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Abstract

This paper presents a new approach for predicting slippage associated with in-

dividual wheels in off-road mobile robots. More specifically, machine learning

regression algorithms are trained considering proprioceptive sensing. This con-

tribution is validated by using the MIT single-wheel testbed equipped with an

MSL spare wheel. The combination of IMU-related and torque-related features

outperforms the torque-related features only. Gaussian process regression re-

sults in a proper trade-off between accuracy and computation time. Another

advantage of this algorithm is that it returns the variance associated with each

prediction, which might be used for future route planning and control tasks.

The paper also provides a comparison between machine learning regression and

classification algorithms.

Keywords: Gaussian Process Regression, Inertial Measurement Unit (IMU),

Machine Learning Regression, Mars Science Laboratory (MSL) wheel, slip.

1. Introduction

Mobile robots operating in off-road conditions must face two key hazards in

order to achieve a successful navigation. One of those hazards concerns with

the detection and avoidance of geometrical obstacles. This problem is well
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understood and accounts for a broad body of research (LaValle, 2006; Maimone5

et al., 2006; Manduchi et al., 2005; Matthies et al., 2007). Another key challenge

related to the mobility of mobile robots in off-road conditions comprises non-

geometrical hazards. These hazards depend on the interaction between the

robot’s wheels and the terrain. For example, a robot traversing loose, sloped

sand might experience poor mobility, whereas a robot traversing flat, firm clay10

might experience excellent mobility (Iagnemma & Dubowsky, 2004).

A fundamental phenomenon derived from the wheel-soil interaction is slip-

page (Angelova et al., 2007; Gonzalez & Iagnemma, 2017; Wong, 2001). Slippage

is a measure of the lack of progress of a wheeled ground vehicle while driving

on certain terrains (e.g. sandy slopes, ripples, and low-cohesion soils). Though15

slippage does not necessarily mean loss of traction. The problem is that exces-

sive slip might cause a loss of tractive effort and rover speed, and eventually

robot entrapment (Gonzalez & Iagnemma, 2017). For that reason, it is critical

for the success of the robot operation to estimate as accurately as possible the

level of slippage of the robot’s wheels. The worst situation related to slippage20

was experienced by the MER Spirit rover which got trapped in a sand dune

in 2009. After numerous attempts to free the rover, the mission was declared

concluded on May 24, 2011 (Webster & Brown).

Off-road applications also require a robot to depend on simple, on-board

sensors to perceive the environment. For example, planetary exploration rovers25

account for a limited sensor suite mainly composed of one inertial measurement

unit (IMU), motor current sensors and encoders on the wheels, and visual cam-

eras. Such sensors generally contain significant uncertainty and error in their

measurements (Iagnemma & Dubowsky, 2004).

This paper provides a methodology where machine learning regression algo-30

rithms are used for detecting slippage and its associated uncertainty. This means

that slippage is understood as a random variable with a given variance. This

variance is associated with the uncertainty derived from the sensors onboard

the robot. In addition to that, the proposed machine learning methodology

exploits the use of traditional sensors available in off-road robots such as IMU35
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and motor current sensors. Consequently, no operational complexity is added

to the rover’s commanding and it is independent of lighting conditions (this is

an interesting advantage for mobile robots operating in dark or shadowed areas

such as mining or greenhouses). The slip derived from this methodology and

its associated variance might be ultimately used for modifying the route of the40

robot and the control actions (Gonzalez & Iagnemma, 2016).

This paper is organized as follows. In Section 2, previous work in slip estima-

tion and machine learning regression is reviewed. Section 3 reviews the machine

learning regression algorithms considered in this work. Section 4 explains the

data set (data collection) and the set of features considered for training the45

machine learning algorithms. Section 5 provides experimental results showing

a comparison among the regression algorithms presented in this work and other

algorithms previously published by the authors and based on machine learning

classification (Bouguelia et al., 2017; Gonzalez et al., 2018). Finally, conclusions

