1

Qx
k(Ω,U,X)

)
, (8)

provided that condition

Ω⊆ Qx
N(Ω,U,X) (9)

holds. Note that (9) is just sufficient but, in general, less
complex to be checked than Ω⊆ Q̄x

N(Ω,U,X).

Remark 1 The value of N for which invariance condition
(6) and (9) hold depends on the choice of Ω. Clearly, if Ω

is a control invariant set, then the conditions hold for all
N ≥ 1. Moreover, for every Ω there exists α > 0 and N ≥ 1
such that αΩ satisfies (6) or (9), under mild stabilizability
conditions.

2.1 Algorithm

The main issue which impedes the application of the al-
gorithm in high dimension is the fact that computing the
Minkowski set addition is a complex operation, as it is
an NP-complete problem, see [15,29]. Moreover the addi-
tion leads to sets whose representation complexity increases.
Considering, in fact, two polytopic sets Ω and ∆, their sum
has in general more facets and vertices than Ω and ∆. Thus,
the algorithm given above requires the computation of the
Minkowski sum, hardly manageable in high dimension, and
generates polytopes with an increasing number of facets and
vertices. Another source of complexity is the convex hull in
(4), (5) or (8), as the explicit computation of the convex hull
is a non-convex operation whose complexity grows expo-
nentially with the dimension, see [2]. Furthermore, also the
vertices representation of the sets is a potential limitation
for high dimensional systems, since the number of vertices
may grow combinatorially with the dimension. Finally, ap-
proaches are provided, for instance in [16,6], that require the
computation of the projection of polytopes, operation whose
complexity is equivalent to the one of Minkowski sum. As
can be seen from the comparison, provided in [15], be-
tween different projection algorithms, polytope projections
are not suitable when projecting on high dimensions. This
can be also heuristically checked by computing the projec-
tion over an n-dimensional subspace of a randomly gener-
ated 2n-dimensional polytope. Using the MPT toolbox [18],
for instance, we needed more than 40 seconds to project a
polytope from R10 into a 5-dimensional subspace, more than
15 minutes to project from R12 to R6.

The main objective of this paper is to design a method
for testing conditions (6) and (9) and for having a, poten-
tially implicit, representation of sets (5) and (8) by means of
convex optimization problems, then applicable also to rel-
atively high dimensional systems, to obtain control invari-

ant sets, avoiding the vertices representation of the sets and
Minkowski sum or polytope projections computation.

3 N-step condition for control invariance

As noticed above, a first main issue is related to checking
whether the sum of several polytopes contains a polytope,
see the N-step stop condition (6) and (9).

Consider first the N-step condition (6), characterized by the
Minkowski sum of several sets. The explicit definition of
the Minkowski sum of sets could be avoided by employing
its implicit representation. Indeed, given two polyhedral sets
Γ = {x ∈ Rm : Hx ∈ h} and ∆ = {y ∈ Rp : Gy ≤ g} and
P ∈Rn×m and T ∈Rn×p we have that PΓ⊕T ∆ = {x ∈Rn :
x=Py+T z, Hy≤ h, Gz≤ g}. Thus, the explicit hyperplane
or vertex representation of the sum can be replaced by the
implicit one, given by the projection of a polyhedron in
higher dimension. On the other hand, one might wonder if
the stop condition Ω⊆QN(Ω,U) could be checked without
the explicit representation of QN(Ω,U).

The first hint to do is that the inclusion condition is testable
through a set of LP problems provided the vertices of Ω are
available. Such an assumption is not very restrictive, since
Ω is a design parameter that could be determined such that
both the hyperplane and vertices representation should be
available, a box for instance. Nevertheless, and since we
are aiming at invariant sets for high dimensional systems,
the use of vertices should be avoided if possible. Consider
for instance, in fact, a system with n = 20. The unit box
in R20 is characterized by 40 hyperplanes, but it has 220 '
106 vertices. Then checking if it is contained in a set could
require to solve more than a million of LP problems.

We consider then the possibility of testing whether a poly-
hedron is included in the sum of polyhedra by employing
only their hyperplane representations and without the ex-
plicit representation of the sum of sets. The following result,
based on the Farkas lemma and widely used on set theory
and invariant methods for control, is useful for this purpose.

