M. Ahissar and S. Hochstein, The reverse hierarchy theory of visual perceptual learning, Trends Cogn. Sci, vol.8, pp.457-464, 2004.
DOI : 10.1016/j.tics.2004.08.011

E. Aminoff, N. Gronau, and M. Bar, The parahippocampal cortex mediates spatial and nonspatial associations, Cereb. Cortex, vol.17, pp.1493-1503, 2007.
DOI : 10.1093/cercor/bhl078

URL : https://academic.oup.com/cercor/article-pdf/17/7/1493/1140129/bhl078.pdf

T. J. Andrews, A. Clarke, P. Pell, H. , and T. , Selectivity for low-level features of objects in the human ventral stream, Neuroimage, vol.49, p.91, 2010.

M. J. Arcaro, S. A. Mcmains, B. D. Singer, and S. Kastner, Retinotopic organization of human ventral visual cortex, J. Neurosci, vol.29, pp.10638-10652, 2009.
DOI : 10.1523/jneurosci.2807-09.2009

URL : http://www.jneurosci.org/content/29/34/10638.full.pdf

M. J. Arcaro, M. A. Pinsk, X. Li, and S. Kastner, Visuotopic organization of macaque posterior parietal cortex: a functional magnetic resonance imaging study, J. Neurosci, vol.31, pp.2064-2078, 2011.
DOI : 10.1523/jneurosci.3334-10.2011

URL : http://www.jneurosci.org/content/jneuro/31/6/2064.full.pdf

B. Awasthi, P. F. Sowman, J. Friedman, W. , and M. A. , Distinct spatial scale sensitivities for early categorization of faces and places: neuromagnetic and behavioral findings, Front. Hum. Neurosci, vol.7, p.91, 2013.

J. C. Badcock, F. A. Whitworth, D. R. Badcock, and W. J. Lovegrove, Low frequency filtering and the processing of local-global stimuli, Perception, vol.19, pp.617-629, 1990.
DOI : 10.1068/p190617

C. Baldassano, D. M. Beck, and L. Fei-fei, Differential connectivity within the parahippocampal place area, Neuroimage, vol.75, pp.236-245, 2013.
DOI : 10.1016/j.neuroimage.2013.02.073

URL : http://europepmc.org/articles/pmc3683120?pdf=render

M. Bar, A cortical mechanism for triggering top-down facilitation in visual object recognition, J. Cogn. Neurosci, vol.15, pp.600-609, 2003.
DOI : 10.1162/089892903321662976

URL : http://barlab.mgh.harvard.edu/papers/JOCN_2003.pdf

M. Bar, Visual objects in context, Nat. Rev. Neurosci, vol.5, pp.617-629, 2004.
DOI : 10.1038/nrn1476

M. Bar, The proactive brain: using analogies and associations to generate predictions, Trends Cogn. Sci, vol.11, pp.280-289, 2007.
DOI : 10.1016/j.tics.2007.05.005

M. Bar, A. , and E. , Cortical analysis of visual context, Neuron, vol.38, pp.347-358, 2003.
DOI : 10.1016/s0896-6273(03)00167-3

URL : https://doi.org/10.1016/s0896-6273(03)00167-3

M. Bar, E. Aminoff, and A. Ishai, Famous faces activate contextual associations in the parahippocampal cortex, Cereb. Cortex, vol.18, pp.1233-1238, 2008.
DOI : 10.1093/cercor/bhm170

URL : https://academic.oup.com/cercor/article-pdf/18/6/1233/762849/bhm170.pdf

M. Bar, E. Aminoff, and D. L. Schacter, Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se, J. Neurosci, vol.28, pp.8539-8544, 2008.
DOI : 10.1523/jneurosci.0987-08.2008

URL : http://www.jneurosci.org/content/jneuro/28/34/8539.full.pdf

M. Bar, K. S. Kassam, A. S. Ghuman, J. Boshyan, A. M. Schmid et al., Top-down facilitation of visual recognition, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.449-454, 2006.
DOI : 10.1073/pnas.0507062103

URL : http://www.pnas.org/content/103/2/449.full.pdf

I. Biederman, Visual object recognition, An Invitation to Cognitive Science, pp.121-165, 1995.

J. A. Brefczynski and E. A. Deyoe, A physiological correlate of the 'spotlight' of visual attention, Nat. Neurosci, vol.2, pp.370-374, 1999.

