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Stability of Sampled-data Control Systems
under Aperiodic Sampling and Input Saturation

Mirko Fiacchini and João Manoel Gomes da Silva Jr.

Abstract— This work proposes a new approach to asses sta-
bility of sampled-data controlled linear systems under aperiodic
sampling and subject to input saturation. From an impulsive
representation of the system and considering a partition of the
interval between two successive sampling instants, it is shown
that the discrete-time dynamics of the closed-loop system can
be described by a difference inclusion. A general Lyapunov-
based result allowing to conclude about the local stability
of the sampled-data system is derived. Thus, considering the
particular case of quadratic functions, a constructive condition
in terms of linear matrix inequalities (LMIs) is proposed to
compute estimates of the region of attraction of the nonlinear
closed-loop system.

I. INTRODUCTION

The digital control implementation paradigm brought the
need of dealing with sampled signals and to consider si-
multaneously continuous and discrete-time dynamics in the
control-loop. Considering periodic sampling policies, a large
amount of works have been tackling this problem along
the last decades (see, for instance, [1]–[6]). More recently,
motivated by the implementation of digital control loops
over networks (networked control) [7], the study of sampled-
data control under aperiodic sampling has been the focus of
new results in the field. In this context we can cite some
different approaches to tackle the problem. In [8], [9] an
uncertain discrete-time model, which is embedded onto a
polytopic model from the use of exponential matrices is
considered. In [10]–[12] the effects of the aperiodic sampling
are modeled through norm bounded uncertainties. The time-
delay approach, which addresses the aperiodic sampling
by means of a time-varying delay on the control signal
and considers an analysis based on Lyapunov-Krasovskii
functionals has been proposed in [13] and further developed
in [14] and [15]. A mixed continuous and discrete-time
approach has been proposed in [16], [17] through the concept
of looped-functionals and adapted to the case of impulsive
systems in [18]. In [19] polyhedral Lyapunov functions
are employed to obtain necessary and sufficient stability
conditions and a constructive method for testing the stability.
Finally, [20] deals with the stability verification problem
using reachability analysis.
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On the other hand, due to actuator physical limitations,
control signal saturation is an ubiquitous feature. Motivated
by this, a large amount of works consider the problems
of stability analysis and stabilization of systems with input
saturation (see, for example, the books [21] and [22] for a
general overview). In this vein, many approaches to ensure
global or regional (local) asymptotic stability of the closed-
loop systems under saturating control laws have been pro-
posed considering either continuous or discrete-time systems.
Considering the periodic sampling case, the problem of
assessing stability of a continuous-time plant controlled by
a discrete-time dynamic output feedback control law has
been addressed for instance, in [23]. In [24], the authors
extended the design of discrete-time anti-windup loops to
the sampled-data case with constant period by using the
approach proposed in [2], in order to transpose the problem
into a discrete-time framework. Aperiodic sampling in the
presence of control saturation is addressed in [17] and [25]
considering a looped-functional approach.

In this paper a new approach to analyse the stability of
aperiodic sampled-data control, explicitly considering the
possibility of control signal saturation, is proposed. The
approach is based on the representation of the aperiodic
sampled-data system by an impulsive system, where the
control value is updated only at the sampling instants from
the sampled value of the state. Taking into account that
the continuous dynamics between two successive sampling
instants is linear and considering a partition of the intersam-
pling interval, it is shown that the discrete-time evolution
of the system can be modeled by a difference inclusion.
Based on this setup, a general Lyapunov-based condition
is derived to assess the stability of the closed-loop system.
This condition basically ensures that a Lyapunov function
is strictly decreasing between sampling instants with a rate
that is bigger than its possible expansion in the intersampling
interval. Thus, considering quadratic Lyapunov function can-
didates and a polytopic differential inclusion representation
of the saturation term, a construtive result, in form of linear
matrix inequalities (LMIs), is proposed to compute estimates
of the region of attraction of the origin of the nonlinear
sampled-data controlled system. The approach is illustrated
by a numerical example.

The paper is organized as follows. In section II an impul-
sive system representation for the sampled-data controlled
system is presented and the stability assessment problem
is formally stated. In Section III, from a suitable partition
of the allowable interval between two successive samples, a
difference inclusion describing the behavior of the discrete-



time dynamics is proposed. Section IV is devoted to the main
results of the paper. An illustrative example is provided in
section V. Some concluding remarks end the paper.