Lemma 1 Two polyhedral sets Γ = {x∈Rn : Hx≤ h}, with
H ∈Rp×n, and ∆= {x∈Rn : Gx≤ g}, with G∈Rq×n, satisfy
Γ⊆ ∆ if and only if there exists a non-negative matrix T ∈
Rq×p such that T H = G and T h≤ g.

Consider now the stop condition (6), which is suitable for
applying the Lemma 1, as illustrated below.

The main issue for applying Lemma 1 is the fact that obtain-
ing the explicit hyperplane representation of the set at right-
hand side of (6) is numerically hardly affordable, mainly
in relatively high dimension. In fact, given two polyhe-
dra Γ ⊆ Rm and ∆ ⊆ Rp, to determine L and l such that
PΓ⊕Q∆ = {x ∈ Rn : Lx ≤ l} is an NP-complete problem,
see [29]. Nevertheless, a sufficient condition in form of LP
feasibility problem is given below.

3



Theorem 1 Consider Ω = {x ∈ Rn : Hx ≤ h} and U as in
(2), with H ∈Rnh×n and G∈Rng×m, and suppose that 0∈Ω

and 0 ∈ U. Then the set Q̄N(Ω,U) as in (5) is a control
invariant set if there exist T ∈ Rnḡ×nh and M ∈ Rn̄×n̄, with
nḡ = nh +Nng and n̄ = n+Nm, such that

T H̄ = ḠM

T h≤ ḡ[
I 0 0 . . . 0

]
=
[

I 0 0 . . . 0
]

M

(10)

hold with

Ḡ =



HAN HB HAB . . . HAN−1B

0 G 0 . . . 0

0 0 G . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . G


, ḡ =



h

g

g

. . .

g


H̄ =

[
H 0 0 . . . 0

]
(11)

where Ḡ ∈ Rnḡ×n̄, ḡ ∈ Rnḡ , and H̄ ∈ Rnh×n̄.

Proof: Consider condition (6), sufficient for Q̄N(Ω,U)
to be a control invariant set. The right-hand side term of (6)
is given by

QN(Ω,U) = {x ∈ Rn : HANx+HBu1 +HA1Bu2 + . . .

+HAN−1BuN ≤ h, Gui ≤ g, ∀i ∈ NN}

and then it is the projection on Rn of the set

Ω̄N = {(x,u1,u2, . . . ,uN) ∈ Rn̄ : HANx+HBu1 +HABu2 . . .

+HAN−1BuN ≤ h, Gui ≤ g ∀i ∈ NN}= {x̄ ∈ Rn̄ : Ḡx̄≤ ḡ},

with x̄ = (x,u1,u2, . . . ,uN) ∈Rn̄ and Ḡ and ḡ as in (11). The
set Ω is the projection on Rn of the set

Ω̄= {(x,u1,u2, . . . ,uN) ∈ Rn̄ : Hx≤ h}
= {x̄ ∈ Rn̄ : H̄x̄≤ h} ⊆ Rn̄

with H̄ as in (11). Thus, condition (6) is equivalent to

projxΩ̄⊆ projxΩ̄N , (12)

since Ω = projxΩ̄ and QN = projxΩ̄N . Thus, to prove that
Ω⊆QN(Ω,U) is equivalent to check whether the projection
of Ω̄N on Rn contains the projection of Ω̄. Unfortunately,
condition (12) is not suitable for using Lemma 1 and then
we search for a sufficient condition for (12) to hold such
that the lemma can be applied directly.

Consider any linear single-valued mapping M : Rn̄ ⇒
Rn̄, characterized by a, possibly non-invertible, ma-
trix M ∈ Rn̄×n̄, such that the value of x through M
is preserved, i.e. projxM((x,u1, . . . ,uN)) = x for all
(x,u1, . . . ,uN) ∈ Rn̄. Clearly, the value of x is pre-
served also through the inverse mapping of M, that is
projxM−1((x,u1, . . . ,uN)) = x for all (x,u1, . . . ,uN) ∈ Rn̄.
This means that projxΩ̄N = projxM−1

Ω̄N and then (12) is
equivalent to

projxΩ̄⊆ projxM−1
Ω̄N . (13)

Then, the existence of M preserving the x and such that

Ω̄⊆M−1
Ω̄N (14)

holds, is a sufficient condition for (13), and thus also for
(12), to be satisfied. Notice that necessity of (14) for (13)
is not straightforward, since projxΓ⊆ projx∆ does not imply
Γ⊆ ∆, in general.