B. G. Breitmeyer, Simple reaction time as a measure of the temporal response properties of the transient and sustained channels, Vision Res, vol.15, pp.1411-1412, 1975.

D. W. Bressler, F. C. Fortenbaugh, L. C. Robertson, and M. A. Silver, Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner, Vision Res, vol.85, pp.104-112, 2013.

J. Bullier, Integrated model of visual processing, Brain Res. Rev, vol.36, pp.96-107, 2001.

C. Cavada, T. Company, J. Tejedor, R. J. Cruz-rizzolo, and F. Suarez, The anatomical connections of the macaque monkey orbitofrontal cortex. A review, Cereb. Cortex, vol.10, pp.220-242, 2000.

S. Chokron, P. Bartolomeo, P. Colliot, A. M. Brickman, M. Tabert et al., Selective attention, inhibition for repeated events and hemispheric specialization, Brain Cogn, vol.53, pp.158-161, 2003.

E. Cousin, C. Peyrin, and M. Baciu, Hemispheric predominance assessment of phonology and semantics: a divided visual field experiment, Brain Cogn, vol.61, pp.298-304, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00169565

C. A. Curcio, A. , and K. A. , Topography of ganglion cells in human retina, J. Comp. Neurol, vol.300, pp.5-25, 1990.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, Human photoreceptor topography, J. Comp. Neurol, vol.292, pp.497-523, 1990.

A. De-cesarei and G. R. Loftus, Global and local vision in natural scene identification, Psychon. Bull. Rev, vol.18, pp.840-847, 2011.

D. Valois, R. L. Albrecht, D. G. Thorell, and L. G. , Spatial frequency selectivity of cells in macaque visual cortex, Vision Res, vol.22, pp.545-559, 1982.

D. Valois, R. L. Yund, E. W. Hepler, and N. , The orientation and direction selectivity of cells in macaque visual cortex, Vision Res, vol.22, pp.531-544, 1982.

D. D. Dilks, J. B. Julian, A. M. Paunov, and N. Kanwisher, The occipital place area is causally and selectively involved in scene perception, J. Neurosci, vol.33, pp.1331-1336, 2013.

D. Santos, N. A. Andrade, S. M. , F. Calvo, and B. , Detection of spatial frequency in brain-damaged patients: influence of hemispheric asymmetries and hemineglect, Front. Hum. Neurosci, vol.7, p.92, 2013.

S. A. Engel, G. H. Glover, and B. A. Wandell, Retinotopic organization in human visual cortex and the spatial precision of functional MRI, Cereb. Cortex, vol.7, pp.181-192, 1997.

S. A. Engel, D. E. Rumelhart, B. A. Wandell, A. T. Lee, G. H. Glover et al., fMRI of human visual cortex, Nature, vol.369, p.525, 1994.

R. A. Epstein, The cortical basis of visual scene processing, Vis. Cogn, vol.12, pp.954-978, 2005.

R. A. Epstein, Parahippocampal and retrosplenial contributions to human spatial navigation, Trends Cogn. Sci, vol.12, pp.388-396, 2008.

R. A. Epstein, K. S. Graham, and P. E. Downing, Viewpoint-specific scene representations in human parahippocampal cortex, Neuron, vol.37, pp.865-876, 2003.

R. Epstein, A. Harris, D. Stanley, and N. Kanwisher, The parahippocampal place area: recognition, navigation, or encoding?, Neuron, vol.23, pp.115-125, 1999.

R. A. Epstein and J. S. Higgins, Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition, Cereb. Cortex, vol.17, pp.1680-1693, 2007.