and future work are drawn in Section 6. The interested reader can see a video50

of one experiment at: https://youtu.be/kKRSkOrAUdE

2. Related Work

Traditionally slip estimation deals with strategies that result in a continu-

ous value for such variable. It means that slip is given as a real number with

a certain precision. For that purpose, those strategies focus on two variables:55

the wheel angular velocity and the forward velocity of the robot (Gonzalez &

Iagnemma, 2017). One of the first methods found in the literature for esti-

mating slip was proposed by Prof. Wong in the 1960s-70s. Slip was directly

measured by comparing signals from a wheel placed in front of the robot/vehicle

(Wong, 2001). A simple approach relies on comparison of wheel velocities to a60

robot body velocity estimate derived from integration of a linear acceleration

measurement in the direction of travel (e.g. using accelerometers) (Barshan &

Durrant-Whyte, 1995; Iagnemma & Ward, 2009). Another extended method

for estimating rover slip is based on Visual Odometry (VO) (Angelova et al.,
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2007; Gonzalez et al., 2014; Matthies et al., 2007). The main limitation of those65

approaches is that such single number does not give any information about the

uncertainty associated with the estimation and the noise in the measures and

sensors.

On the other hand, a new paradigm has recently appeared in the literature

and proposed by the authors of this paper (Gonzalez et al., 2018; Bouguelia70

et al., 2017). It estimates slip as a discrete variable and machine learning al-

gorithms are used for solving this as a classification problem. In particular, a

model is trained offline while using a set of proprioceptive measurements. On-

line computation is then devoted to using such model for predicting the slip in

terms of new measurements obtained while the robot is moving. As described75

in (Gonzalez et al., 2018), slip belongs to three classes: low slip when slip is

between 0 and 30 %, moderate slip when it is within the range 30 and 60 %,

and high slip when slip is over 60 %. Though field tests demonstrate promising

results, this approach does not give information about the uncertainty in the

estimation.80

This paper comes to complete the previous approach. Here, slip is defined

as a random variable, the expected value of that variable means the predicted

slip and the variance is the uncertainty in such prediction. In particular, this

paper solves this problem involving a random variable by using machine learning

regression. It bears mentioning that the predicted slip and the uncertainty in85

such prediction can be certainly useful for both slip compensation Gonzalez

et al. (2014) and motion planners Ordonez et al. (2017). The methodology

proposed here could complement those approaches by considering routes to a

target point where uncertainty in slip is minimized.

The methodology proposed here is based on Gaussian Process Regression90

(GPR) and slip is understood as a multivariable Gaussian distribution (Mars-

land, 2015; Rasmussen & Williams, 2006). GPR accounts for a broad body of

research and has been used by many references, specially in the field of geo-

statistics as a way to generate terrain models and mobility maps. For example,

in (Gonzalez et al., 2017a), a method based on GPR (i.e. Ordinary Kriging)95
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is used for generating a mobility map accounting for measurements errors (i.e.

satellite signal) and interpolation error. The path planner is formulated in such

a way that routes avoid points of high uncertainty. The work (Gonzalez et al.,

2017b) compare different routes using different cost functions and various per-

formance indices. In (Karumanchi et al., 2010), GPR is used for generating a100

mobility map based on terrain elevation and wheel slip. Path planning then

takes advantage of that map in order to improve vehicle heading and velocity

in off-road slopes. For comparison purposes, this paper also takes into account

the algorithms: Support Vector Regression (SVR) (Smola & Scholkopf, 2004;

Vapnik, 1995), and Kernel Ridge Regression (KRR) (Murphy, 2012).105

3. Machine Learning Regression

Machine learning is a branch of computer science based on the study of al-

gorithms that can learn from and make predictions (generalize) on data. There

are two main paradigms within machine learning: regression and classification.

The first approach deals with taking input variables and forecasting the value110

of the output (dependent) variable(s). It is based on estimating the relation-

ships among variables (independent and dependent variables) and predicting a

numeric value (with an associated variance, in some cases). On the contrary,

classification is related to taking input variables and deciding which of N classes

they belong to, based on training from exemplars of each class (Marsland, 2015).115

In this sense, it is based on finding decision boundaries that can be suited to

separate out the different classes.