The condition on the matrix M such that projxM((x,u1, . . . ,uN))=
x for all (x,u1, . . . ,uN) ∈ Rn̄ is[

I 0 . . . 0
]
=
[

I 0 . . . 0
]

M (15)

and then, from Lemma 1, it follows that conditions (14) and
(15) are equivalent to the existence of T ∈ Rnḡ×nh̄ and M ∈
R(n̄)×(n̄) satisfying (10). Then (10) is a sufficient condition
for Ω⊆ QN(Ω,U).

The result given above can be directly extended to the prob-
lem in presence of constraints on the state.

Theorem 2 Consider Ω = {x ∈Rn : Hx≤ h} and X and U
as in (2), with H ∈ Rnh×n, F ∈ Rn f×n G ∈ Rng×m, and sup-
pose that 0∈Ω, 0 ∈ X and 0∈U. Then the set Q̄x

N(Ω,U,X)
as in (8) is a control invariant set contained in X if there
exist T ∈ Rnḡ×nh and M ∈ Rn̄×n̄, with nḡ = nh +Nng +Nn f
and n̄ = n+Nm, such that (10) holds with

Ḡ =



HAN HB HAB . . . HAN−1B

0 G 0 . . . 0

0 0 G . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . G

FAN FB FAB . . . FAN−1B

FAN−1 0 FB . . . FAN−2B

. . . . . . . . . . . . . . .

FA 0 0 . . . FB

F 0 0 . . . 0



, ḡ =



h

g

g

. . .

g

f

f

. . .

f

f


H̄ =

[
H 0 0 . . . 0

]
(16)

where Ḡ ∈ Rnḡ×n̄, ḡ ∈ Rnḡ , and H̄ ∈ Rnh×n̄.
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Proof: Condition (10) with (16) can be proved to imply
the constrained invariant condition (9) by reasonings analo-
gous to those of Theorem 1.

Given the sets Ω,U and X , to obtain the greatest multiple of
Ω such that (9) holds, that is the greatest α ∈ R such that

αΩ⊆ Qx
N(αΩ,U,X), (17)

is equivalent to compute the smallest nonnegative β , with
β = α

−1, such that

Ω⊆ Qx
N(Ω,βU,βX).

This consists in replacing g with βg in (16) and leads to the
following LP problem in T , M and β

α
−1 = β = min

β∈R+

γ

s.t. T H̄ = ḠM

T h≤ γ ĝ+ g̃[
I 0 0 . . . 0

]
=
[

I 0 0 . . . 0
]

M

(18)

with ĝ=(0, g, g, . . . , g, f , . . . , f , f ) and g̃=(h, 0, 0, . . . , 0).

Remark 2 Clearly, if Ω is a control invariant set, then the
greatest α satisfying (17) is not smaller than 1.

Note that directly maximizing α would yield to replace h
by αh in (10) and (16) and then to a nonlinear optimization
problem. Analogous computational considerations hold for
the case of absence of state constraints, as in Theorem 1,
which is a particular case of Theorem 2 with X = Rn.

4 State inclusion test

In the previous section, a condition for (9) to hold is given
that does not require the computation of the preimage sets
Qx

N(Ω,U,X), then avoiding the computation of Minkowski
addition, see Theorem 2. Once αΩ is computed by solving
(18), one possible choice to obtain a control invariant set is
given by

Ω̄
x = co

(
N⋃

k=1

Ω
x
k

)
with Ω

x
k = Qx

k(αΩ,U,X). (19)

To have an explicit representation of Ω̄
x requires to compute

the convex hull of the union of several sets, each one given
by the Minkowski sum of sets, but the convex hull operation
is numerically demanding. Hereafter we provide a convex
condition to check if a given x ∈Rn belongs to the invariant
set Ω̄

x without computing it explicitly.