R. A. Epstein, J. S. Higgins, K. Jablonski, and A. M. Feiler, Visual scene processing in familiar and unfamiliar environments, J. Neurophysiol, vol.97, pp.3670-3683, 2007.

R. A. Epstein and N. Kanwisher, A cortical representation of the local visual environment, Nature, vol.392, pp.598-601, 1998.

R. A. Epstein and E. J. Ward, How reliable are visual context effects in the parahippocampal place area?, Cereb. cortex, vol.20, pp.294-303, 2010.
DOI : 10.1093/cercor/bhp099

URL : https://academic.oup.com/cercor/article-pdf/20/2/294/867887/bhp099.pdf

R. M. Everson, A. K. Prashanth, M. Gabbay, B. W. Knight, L. Sirovich et al., Representation of spatial frequency and orientation in the visual cortex, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.8334-8338, 1998.

D. J. Field, Relations between the statistics of natural images and the response properties of cortical cells, J. Opt. Soc. Am. A, vol.4, pp.2379-2394, 1987.

G. R. Fink, P. W. Halligan, J. C. Marshall, C. D. Frith, R. S. Frackowiak et al., Where in the brain does visual attention select the forest and the trees?, Nature, vol.382, pp.626-628, 1996.

G. R. Fink, P. W. Halligan, J. C. Marshall, C. D. Frith, R. S. Frackowiak et al., Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli, Brain, vol.120, pp.1779-1791, 1997.

R. Fink, J. C. Marshall, P. W. Halligan, and R. J. Dolan, Neuronal activity in early visual areas during global and local processing: a comment on Heinze, Hinrichs, Scholz, Burchert and Mangun, J. Cogn. Neurosci, vol.12, pp.357-359, 2000.
DOI : 10.1162/089892900562039

URL : http://orca.cf.ac.uk/35217/1/Fink%202000.pdf

, Frontiers in Integrative Neuroscience www.frontiersin.org

K. H. Foster, J. P. Gaska, M. Nagler, and D. A. Pollen, Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey, J. Physiol, vol.365, pp.331-363, 1985.

S. P. Gandhi, D. J. Heeger, and G. M. Boynton, Spatial attention affects brain activity in human primary visual cortex, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.3314-3319, 1999.

K. R. Gegenfurtner, D. C. Kiper, and J. B. Levitt, Functional properties of neurons in macaque area V3, J. Neurophysiol, vol.77, pp.1906-1923, 1997.

A. P. Ginsburg, Spatial filtering and visual form perception, Hanbook of Perception and Human Performance, pp.1-41, 1986.

V. Goffaux, J. Peters, J. Haubrechts, C. Schiltz, B. Jansma et al., From coarse to fine? Spatial and temporal dynamics of cortical face processing, Cereb. Cortex, vol.21, pp.467-476, 2011.

N. Guyader, A. Chauvin, C. Peyrin, J. Herault, and C. Marendaz, Image phase or amplitude? Rapid scene categorization is an amplitude-based process, C. R. Biol, vol.327, pp.313-318, 2004.
DOI : 10.1016/j.crvi.2004.02.006

URL : https://hal.archives-ouvertes.fr/hal-00372326

D. J. Hagler and M. I. Sereno, Spatial maps in frontal and prefrontal cortex, Neuroimage, vol.29, pp.567-577, 2006.
DOI : 10.1016/j.neuroimage.2005.08.058

URL : http://cogsci.ucsd.edu/~sereno/papers/FrontalMaps06.pdf

S. Han, J. A. Weaver, S. O. Murray, X. Kang, E. W. Yund et al., Hemispheric asymmetry in global/local processing: effects of stimulus position and spatial frequency, Neuroimage, vol.17, pp.1290-1299, 2002.

M. Hausmann, Hemispheric asymmetry in spatial attention across the menstrual cycle, Neuropsychologia, vol.43, pp.1559-1567, 2005.

M. Hausmann, C. Becker, U. Gather, G. , and O. , Functional cerebral asymmetries during the menstrual cycle: a cross-sectional and longitudinal analysis, Neuropsychologia, vol.40, pp.179-187, 2002.