Notation. R is the set of real numbers and N the set of
natural ones. We denote Nn , {i ∈ N : 1 ≤ i ≤ n}. For any
function x defined on Rn we denote x(t−) , lim

τ 7→t,τ<t
x(τ) if

the limit exists. ∂S and int(S) denote the boundary and the
interior of a set S, respectively. M(i) and v(i) denote, respec-
tively, the ith row of the matrix M and the ith component of
the vector v. ‖ ·‖p denotes the p-norm. σmax(A) denotes the
maximal real part of the eigenvalues of matrix A.

II. PROBLEM FORMULATION

Consider the continuous-time plant described by the fol-
lowing linear model:

ẋp(t) = Apxp(t)+Bpu(t) (1)

where xp ∈ Rnp and u ∈ Rm represent the state and the
input of the plant, respectively. Matrices Ap and Bp have
appropriate dimensions and are supposed to be constant. We
assume that the control signal is constrained in magnitude,
i.e.

u ∈U = {u ∈ Rm : ‖u‖∞ ≤ 1}.

From the input constraints, we consider that a saturating
sampled-data control law given by

u(t) = sat(Kpxp(tk)), ∀t ∈ [tk, tk+1) (2)

where sat(v) : Rm→ Rm denotes a classical saturation func-
tion, whose elements sat(r)(v), ∀r = 1, . . . ,m are defined as

sat(r)(v) = sign(v(r))min{v(r),1},

is applied to the system, and tk denotes the k-th sampling
instant. Thanks to the presence of a ZOH, the control input
is kept constant at the value computed from the value of
xp(t) sampled at the instant t = t−k , for all t ∈ [tk, tk+1).

We assume that there exist two positive scalars τm ≤ τM
such that the difference between two successive sampling
instants δk = tk+1− tk satisfies

0 < τm ≤ δk ≤ τM, ∀k ∈ N. (3)

The bounds τm and τM are supposed to be imposed by
constraints on the digital hardware and a networked control
implementation. In this last case, they can represent for
instance a jitter on a nominal periodic sampling, induced
by the communication protocol.

Note that assuming τm > 0 is sufficient to avoid Zeno
solution and then that the sequence {tk}k∈N is an unbounded
increasing sequence of positive scalars. The intersampling
time δk can be variable, which allows to model an aperiodic
sampling strategy. The particular case of periodic sampling
corresponds to δk = τm = τM for all k ∈N. Given the interval
∆= [τm,τM] with 0< τm≤ τM and t0 = 0, the set of sequences
of admissible sampling instants is given by:

Θ(∆) =
{
{tk}k∈N : tk+1 = tk +δk, δk ∈ ∆, ∀k ∈ N

}
. (4)

Then, for every T ∈ Θ(∆), the system dynamics can be
represented by the following impulsive system:{

ẋp(t) = Apxp(t)+Bpu(t),
u̇(t) = 0, ∀t ∈ R+−T ,{
xp(t) = xp(t−),
u(t) = sat(Kpxp(t−)),

∀t ∈T ,

xp(0) = x0 ∈ Rnp , u(0) = sat(Kpx0) ∈ Rm,
(5)

or, equivalently [26], by ẋ(t) = Acx(t), ∀t ∈ R+−T ,
x(t) = Arx(t−)+Brsat(Kx(t−)), ∀t ∈T ,
x(0) = x0 ∈ Rn,

(6)
where x = [x′p u′]′ ∈ Rn, with n = np +m, is the overall
system state and Ac, Ar ∈Rn×n and Br ∈Rn×m are given as
follows

Ac =

[
Ap Bp
0 0

]
, Ar =

[
I 0
0 0

]
,

Br =

[
0
I

]
, K =

[
Kp 0

]
.

(7)

It should be noticed that, due to the saturation term
the closed-loop system (6) is nonlinear. Hence, the global
stability of the origin cannot be a priori guaranteed. More-
over, if matrix Ap is not Hurwitz, the global stabilization is
actually impossible [27]. In this case, since the analytical
characterization of the region of attraction of the origin
(RAO) is in general not possible, the idea is to estimate it
through well-defined Lyapunov domains. These domains can
therefore be seen as ”safe” regions of operation.

In this paper we are particularly interested in the local
asymptotic stability guarantee and the determination of esti-
mates of the RAO for system (6). The problem we focus on
can therefore be stated as follows.

Problem 1: Given the bounds τm and τM on the intersam-
pling time:

a) provide conditions that allow to asses the local stability
of the origin of the closed-loop system, considering an
aperiodic sampling policy with δk ∈ [τm, τM], ∀k ∈ N;

b) once the local stability of the origin is ensured, deter-
mine an estimate R of the RAO.