The theorem below provides a representation of the control
invariant Ω̄

x in terms of linear equalities and inequalities.

Theorem 3 Let Assumption 1 hold. Consider Ω = {x∈Rn :
Hx ≤ h} bounded, X and U as in (2), with H ∈ Rnh×n,
F ∈Rn f×n, G∈Rng×m, and suppose that 0∈Ω, 0∈X, 0∈U
and U is bounded. Given α solution of (18) then the set Ω̄

x

defined by (19) can be written as follows

Ω̄
x = {x ∈ Rn : x =

N

∑
k=1

zk;

HAkzk +
k−1

∑
i=0

HAk−1−iBvk,k−i ≤ αλkh, ∀k ∈ NN ;

FA jzk +
j−1

∑
i=0

FA j−1−iBvk, j−i ≤ λk f , ∀ j ∈ Nk, ∀k ∈ NN ;

Fzk ≤ λk f , ∀k ∈ NN ; Gvk,i ≤ λkg ∀i ∈ Nk, ∀k ∈ NN ;

λ ≥ 0,
N

∑
k=1

λk = 1}.

(20)

Proof: Given an arbitrary collection of non-empty con-
vex sets Γi ⊆ Rn with I ∈ N and i ∈ NI , note first that

co

(⋃
i∈NI

Γi

)
=
⋃

λ≥0
1T λ=1

(⊕
i∈NI

λiΓi

)

see Chapter 3 in [25]. Provided condition (17) is satisfied
and from Lemma 2 in Appendix A, the control invariant set
is given by

Ω̄
x = co

(
N⋃

k=1

Ω
x
k

)
=

⋃
λ≥0

1T λ=1

(
N⊕

k=1

λkΩ
x
k

)

=
⋃

K⊆NN

⋃
λ∈Λ(K)

1T λ=1

(⊕
k∈K

λkΩ
x
k

)
= {x ∈ Rn : x = ∑

k∈K
λkyk;

yk ∈Ω
x
k, λk > 0, ∀k ∈ K; ∑

k∈K
λk = 1, ∀K ⊆ NN},

(21)
since 0 ·Ωx

k = {0} for all k∈Nn. Then, from λk > 0 for every
k ∈ K and defining zk = λkyk for all k ∈ K, it follows

Ω̄
x = {x ∈ Rn : x = ∑

k∈K
zk; zk/λk ∈Ω

x
k, λk > 0, ∀k ∈ K;

∑
k∈K

λk = 1, ∀K ⊆ NN}= {x ∈ Rn : x = ∑
k∈K

zk;

HAkzk/λk +
k−1

∑
i=0

HAk−1−iBuk,k−i ≤ αh, ∀k ∈ K;

FA jzk/λk +
j−1

∑
i=0

FA j−1−iBuk, j−i ≤ f , ∀ j ∈ Nk, ∀k ∈ K;

Fzk/λk ≤ f , ∀k ∈ K; Guk,i ≤ g ∀i ∈ Nk, ∀k ∈ K;

λk > 0, ∀k ∈ K; ∑
k∈K

λk = 1, ∀K ⊆ NN}

(22)
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from (7). By introducing vk,i = λkuk,i for all i ∈ Nk, k ∈ K
and K ⊆ NN , then

Ω̄
x = {x ∈ Rn : x = ∑

k∈K
zk;

HAkzk +
k−1

∑
i=0

HAk−1−iBvk,k−i ≤ αλkh, ∀k ∈ K;

FA jzk +
j−1

∑
i=0

FA j−1−iBvk, j−i ≤ λk f , ∀ j ∈ Nk, ∀k ∈ K;

Fzk ≤ λk f , ∀k ∈ K; Gvk,i ≤ λkg ∀i ∈ Nk, ∀k ∈ K;

λk > 0, ∀k ∈ K; ∑
k∈K

λk = 1, ∀K ⊆ NN}.

(23)
If λk = 0, as for all k /∈K and every K⊆NN , then Gvk,i≤ λkg
implies vk,i = 0 for all i ∈ Nk, from the boundedness of
U . Thus λk = 0 implies also zk = 0, from the boundedness
of Ω and Assumption 1. Hence the expression (20) can be
recovered by posing λk = 0,vk,i = 0 and zk = 0 in (23) for
all k /∈ K and every K ⊆ NN .