As previously introduced, this paper aims at estimating slippage by means

of a regression model derived from training data. More specifically, consider

the problem of predicting the slippage, s, of a mobile robot using as input the120

feature vector q ∈ Rm where m ∈ Z+ is the number of features. Each feature is a

numerical representation of sensor data that attempts to mimic the sensory cues

a human operator would exploit when attempting to detect slippery conditions

(e.g. vertical acceleration). The set of features q is obtained after transforming
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the raw data coming from proprioceptive sensors onboard the robot (explained125

in Section 4).

3.1. Gaussian Process Regression

In this section, the regression model is formulated as a Gaussian Process

Regression problem (GPR) (Marsland, 2015; Rasmussen & Williams, 2006). The

objective is to find a collection of random variables with Gaussian distribution130

s(q), one for every realization of the input q, such that the joint distribution

over any finite subsets of variables is also Gaussian. More specifically, our goal

is to identify a functional relationship (regression model) mapping the multi-

dimensional input vector, q, on a random variable representing the slippage, s.

Definition 1 ((Rasmussen & Williams, 2006)). A Gaussian process is a135

collection of random variables, any finite number of which have a joint Gaussian

distribution.

The particularity of Gaussian processes is that they are completely specified

by the mean and the covariance. In particular, then, the expected value of the

slippage and the covariance function between observations are supposed given140

by

s̄(q) = E[s(q)], (1)

k(q,q′) = E[(s(q)− s̄(q′))(s(q)− s̄(q′))], (2)

where the resulting regression function, s(·), is a Gaussian process denoted as

follows

s(q) = GP (s̄(q), k(q,q′)) . (3)

Namely, for every feature realization q, s(q) is a random variable with Gaussian

distribution characterized by its mean and its variance. Finally, and consider-

ing that no loss of generalization is induced by considering the mean function

to be zero, see (Marsland, 2015; Rasmussen & Williams, 2006) and references

therein, the Gaussian process is completely determined through the definition
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of the covariance function k(q,q′). Among the different admissible covariance

functions, we should recall the Squared Exponential (SE):

k(q,q′) = σ2
f exp

(
− 1

2l2
|q− q′|2

)
, (4)

characterized by the two parameters σf and l and analogous to the Radial Basis

Functions kernel for regression, see below.145

Thus, given a set of N training points q1, . . . ,qN , a single prediction point

q∗ and s = (s1, . . . , sN ) the ground-truth slippage values at the training points,

the aim is to calculate the conditional distribution of the value s∗ at q∗:

P (s∗|s) =
P (s∗, s)

P (s)
. (5)

The joint distribution P (s∗, s) is Gaussian from the assumptions and its covari-

ance matrix given by150

κ =

 K KT
∗

K∗ K∗∗

 , (6)

where

K =


k(q1,q1) k(q1,q1) . . . k(q1,qN )

k(q2,q1) k(q2,q2) . . . k(q2,qN )
...

...
. . .

...

k(qN ,q1) k(qN ,q2) . . . k(qN ,qN )

 , (7)

K∗ = [k(q∗,q1) k(q∗,q2) . . . k(q∗,qN )], (8)

K∗∗ = k(q∗,q∗). (9)

Notice that K is the covariance matrix for the training data, K∗ is the covariance

matrix between the test points (prediction) and the training data, and K∗∗ is

the covariance between the points in the test set.

At this point, we can calculate the conditional probability in Eq. (5) as155

P (s∗|s) ∼ N (K∗K
−1s,K∗∗ −K∗K−1KT

∗ ), (10)

where N (m,Σ) denotes a Gaussian distribution with mean m and covariance Σ.
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The best estimate for s∗ is the mean of this distribution

s̄∗ = K∗K
−1s, (11)

and the uncertainty in our estimate is captured by its variance

var(s∗) = K∗∗ −K∗K−1KT
∗ . (12)