III. EQUIVALENT DISCRETE-TIME UNCERTAIN SYSTEM

For given x0 and T ∈ Θ(∆) the evolution of the state
x between two successive sampling instants, i.e. for t ∈
[tk, tk+1), is continuous. Thus, since the dynamics is linear,
it follows that:

x(t) = eAc(t−tk)x(tk), ∀t ∈ [tk, tk+1). (8)

Hence, taking into account, from (5), that xp(t) = xp(t−) and
equations (6) and (8), the dynamics between two successive
sampling instants is given by the following discrete-time
equation

x(tk+1) = AreAc(tk+1−tk)x(tk)+Brsat(KeAc(tk+1−tk)x(tk))
= AreAcδk x(tk)+Brsat(KeAcδk x(tk)),

(9)



where δk = tk+1− tk ∈ ∆. Thus, denoting A(δ ) = AreAcδ and
K(δ )=KeAcδ , the problem of stability of the linear impulsive
system (6) can be tackled by considering the following
discrete-time nonlinear parametric uncertain system

x(tk+1) = A(δk)x(tk)+Brsat(K(δk)x(tk)), with δk ∈ ∆.
(10)

Consider now the partition of the interval [τm, τM] in J ∈N
sub-intervals and define the set:

∆J = {τm +( j−1)τJ : j ∈ NJ}, τJ =
τM− τm

J
. (11)

Since δk ∈ [τm, τM] and from (11), we have that for every
δk there exist dk ∈ ∆J and τk ∈ [0,τJ ] such that δk = dk + τk
and it follows that:

A(δk) = A(dk + τk) = AreAc(dk+τk) = A(dk)eAcτk ,

K(δk) = K(dk + τk) = KeAc(dk+τk) = K(dk)eAcτk .
(12)

Thus, from (10), we can write that:

x(tk+1) = A(dk)eAcτk x(tk)+Brsat(K(dk)eAcτk x(tk)), (13)

with dk ∈ ∆J and τk ∈ [0, τJ ]. Then, given the state x(tk) = xk
at sampling instant tk, the possible successors are given by
the difference inclusion

xk+1∈ {A(d)eAcτ xk +Brsat(K(d)eAcτ x(tk)) : d ∈ ∆J ,
τ ∈ [0, τJ ]}= {A(d)y+Brsat(K(d)y) : d ∈ ∆J ,
y = eAcτ xk, τ ∈ [0, τJ ]}.

(14)
Hence, defining the following set-valued maps

F (y) = {A(d)y+Brsat(K(d)y) : d ∈ ∆J} ⊆ Rn,
G (z) =

{
eAcτ z : τ ∈ [0, τJ ]

}
⊆ Rn,

(15)

∀y, z ∈ Rn, then for every yk ∈ G (xk) we have that xk+1 ∈
F (yk), i.e. the dynamics in (14) are also given by the
difference inclusions

xk+1 ∈F (G (xk)). (16)

Thus, the stability of the difference inclusion system (16) can
be used to analyse the stability of the closed-loop system (1)-
(2) under asynchronous sampling with inter-sampling time
bounded by τm and τM .

IV. STABILITY ANALYSIS

A. Lyapunov setup

Let now V (x) : Rn→R be a continuous Lyapunov candi-
date function, such that

µ1‖x‖p
p ≤V (x)≤ µ2‖x‖p

p (17)

The level sets associated to V (x), generically defined as

Ωc = {x ∈ Rn : V (x)≤ c} (18)

are compact sets containing the origin in their interior for all
c > 0.

Considering the function V (x) and the difference inclusion
in (16), a sufficient condition for the asymptotic stability
of the origin of the closed-loop system (1)-(2) and the
characterization of estimates of the RAO are given in the
following theorem.

Theorem 1: Consider a set D containing the origin in its
interior. Suppose that there exists a scalar λ ∈ (0, 1) such
that the following conditions hold:

a) V (y+) ≤ λV (y) for all y ∈ D and y+ ∈ F (y), with
F (·) as defined in (15);

b) V̇ (x)< αV (x) along the trajectories of system

ẋ(t) = Acx(t), (19)

with α = 1
τJ

ln
( 1

λ

)
. Then the origin is locally asymptotically

stable for the aperiodic sampled-data saturated control sys-
tem (1)-(2) and the sets Ωc, defined as in (18), such that
Ωc/λ ⊆D , are contained in its domain of attraction.