Theorem 3 implies that checking if x ∈ Ω̄
x resorts to solve

an LP feasibility problem in the variables x,zk,vk,i,λk for
all i ∈ Nk and k ∈ NN , then in a space of dimension n+
Nn+ 0.5N(N + 1)m+N. Such a representation is particu-
larly suitable to be used in optimization-based control, as
model predictive control for instance, since it reduces to en-
forcing the linear constraints characterizing Ω̄

x.

5 Numerical examples

The different results presented in this paper are illustrated
through numerical examples. The optimization problems are
solved using YALMIP interface [20] and Mosek optimizer
[23] on an Intel® Core™ i7-6600U CPU @ 2.60GHz × 4
processor laptop with 16GB of RAM.

5.1 Example 1

Here we compare the computational burden required to
check the invariant condition (17) by solving (16)-(18)
with an alternative approach based on known properties of
computational geometry. First we describe this approach.
Suppose that both the hyperplanes and the vertices repre-
sentation of Ω are available. This assumption, not needed
for our method that only requires the H-representation,
could be reasonably posed since Ω can be arbitrary chosen,
and then fixed to be the unitary box, i.e. Ω = Bn. Then,
the 2n vertices can be easily obtained, which is not the case
for general polytopes. Thus, the exact maximal α such that
(17) is satisfied is given by

α
∗ = max

α, ui, j
α

s.t. Ḡ · (αv j, u1, j, . . . , uN, j,)≤ α g̃+ ĝ, ∀ j ∈ N2n

(24)

where v j is the j-th vertex, with j ∈N2n , and Ḡ, g̃ and ĝ are
defined in and below Theorem 2. The constraints in the LP
problem (24) impose that every vertex of αΩ is contained
in Qx

N(αΩ,U,X) and their number is equal to the number of
vertices of Ω, hence exponentially growing with the system
dimension.

The exact maximal α
∗ solution of (24) and the α obtained by

solving (18) with (16) are computed for randomly generated
controllable systems with real eigenvalues with increasing
n and m = dn/2e. The sets are Ω = Bn,U = 10Bm and
X = 100Bn and N = 2. The computation times are given in
Figure 1 in function of the state dimension n.

10 20 30 40
0

50

100

150

n

t[
s]

Fig. 1. Computation times in seconds to solve (24), in dashed line,
and to solve (18) with (16), in solid line, in function of the state
dimension n.

Note that the proposed method permits to check the invari-
ance condition up to a 40 dimensional system with 20 in-
puts in less than 12 seconds, while the alternative approach
needs more than 160s for n = 15.

In Figure 2 we report the values of α obtained by solving
(18) for 1000 randomly generated systems with n between 1
and 12 and also the normalized mismatch with respect to α

∗

given by (24), i.e. |α−α
∗|/α

∗, in logarithmic scale. It can
be noticed that the approximation error is several order of
magnitude smaller than the values of α , in most of the cases
included between 10−4 and 10−12, which might be due to
the numerical precision rather than to real inaccuracy.

−14 −12 −10 −8 −6 −4 −2 0 2
0

50

100

150

200

log(|α−α
∗|/α

∗) log(α)

Fig. 2. Histograms of the values of log(α), in light gray, and
log(|α−α

∗|/α
∗), in dark gray, over 1000 tests.
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Finally, the Minkowski sum has been employed to compute
Qx

N(αΩ,U,X) a posteriori, for evaluating its computational
cost, but we could not go further than n = 4.

5.2 Example 2

We apply now the proposed method to an high dimensional
system, in particular with n = 30 and m = 15 with horizons
N = 5,10. To provide some hints on the conservatism of the
control invariant obtained with respect to the maximal con-
trol invariant set, we build a system for which the latter can
be computed. Indeed the classical algorithms for comput-
ing the maximal control invariant set are too computation-
ally demanding to be applied to high dimensional systems
in general. Then, a specific structure has to be imposed to
the system dynamics for computing the maximal control in-
variant set to be compared with our results. In particular, we
consider system (1) with

A = P−1


A1 0 . . . 0

0 A2 . . . 0

. . . . . . . . . . . .