M. Hausmann, G. , and O. , Steroid fluctuations modify functional cerebral asymmetries: the hypothesis of progesterone-mediated interhemispheric decoupling, Neuropsychologia, vol.38, pp.45-47, 2000.

M. Hausmann, J. P. Hamm, K. E. Waldie, K. , and I. J. , Sex hormonal modulation of interhemispheric transfer time, Neuropsychologia, vol.51, pp.1734-1741, 2013.

J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten et al., Distributed and overlapping representations of faces and objects in ventral temporal cortex, Science, vol.293, pp.2425-2430, 2001.

J. Hegde, Time course of visual perception: coarse-to-fine processing and beyond, Prog. Neurobiol, vol.84, pp.405-439, 2008.

H. J. Heinze, H. Hinrichs, M. Scholz, W. Burchert, and G. R. Mangun, Neural mechanisms of global and local processing. A combined PET and ERP study, J. Cogn. Neurosci, vol.10, pp.485-498, 1998.

L. Henriksson, A. Raninen, R. Nasanen, L. Hyvarinen, V. et al., Training-induced cortical representation of a hemianopic hemifield, J. Neurol. Neurosurg. Psychiatry, vol.78, pp.74-81, 2007.

S. Hochstein, A. , and M. , View from the top: hierarchies and reverse hierarchies in the visual system, Neuron, vol.36, pp.1091-1098, 2002.

G. Holmes, Disturbances of vision by cerebral lesions, Br. J. Ophthalmol, vol.2, pp.353-384, 1918.

J. C. Horton, H. , and W. F. , The representation of the visual field in human striate cortex. A revision of the classic Holmes map, Arch. Ophthalmol, vol.109, pp.816-824, 1991.

H. C. Hughes, G. Nozawa, and F. L. Kitterle, Global precedence, spatial frequency channels, and the statistic of the natural image, J. Cogn. Neurosci, vol.8, pp.197-230, 1996.

J. M. Hupe, A. C. James, P. Girard, S. G. Lomber, B. R. Payne et al., Feedback connections act on the early part of the responses in monkey visual cortex, J. Neurophysiol, vol.85, pp.134-145, 2001.

T. Iidaka, K. Yamashita, K. Kashikura, Y. , and Y. , Spatial frequency of visual image modulates neural responses in the temporo-occipital lobe. An investigation with event-related fMRI, Brain Res. Cogn. Brain Res, vol.18, pp.196-204, 2004.

N. P. Issa, C. Trepel, and M. P. Stryker, Spatial frequency maps in cat visual cortex, J. Neurosci, vol.20, pp.8504-8514, 2000.

N. Kanwisher, J. Mcdermott, C. , and M. M. , The fusiform face area: a module in human extrastriate cortex specialized for face perception, J. Neurosci, vol.17, pp.4302-4311, 1997.

E. Kaplan, The M, P and K pathways of the primate visual system, The Visual Neurosciences, pp.481-493, 2004.

J. L. Kenemans, J. M. Baas, G. R. Mangun, M. Lijffijt, and M. N. Verbaten, On the processing of spatial frequencies as revealed by evoked-potential source modeling, Clin. Neurophysiol, vol.111, pp.270-274, 2000.

K. Kihara and Y. Takeda, Time course of the integration of spatial frequency-based information in natural scenes, Vision Res, vol.50, pp.2158-2162, 2010.

R. A. Kinchla and J. M. Wolfe, Topdown," "bottom-up," or "middle-out, Percept. Psychophys, vol.25, pp.225-231, 1979.

F. L. Kitterle, S. Christman, and J. B. Hellige, Hemispheric differences are found in the identification, but not the detection, of low versus high spatial frequencies, Percept. Psychophys, vol.48, pp.297-306, 1990.

F. L. Kitterle, J. B. Hellige, and S. Christman, Visual hemispheric asymmetries depend on which spatial frequencies are task relevant, Brain Cogn, vol.20, pp.308-314, 1992.