Proof: Denote x(tk) = xk and consider V (xk) = c.
We first prove that V (xk+1) < V (xk), for every xk in a
neighborhood of the origin with xk+1 given by (16). Recall
that for all yk ∈ G (xk) there exists τ ∈ [0,τJ ] such that
yk = eAcτ xk, eAcτ xk being the solution of (19) at time tk + τ .
Then from condition b) and since α = 1

τJ
ln
( 1

λ

)
> 0, one

obtains:

V (yk) =V (xk)< eατJV (xk) =
1
λ

V (xk) =
c
λ
, if τ = 0

V (yk)< eατV (xk)≤ eατJV (xk) =
1
λ

V (xk) =
c
λ
, if τ > 0

(20)
Thus, for every xk ∈ Rn such that V (xk) = c one has that
G (xk) ⊆ Ωc/λ . If moreover Ωc/λ ⊆ D , then condition a)
applies for every element yk ∈ G (xk) and then

V (y+k )≤ λV (yk)<V (xk) = c, (21)

for all xk+1 = y+k ∈F (yk) = F (G (xk)), which means that
V (xk+1) < V (xk) for all xk+1 ∈F (G (xk)), or, equivalently,
that xk+1 ∈ int(Ωc), provided xk ∈ ∂Ωc. From the continuity
of V (x) and the fact that the origin is in the interior of D ,
there exists c > 0 such that Ωc/λ ⊆D and hence xk→ 0 as
k→+∞, provided that x0 = x(0) ∈Ωc.

Consider now t ∈ [tk, tk+1). From (19) and (17), it follows:

V (x(t)) ≤ µ2‖x(t)‖p
p = µ2‖eAc(t−tk)x(tk)‖p

p

≤ µ2 max
τ∈[τm,τM ]

‖eAcτ‖p
p‖x(tk)‖p

p,
(22)

which implies uniform stability and that V (x(t)) → 0 as
x(tk) = xk → 0. Thus we conclude that then the origin is
asymptotically stable for the aperiodic sampled-data sat-
urated control system (1)-(2). Moreover, the sets Ωc are
contained in the domain of attraction if Ωc/λ ⊆D .

A similar result could have been found using the hybrid
systems framework [28] instead of the considered impulsive
one. In particular, the impulsive systems framework allows
to cast the problem in terms of difference inclusions (see
(16)), which is more suitable, in our opinion, for obtaining
constructive stability conditions and to quantify the related
conservatism. Actually, in case of absence of saturation,
constructive necessary and sufficient conditions for stability
based on the difference inclusions model have been obtained
for instance in [19]. It should be noticed that, differently
from a classical hybrid approach, conditions a) and b) in
Theorem 1 do not regard directly the continuous and discrete
dynamics in (6). The basic idea consists in ensuring the de-
creasing of the Lyapunov function between two jumps using



the discrete-time differencial inclusion F (y), considering the
uncertainty on the sampling instant through the set-valued
map G (z).

Remark 1: Note that, since α is supposed to be a positive
scalar, condition b) in Theorem 1 does not impose a decreas-
ing of the function V in continuous-time. Actually, it ensures
a bound on its potential increasing, which means that Ac is
not required to be Hurwitz. In this case, the verification of
condition b) will require a sufficiently large α > 0.

B. Testable Conditions

In order to obtain testable conditions, in this section we
apply Theorem 1 considering V (x) as a quadratic function.
This will allow to express conditions a) and b) as linear
matrix inequalities (LMIs) and therefore to formulate convex
optimization problems to determine estimates of the RAO of
the system.

With this aim, the first step regards the choice of an appro-
priate and tractable model for the saturation term present in
(15). We particularly consider the approach proposed in [29]
and re-formulated as a polytopic inclusion in [22], which can
be summarized in the following Lemma:

Lemma 1: Let Di ∈ Rm×m, i ∈ N2m all possible different
diagonal matrices whose diagonal elements are 1 or 0 and
D̄i = (Im−Di). For matrices Hi ∈ Rm×n, i ∈ N2m , define the
following sets:

S(Hi,1) = {x ∈ Rn : |Hi(r)x| ≤ 1,∀r ∈ Nm s.t. D̄i(r) 6= 0}

If x ∈
2m⋂
i=1

S(Hi,1) thus it follows that there exist scalars 0≤

γi ≤ 1, with ∑
2m

i=1 γi = 1, such that

sat(Kx) =
2m

∑
i=1

γi(DiK + D̄iHi)x

Based on Lemma 1 and the conditions in Theorem 1 with
a quadratic function V (x) = x′Px, P = P′ > 0, we can now
state a constructive condition to address Problem 1.