It is important to remark that in general training data (and testing data)

are going to be subject to noise. The usual way to add noise into any GPR160

is to assume that it is an independent, identically distributed Gaussian noise

with zero mean and variance σ2
n. This implies that the covariance matrix K is

now replaced by K = K + σ2
nI, where I is the N × N identity matrix. The

conditional probability is now determined as

P (s∗|s) ∼ N (K∗
(
K + σ2

nI
)−1

s, K∗∗ −K∗
(
K + σ2

nI
)−1

KT
∗ ). (13)

After considering the noisy observations, the best estimate for s∗ is now165

obtained as

s̄∗ = K∗
(
K + σ2

nI
)−1

s, (14)

and the variance is now given by

var(s∗) = K∗∗ −K∗
(
K + σ2

nI
)−1

KT
∗ . (15)

3.2. Support Vector Regression and Kernel Ridge Regression

Both Support Vector Regression (SVR) and Kernel Ridge Regression (KRR)

have the objective of providing the best approximation of the function defined170

over the input space, in our case s∗ = f(q). They differ, substantially, on

the cost functions to be minimized and then correspond to different optimality

criteria of the solution. Both are based on applying the kernel trick to linear ap-

proximation and distance-based optimization problem, to introduce modelling

richness but avoiding most of the computational complexity induced by nonlin-175

earity. Therefore, it is useful to introduce the linear approximation problems
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and then extend them to the case of nonlinear ones, by recalling the basis of

the kernel trick, as in (Marsland, 2015; Smola & Scholkopf, 2004).

The objective of SVR in the linear context, is to compute w ∈ Rm and b ∈ R

such that

f(q) = wTq + b, (16)

is a good approximation of the relation between the measures q and the slip-

page s. To evaluate the different possible linear approximation functions, SVR

considers the norm of w that is related to the flatness and to shrinkage, see

(Smola & Scholkopf, 2004) and references therein, and the distance of the train-

ing values s from a band of amplitude ε around the function f(q). This means

that the optimization problem is

min
w,b,d+,d−

|w|2 + C

N∑
i=1

(
d+i + d−i

)
s.t. si − wTqi − b ≤ ε+ d+i , ∀i = 1, . . . , N,

wTqi + b− si ≤ ε+ d−i , ∀i = 1, . . . , N,

d+i ≥ 0, d−i ≥ 0 ∀i = 1, . . . , N,

(17)

with C and ε positive constants and where the cost penalizes, besides |w|2, the

distances d+i and d−i between si and its approximation f(qi) plus and minus ε.

By posing and solving the dual problem of (17), the expression of the optimal

values of w̄ and b̄ can be computed as functions of the Lagrange multipliers by

using the Karush-Kuhn-Tucker optimality conditions, see (Smola & Scholkopf,

2004). Computing the prediction at q∗ reduces to evaluate

s∗ = w̄Tq + b̄ =

N∑
i=1

(α+
i − α

−
i )qT

i q + b̄,

with α+
i and α+

i are the optimal Lagrange multipliers that also determine the

value of b, see (Smola & Scholkopf, 2004). The kernel trick consists in practice

in replacing the origin feature vector q in (16) with a vector of functions of the

features Φ(q), as polynomial ones e.g. Φ(x) =
[
1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2
]

for x ∈ R2 for instance, for which the term Φ(q)T Φ(q′) is easily computable.
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In fact, only the explicit expression of k(q,q′) = Φ(q)T Φ(q′) is necessary, the

prediction reducing to

s∗ = w̄T Φ(q) + b̄ =

N∑
i=1

(α+
i − α

−
i )Φ(q′)T Φ(q) + b̄ =

N∑
i=1

(α+
i − α

−
i )k(q,q′) + b̄,

that is a linear function on the extended space defined by the functions deter-

mining Φ(q). Common choices are the Radial Basis Function kernel:

k(q,q′) = exp

(
− 1

2σ2
|q− q′|2

)
, (18)

or the polynomial kernel of degree d:

k(q,q′) = (1 + qTq′)d. (19)