F. L. Kitterle, S. , and L. M. , Visual field effects in the discrimination of sine-wave gratings, Percept. Psychophys, vol.50, pp.15-18, 1991.

K. Kveraga, J. Boshyan, and M. Bar, Magnocellular projections as the trigger of top-down facilitation in recognition, J. Neurosci, vol.27, pp.13232-13240, 2007.

M. R. Lamb, L. C. Robertson, and R. T. Knight, Component mechanisms underlying the processing of hierarchically organized patterns: inferences from patients with unilateral cortical lesions, J. Exp. Psychol. Learn. Mem. Cogn, vol.16, pp.471-483, 1990.

M. R. Lamb, Y. , and E. W. , The role of spatial frequency in the processing of hierarchically organized stimuli, Percept. Psychophys, vol.54, pp.773-784, 1993.

Y. Lerner, T. Hendler, D. Ben-bashat, M. Harel, and R. Malach, A hierarchical axis of object processing stages in the human visual cortex, Cereb. Cortex, vol.11, pp.287-297, 2001.

G. R. Loftus, H. , and E. M. , How different spatial-frequency components contribute to visual information acquisition, J. Exp. Psychol. Hum. Percept. Perform, vol.30, pp.104-118, 2004.
DOI : 10.1037/0096-1523.30.1.104

URL : http://cognitrn.psych.indiana.edu/busey/temp/statetrace/LoftusHarleyGlobalLocal.pdf

S. Lux, J. C. Marshall, A. Ritzl, P. H. Weiss, U. Pietrzyk et al., A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields, Neuroscience, vol.124, pp.113-120, 2004.

E. A. Maguire, N. Burgess, J. G. Donnett, R. S. Frackowiak, C. D. Frith et al., Knowing where and getting there: a human navigation network, Science, vol.280, pp.921-924, 1998.
DOI : 10.1126/science.280.5365.921

URL : http://behemoth.maze.ucl.ac.uk/neil/papers/maguireburgess98.pdf

G. R. Mangun, H. J. Heinze, M. Scholz, and H. Hinrichs, Neural activity in early visual areas during global and local processing: a reply to Fink, Marshall, Halligan and Dolan, J. Cogn. Neurosci, vol.12, pp.357-359, 2000.
DOI : 10.1162/089892900562048

A. Martinez, L. Anllo-vento, M. I. Sereno, L. R. Frank, R. B. Buxton et al., Involvement of striate and extrastriate visual cortical areas in spatial attention, Nat. Neurosci, vol.2, pp.364-369, 1999.

A. Martinez, F. Dirusso, L. Anllo-vento, M. I. Sereno, R. B. Buxton et al., Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas, Vision Res, vol.41, pp.1437-1457, 2001.

A. Martinez, P. Moses, L. Frank, R. Buxton, E. Wong et al., Hemispheric asymmetries in global and local processing: evidence from fMRI, Neuroreport, vol.8, pp.1685-1689, 1997.
DOI : 10.1097/00001756-199705060-00025

J. Mcglone and A. Kertesz, Sex differences in cerebral processing of visuospatial tasks, Cortex, vol.9, pp.313-320, 1973.

, Frontiers in Integrative Neuroscience www.frontiersin.org

W. H. Merigan and J. H. Maunsell, How parallel are the primate visual pathways?, Annu. Rev. Neurosci, vol.16, pp.369-402, 1993.

M. Mermillod, N. Guyader, and A. Chauvin, The coarse-to-fine hypothesis revisited: evidence from neuro-computational modeling, Brain Cogn, vol.57, pp.151-157, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00372320

D. J. Morrison and P. G. Schyns, Usage of spatial scales for the categorization of faces, objects, and scenes, Psychon. Bull. Rev, vol.8, pp.454-469, 2001.

T. Mu, L. , and S. , The neural signature of spatial frequency-based information integration in scene perception, Exp. Brain Res, vol.227, pp.367-377, 2013.