Theorem 2: If there exist a matrix W =W ′> 0, W ∈Rn×n,
matrices Gd,i ∈ Rm×n with d ∈ ∆J , i ∈ N2m and scalars λ ∈
(0,1) and α = 1

τJ
ln
( 1

λ

)
> max{2σmax(Ac),0}, satisfying the

following LMIs[
λW W (A(d)+BrDiK(d))′+G′d,iD̄iB′r
? W

]
≥ 0,

∀d ∈ ∆J , i ∈ N2m

(23)

[
W G′d,i(r)
? 1

]
> 0,

∀d ∈ ∆J , i ∈ N2m ,∀r ∈ Nm s.t. D̄i(r) 6= 0
(24)

WA′c +AcW−αW < 0 (25)

then, for all x(0) = x0 ∈ E (W−1,λ ) = {x ∈ Rn ; x′W−1x ≤
λ}, it follows that the corresponding trajectory of the
sampled-data system (1)-(2), with δk satisfying (3), con-
verges asymptotically to the origin.

Proof: Consider V (x)= x′Px with P=P′> 0, P=W−1.
Using convexity arguments, applying Schur’s complement to
(23) and left and right multiplying the resulting inequality
respectively by y′P and Py, it follows that:

y′Ã(d)′PÃ(d)y−λy′Py≤ 0, ∀d ∈∆J , i∈N2m , ∀y 6= 0, (26)

with Ã(d) = A(d)+Br ∑
2m

i=1 γi(DiK(d)+ D̄iHd,i) and Hd,i =
Gd,iP. From Lemma 1, it follows that V (y+)≤λV (y), for
all y+ ∈F (y), i.e. condition a) of Theorem 1 is satisfied,

provided y ∈
2m⋂
i=1

S(Hd,i,1), for all d ∈ ∆J .

Now applying Schur’s complement to (24) and left and
right multplying the resulting inequality by y′P and and Py,
it follows that

|Hd,i(r)y|2 < y′Py

which ensures that E (W−1,1) = {y ∈ Rn ; y′W−1y ≤
1}⊆S(Hd,i,1), for every i ∈ N2m and all d ∈ ∆J , or equiv-

alently, E (W−1,1)⊆
2m⋂
i=1

S(Hd,i,1), for all d ∈ ∆J .

On other hand, note that if (25) holds, it follows that item
b) of Theorem 1 is verified with V (x) = x′Px. At this point
note that (25) can be verified if and only if the eigenvalues of
Ac have real part strictly smaller than α/2. Thus, considering
α > max{2σmax(Ac),0} is needed to ensure the feasibility of
inequality (25).

Hence, provided that x(0) = x0 ∈ E (W−1,λ ), we have

y = G (x0) ∈ E (W−1,1)⊆
⋂

d∈∆J

2m⋂
i=1

S(Hd,i,1)

and condition a) of Theorem 1 is indeed verified with D =⋂
d∈∆J

2m⋂
i=1

S(Hd,i,1), which concludes the proof.

C. Optimization Problems

Given the bounds τm and τM on δk, we can use the condi-
tions of Theorem 2 to compute regions of guaranteed stability
for the sampled-data closed-loop system, i.e. estimates of
the region of attraction of the origin. Actually, provided
x(0) ∈ E (W−1,λ ), conditions of Theorem 1 guarantee that
the corresponding trajectory converges asymptotically to the
origin.

Thus, the idea is to maximize region E (W−1,λ ), consider-
ing some size criterion. For instance, the maximization of the
minor axis of the set can be considered through the following
optimization problem:

min
W,Gd,i,ε

ε

subject to:
(23),(24),(25),[

εI I
? W

]
> 0.

(27)

The last constraint in problem (27), ensures that the
maximal eigenvalue of W−1 is smaller than ε . Hence, the
minimization of ε corresponds to the maximization of the



minor axis of the ellipsoid E (W−1,λ ). Other size criteria,
such as the volume maximization or the maximization of
the set in certain directions can also be easily considered
(see [22]).