Analogous reasoning holds for KRR (Murphy, 2012), whose objective is to

find the linear function f(q) = wTq that minimizes a cost composed by the

squared norm of w and the sum of the squared distances between f(qi) and si,

that is

min
w

λ|w|2 +

N∑
i=1

(
si − wTqi

)2
= min

w
λ|w|2 + (S−Qw)T (S−Qw), (20)

where S = [s1 . . . sN ] and Q = [q1 . . .qN ]
T

. Hence, in practice, the ridge

regression aims at computing the linear function minimizing the squared pre-

diction errors, besides the norm of w. In this case, the optimal value of the

parameter vector w is analytically given by

w̄ =
(
QTQ + λIm

)−1
QTS. (21)

By means of further manipulations and kernelizing, see (Murphy, 2012), we

obtain the optimal prediction

s∗ = f(q) = w̄T Φ(q) =

N∑
i=1

βik(q,qi) with β = (K + λIN )−1S, (22)

where K ∈ RN×N is the Gram matrix, i.e. Ki,j = k(qi,qj) for all i, j =

1, . . . , N .180
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4. Data Collection and Feature Selection

The generality of the methodology proposed in this work is validated by

using one data set. This dataset comprises the lab conditions encountered in

the MIT single-wheel testbed. These conditions included small soil ripples in

the path of the wheel to create soil compaction resistance in a manner similar185

to what is currently being experienced on Mars by MSL.

4.1. MIT single-wheel testbed

In order to evaluate the performance of the proposed methodology, various

physical experiments were conducted using a single-wheel testbed developed by

the Robotic Mobility Group (RMG) at MIT. The system limited the wheels190

movement primarily to its longitudinal direction. By driving the wheel and

carriage at different rates, variable slip ratios can be imposed (Figure 1a). The

bin dimensions are 3.14 [m] length, 1.2 [m] wide, and 0.5 [m] depth.

The wheel in use for the experimentation was a Mars Science Laboratory

(MSL) flight spare wheel. The sensing system of the testbed consists of: an195

IMU (MicroStrain, 3DM-GX2), a torque sensor (Futek, FSH03207), and a dis-

placement sensor (Micro-epsilon, MK88). Data was recorded at 100 [Hz] in an

external computer. A detail of the placement of the IMU sensor can be seen in

Figure 1b. The soil used during testing was a Mars regolith simulant developed

at MIT to replicate conditions being experienced by the MSL rover on Mars.200

Numerous experiments were carried out inducing wheel slip under various op-

eration conditions (i.e., ripple geometries, wheel and pulley velocity rates) and

loading conditions of the carriage pulley.

Figure 2 shows an experiment where the wheel experiences low slip (< 30

[%]) at the beginning of the test and high slip (∼ 90 [%]) at the end of the205

test. Notice the “JPL” pattern in the first tracks (used by the MSL mission

planners to estimate slip), and the sinkage effect in the second figure, the wheel

is stuck. The interested reader can see a video of one experiment at: https:

//youtu.be/kKRSkOrAUdE
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(a) MSL flight spare wheel in MIT’s testbed (b) Position of the IMU sensor on the MSL

wheel

Figure 1: Single-wheel testbed developed by RMG-MIT and used for collecting experimental

data. The IMU constitutes the primary sensor in the proposed methodology

For ground-truth purposes, slip was estimated measuring the angular veloc-210

ity of the wheel and the angular velocity of the carriage pulley. Notice that the

dataset considered in this work comprises a series of ten experiments resulting

in a traverse of approximately 20 [m]. In those experiments the single wheel

moved at a fixed velocity of approximately 0.15 [m/s].

Figure 3a shows the data set collected by the MIT single-wheel testbed215

and used for validating the performance of the learning algorithms. It covers

a broad variety of slip rates from 0% to almost 100 %. Notice the apparent

relation between the slip values and the rest of features derived from the sensors.

For example, when slip increases the variance in the data from the IMU also

increases. A similar situation occurs with the motor torque. Figures 3b, 3c220

show the two datasets used for training and testing the algorithms using the

hold-out cross-validation strategy (70 % of the samples used for training, 9235)

and (30 % of the samples for testing, 3958).