0 0 . . . A15

P, B = P−1


B1 0 . . . 0

0 B2 . . . 0

. . . . . . . . . . . .

0 0 . . . B15


(25)

where Ai ∈ R2×2 and Bi ∈ R2, for i ∈ N15, are matrices
whose entries are randomly generated such that all Ai have
instable poles and the pairs (Ai,Bi) are controllable and the
maximal control invariant is obtained, as illustrated below,
after 5 iterations at most. The latter requirement has been
introduced for sets convergence reasons. The matrix P ∈
R30×30 is a randomly generated nonsingular matrix. Figure 3
provides a graphical representation of A and B, for which
the maximal values (15.303 for A and 49.0516 for B) are
depicted in white, the minimal ones (−13.4866 for A and
−60.4621 for B) are drawn in black, the other values are
proportional degree of gray. The matrices are not sparse,
not a single null entry is present either in A or B, and are
available under request.

Fig. 3. Graphical representation of matrices A and B.

Thus, the dynamics of system with state y = Px, is control-
lable and it is, in practice, composed by 15 decoupled two-
dimensional subsystems with one control input each. Hence,
the maximal control invariant set in the space for the overall
system in y, denoted Σ, is given by the Cartesian product of
the maximal control invariant sets of the 15 subsystems. That

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Fig. 4. Histograms of the values rΩ/rΣ for N = 5,10 for a systems
with n = 30 and m = 15.

is Σ = ∏
15
i=1 Σi where Σi are the maximal control invariant

set in 10B2 for the i-th subsystem with input bound 10B2.
Hence Σ can be computed by computing Σi, being (Ai,Bi) a
two-dimensional controllable system, for all i ∈N15. There-
fore, P−1

Σ⊆R30 is the maximal control invariant set for the
system (1) in x with (25). After computing P−1

Σ, the linear
problem (18) has been solved to obtain Ω̄

x with N = 5,10
and sets Ω = P−1B30, U = 10B15 and X = 10P−1B30.

To quantify the difference between the maximal control in-
variant set P−1

Σ and the set Ω̄
x, 100 vectors v∈Rn are gen-

erated randomly. Then, (a lower approximation of) the max-
imal values of rΣ and rΩ are computed such that rΣv∈ P−1

Σ

and rΩv ∈ Ω̄
x, through dichotomy method. In practice, we

search for (approximations of) the intersections between the
ray vr = {rv ∈ Rn : r ≥ 0} and the boundaries of the sets
P−1

Σ and Ω̄
x. The ratio between rΩ/rΣ is an indicator of the

mismatch between the maximal control invariant set P−1
Σ

and Ω̄
x, the closer to one, the closer are the intersections

between the ray vr and the two sets.

Figure 4 shows the histograms of the ratio rΩ/rΣ for N =
5,10. As expected, the higher is the horizon N, the closer
are the sets Σ and Ω̄

x.

6 Conclusions

In this paper we addressed the problem of computing con-
trol invariant sets for linear systems with state and input
polyhedral constraints. Invariance conditions are given, that
are set inclusions involving the N-step sets, which are posed
in form of LP optimization problems, instead of Minkowski
sum of polyhedra. Then the procedures based on those con-
ditions are applicable even for high dimensional systems.
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A Appendix

Lemma 2 Given K ⊆ NN and defined K̄ = Nn/K and

Λ(K) = {λ ∈ Rn : λk > 0 ∀k ∈ K, λk = 0 ∀k ∈ K̄}
(A.1)

one has

{λ ∈ Rn : λk ≥ 0 ∀k ∈ Nn, 1T
λ = 1}

=
⋃

K⊆NN

{λ ∈ Λ(K) : 1T
λ = 1} (A.2)

Proof: Note that for every λ ∈ Λ(K), λk is strictly
positive if and only if k ∈K, i.e. K denotes the set of indices
such that λk is not zero, in practice. For every λ in the l.h.s.
of (A.2), there exists a K, that is the set of indices for which
λk > 0, such that λ ∈ Λ(K). Analogously, every λ in the
r.h.s. of (A.2), also satisfies λ ≥ 0 and then it is contained
in the l.h.s. set.
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