Note that problem (27) is associated to a given partition
of the interval [τm,τM]. In order to find a suitable partition,
the following algorithm is proposed:

Algorithm:
• Step 1: Fix λ

• Step 2: Initialize J
• Step 3: Compute τJ =

τM−τm
J

• Step 4: Fix α = 1
τJ

ln( 1
λ
) and solve (27):

If (27) is not feasible, J← J+1 and go to Step 3.
Otherwise stop.

Remark 2: Note that, as pointed out in the proof of
Theorem 2, a necessary condition for the feasibility of (25)
is that α = 1

τJ
ln
( 1

λ

)
>max{2σmax(Ac),0}. Hence, for a fixed

λ , we should have

τJ <
1

max{2σmax(Ac),0}
ln
(

1
λ

)
which implies, from (11), that the initialization of J in Step
3 of the Algorithm should satisfy:

J > (τM− τm)
max{2σmax(Ac),0}

ln
( 1

λ

)
Remark 3: It is worth noticing that the region E (W−1,λ )

is defined in the space of x = [x′p u′]′. On the other hand,
note that the actual initial states xp(0) and u(0) are coupled
by the relation:

u(0) = sat(Kpxp(0))

Hence, the “safe” set of plant initial states, i.e. the set
in the plant subspace such that x(0) = [xp(0) u(0)′]′ ∈
E (W−1,λ ) is in fact described by the set

Xp = {xp ∈Rnp ;
[

xp
sat(Kpxp)

]′
W−1

[
xp

sat(Kpxp)

]
≤ λ},

Note that the region Xp corresponds to the level set of a
piecewise quadratic function.

V. NUMERICAL EXAMPLE

Consider the system (1)-(2) with the following matrices
[22]:

Ap =

[
0 1
1 0

]
; Bp =

[
0
−5

]
;

Kp =
[

2.6 1.4
]

with the interval of admissible intersampling times given by
∆ = [0.05, 0.1].

In this case, for λ = 0.96 a feasible solution for the
optimization problem (27) is obtained with a partition of
∆ in 14 sub-intervals (i.e. J = 14), leading to:

W−1 = P =

 0.6364 0.2866 −0.1454
0.2866 0.2114 −0.0875
−0.1454 −0.0875 0.0858


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Fig. 1. region Xp for λ = 0.96 (blue-dashed) and λ = 0.98 (red-
continuous) and region obtained with the approach in [17] (black-dotted)

and the optimal ε = 0.8198.
Considering now λ = 0.98, a feasible solution for the

optimization problem (27) is obtained for J = 27, leading
to:

W−1 = P =

 0.5341 0.2397 −0.1242
0.2397 0.1811 −0.0752
−0.1242 −0.0752 0.0754


and the optimal ε = 0.6894.

Note that for a smaller value of λ (i.e. a more stringent
requirement of contraction for the discrete-time trajectories)
a larger value of ε is obtained, denoting a reduction on
the size of the domain. This is indeed verified in Figure
1, where the regions of stability Xp (i.e. the estimates of
the region of attraction) obtained for λ = 0.96 and λ = 0.98
are displayed. For comparison purposes, we also plotted the
ellipsoidal domain obtained with the conditions proposed in
[17], considering a looped-functional approach. It can be
observed that the domain Xp for λ = 0.98 includes the
estimate generated from the result in [17]. It should also
be observed that since Xp is piecewise quadratic, the region
of stability obtained is nonconvex.

In Figure 2, several trajectories starting at the boundary
of the region Xp (obtained for λ = 0.98) and considering δk
randomly chosen in the interval [0.05 0.1] are shown. As
expected, the convergence of the trajectories to the origin is
ensured showing that Xp is indeed included in its region of
attraction.

VI. CONCLUSIONS

In this paper, a new constructive approach has been
presented to test the stability of a sampled-data controlled
linear system under aperiodic sampling and saturating inputs.
The method consists in computing a local Lyapunov function
for the system with sampling instants belonging to a discrete
subset of the admissible interval such that it is decreasing for
all the possible sampling times. In particular, considering



Fig. 2. Trajectories starting at the boundary of Xp.

quadratic Lyapunov function candidates, the approach leads
to convex conditions in form of LMIs.

As possible future work, we consider to take into account
the stabilization problem, concerning the design of the state
feedback matrix. Another point to be explored regards the
use of more general Lyapunov functions as, for instance,
polyhedral ones.
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[5] D. Nešić, A. Teel, and E. Sontag, “Formulas relating KL stability esti-
mates of discrete-time and sampled-data nonlinear systems,” Systems
& Control Letters, vol. 38, no. 1, pp. 49–60, 1999.
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