4.2. Feature selection

This section presents the four features that have been chosen to form the225

feature input vector to the learning algorithms. The reasoning behind this choice

is based on our experience on this field, see for example (Gonzalez et al., 2018;

12



(a) Low-slip condition (< 30 %) (b) High-slip condition (∼ 90 %)

Figure 2: Testing using the MSL flight spare wheel at the RMG-MIT single-wheel testbed. A

better understanding of these two conditions is found in the following video: https://www.

youtube.com/watch?v=kKRSkOrAUdE

Iagnemma & Ward, 2009). Notice that after those four features were chosen,

the performance of the machine learning algorithms was extensively analyzed

while considering various combinations of those features (e.g. only one feature,230

two features, three features, etc.). The best result was obtained when the four

variables were considered, which demonstrated their independency (Gonzalez

et al., 2018).

The first feature is the absolute value of the wheel torque

qi,1 = Ti, (23)

where Ti is the i-th instance of motor torque. This motor torque is derived235

from a current sensor mounted on the servo motor. Notice that during normal

outdoor driving, terrain unevenness leads to variations in wheel torque. This

value is increased when the robot is experiencing moderate or high slip (Gonzalez

et al., 2018).

The rest of features are collected by an IMU sensor. These features were240

chosen as the variance of the Nw element groupings i of the linear acceleration

(x-axis), ẋi,Nw
, the degree of pitch (y-axis), φ̇i,Nw

, and the vertical acceleration

13
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(z-axis), żi,Nw ; see (Iagnemma & Ward, 2009) for further detail of this technique

(sliding variance),

qi,2 = var(ẋi,Nw) = E((ẋi,Nw − E(ẋi,Nw))2), (24)

qi,3 = var(φ̇i,Nw
) = E((φ̇i,Nw

− E(φ̇i,Nw
))2), (25)

qi,4 = var(żi,Nw
) = E((żi,Nw

− E(żi,Nw
))2). (26)

During normal outdoor driving, terrain unevenness leads to variations in245

those variables. As with the wheel torque, this variation is maximized when the

robot is experiencing moderate or high slip.

5. Results

This section analyzes the performance of the machine learning regression

algorithms considered in this research. There are four important points to be250

considered: (1) the accuracy and the mean absolute error of the algorithms with

respect to the ground-truth slippage; (2) the influence of the features consid-

ered by the machine learning algorithms (IMU-related and torque-related fea-

tures versus torque-related features only); (3) the performance of the machine

learning regression algorithms used here against a well-known machine learning255

classification algorithm (i.e. SVM) following the procedure previously described

by the authors in (Gonzalez et al., 2018); (4) analysis of the computation time

required by the learning algorithms (training time and testing time). These

experiments have been run on a standard-performance computer (Intel Core i7,

3GHz, 16 GB RAM, OS X). The software has been implemented in Python by260

using the machine learning library scikit-learn (http://scikit-learn.org).

The machine learning regression algorithms SVR and KRR have been man-

ually tuned (kernel function), and the tuning leading to the best result has

been used in this analysis. The kernel used by the GPR algorithm has also

been manually specified, but the algorithm automatically optimizes over the265

hyperparameters of the kernel.
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The hold-out cross-validation method has been used for selecting the training

and testing samples (70 % of the samples used for training, 9235) and (30 % of

the samples for testing, 3958).

5.1. Regression algorithms270

This section compares the performance of the machine learning regression

algorithms (GPR, SVR, KRR). Additionally, this section also discusses the im-

portance of considering IMU-related and torque-related features for maximizing

the performance of the learning algorithms.

Figure 4 shows the models obtained for the training data. Following the275

machine learning regression paradigm, these models are used later for predicted

new inputs.

The predicted values while considering the testing dataset are displayed in

Figure 5. The three regression algorithms perform quite well and catch almost

all the testing points (except some outliers). Notice that Figure 5b shows the280

advantageous feature of the GPR algorithm, as it also returns the variance

associated with each point. This variance might be used for future route plan-

ning and control tasks (e.g. implementing a robust motion control strategy as

previously published in Gonzalez et al. (2011)).

Finally, Figure 6 shows another significant contribution of this paper. Notice285

that the mean absolute error between the predicted values and the ground-truth

slip is quite different when considering IMU-related and torque-related features

and torque-related features only. In fact, in the latter case, the error is almost

double than in the first case.

5.2. Regression algorithms vs classification algorithm290

This section compares the performance of the machine learning regression

algorithms used in this paper with the methodology previously published by

the authors in (Gonzalez et al., 2018). In that reference, slippage estimation is

solved as a machine learning classification problem. In this sense, slippage is

understood as a discrete variable belonging to three categories or classes. That295
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is, low slip when slip is less than 30 %, moderate slip when slip is between 30

and 60 %, and high slip when slip is higher than 60 %. In order to be able

to compare both approaches (regression and classification), the predicted slip

values obtained with the regression methods have been discretized according

to those three ranges. The machine learning classification algorithm considered300

here is the Support Vector Machine (SVC) algorithm, see (Gonzalez et al., 2018)

for further details.

Figure 7 shows the performance of the three machine learning regression

algorithms (GRP, SVR, KRR), and the machine learning classification algorithm

(SVC). According to the confusion matrices shown in Figures 7a, 7b, both GPR305

and SVC work well for the low-slip and high-slip classes (accuracy around 85

%). A lower accuracy is observed for the moderate-slip class (around 75 %).

This lower accuracy (75 % vs 85-95%) can be due to the fact that there are less

training samples in the moderate-slip range than in the other two slip levels.

Figure 7c shows the performance of the machine learning algorithms in terms310

of accuracy. As observed, all of them are around 80 %, which demonstrates the

suitability of these strategies for estimating wheel slippage. Finally, Figure 7d

addresses another important topic, the training and testing times. This could be

a key factor depending on the application of the mobile robot and its computing

resources. As observed, the machine learning classifier (SVC) runs much faster315

than the regression algorithms (almost one order of magnitude). The worst

scenario is obtained with KRR when considering the training step. GPR leads

to the highest testing time. It is important to remark that these computation

times refer to the time required by the machine learning method for evaluating

the whole dataset (more than 9000 samples for training and almost 4000 for320

testing). Therefore, in case of deploying these approaches in real-time they

will need to evaluate just one single sample, which will be done of the order

of milliseconds. In any case, the result displayed in Figure 7d overviews the

method that would run faster.
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6. Conclusions325

This paper comes to complete the work already published by the authors in

(Bouguelia et al., 2017; Gonzalez et al., 2018), where machine learning is used

for estimating wheel slip by using proprioceptive sensing. The novelty of this

work is that machine learning regression is used instead of machine learning

classification. In this sense, the learning algorithms return a continuous value330

for slip and, even, the variance associated with such value. This information

might be exploited by path planners in order to avoid those areas with high

uncertainty / variability in the estimated slip (Gonzalez et al., 2017a; Lee et al.,

2016). Additionally, motion controllers might generate robust control actions

despite uncertainty in slippage (Gonzalez et al., 2014, 2011). Finally, low-level335

traction controllers might use this information for compensating for slip, see an

example with discrete slip in (Gonzalez & Iagnemma, 2016).

Future efforts will be devoted to running physical experiments with actual

off-road mobile robots under a broad set of terrains (e.g. sand, gravel, bedrock),

and terrain geometries (flat, slope, ripples). In addition to that, new sensing340

devices will be tested (e.g. load cells, cameras). This information will be also

used by the machine learning algorithms for predicting slip. The use of deep

learning strategies for estimating slippage as a discrete variable will be also part

of future efforts.
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Figure 3: Dataset used for validating the proposed methodology. Notice that the leave-one-out

cross-validation strategy has been used for randomly splitting the training and testing datasets

(70 % training, 30 % testing). The motor torque is given in [Nm]. The other variables are

given in terms of the variance with respect to group of signals given in [m/s2], [m/s2], and

[rad/s], respectively (see next section)
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Figure 4: Models obtained after the training step (GPR, SVR, KRR). For a better view of

this figure, see the color version available online
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Figure 5: Performance of the machine learning regression algorithms (GPR, SVR, KRR)
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Figure 7: Performance of regression and classification algorithms
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