B. Musel, C. Bordier, M. Dojat, C. Pichat, S. Chokron et al., Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization, J. Cogn. Neurosci, vol.25, pp.1315-1331, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00827617

B. Musel, A. Chauvin, N. Guyader, S. Chokron, P. et al., Is coarse-to-fine strategy sensitive to normal aging?, PLoS ONE, vol.7, p.38493, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00827611

B. Musel, L. Kauffmann, S. Ramanoel, C. Giavarini, N. Guyader et al., Coarse-to-fine categorization of visual scenes in scene-selective cortex, J. Cogn. Neurosci, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077513

K. Nakamura, R. Kawashima, N. Sato, A. Nakamura, M. Sugiura et al., Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study, Brain, vol.123, pp.1903-1912, 2000.

D. Navon, Forest before trees: the precedence of global features in visual perception, Cogn. Psychol, vol.9, pp.90012-90015, 1977.

A. Oliva and P. G. Schyns, Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli, Cogn. Psychol, vol.34, pp.72-107, 1997.

Y. Otsuka, H. Ichikawa, S. Kanazawa, M. K. Yamaguchi, and B. Spehar, Temporal dynamics of spatial frequency processing in infants, J. Exp. Psychol. Hum. Percept. perform, 2014.

E. Ozgen, H. E. Payne, P. T. Sowden, and P. G. Schyns, Retinotopic sensitisation to spatial scale: evidence for flexible spatial frequency processing in scene perception, Vision Res, vol.46, pp.1108-1119, 2006.

E. Ozgen, P. Sowden, P. Schyns, and C. Daoutis, Top-down attentional modulation of spatial frequency processing in scene perception, Vis. Cogn, vol.12, pp.925-937, 2005.

S. Palmer, Modern theories of gestalt perception, pp.39-70, 1993.

D. M. Parker, J. R. Lishman, and J. Hughes, Role of coarse and fine spatial information in face and object processing, J. Exp. Psychol. Hum. Percept. Perform, vol.22, pp.1448-1466, 1996.

E. Z. Patai, A. Buckley, and A. C. Nobre, Is attention based on spatial contextual memory preferentially guided by low spatial frequency signals?, PLoS ONE, vol.8, p.65601, 2013.
DOI : 10.1371/journal.pone.0065601

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0065601&type=printable

C. Peyrin, M. Baciu, C. Segebarth, and C. Marendaz, Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study, Neuroimage, vol.23, pp.698-707, 2004.
DOI : 10.1016/j.neuroimage.2004.06.020

URL : https://hal.archives-ouvertes.fr/hal-00798639

C. Peyrin, A. Chauvin, S. Chokron, and C. Marendaz, Hemispheric specialization for spatial frequency processing in the analysis of natural scenes, Brain Cogn, vol.53, pp.278-282, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00861979

C. Peyrin, S. Chokron, N. Guyader, O. Gout, J. Moret et al., Neural correlates of spatial frequency processing: a neuropsychological approach, Brain Res, pp.1073-1074, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00177991

C. Peyrin, C. M. Michel, S. Schwartz, G. Thut, M. Seghier et al., The neural substrates and timing of top-down processes during coarseto-fine categorization of visual scenes: a combined fMRI and ERP study, J. Cogn. Neurosci, vol.22, pp.2768-2780, 2010.

C. Peyrin, S. Schwartz, M. Seghier, C. Michel, T. Landis et al., Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes, Neuroimage, vol.28, pp.464-473, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00178477

G. F. Poggio, Spatial properties of neurons in striate cortex of unanesthetized macaque monkey, Invest. Ophthalmol, vol.11, pp.368-377, 1972.

H. W. Powell, M. Guye, G. J. Parker, M. R. Symms, P. Boulby et al., Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus, Neuroimage, vol.22, pp.740-747, 2004.

M. S. Pratte and F. Tong, Spatial specificity of working memory representations in the early visual cortex, J. Vis, vol.14, pp.1-12, 2014.

R. Rajimehr, K. J. Devaney, N. Y. Bilenko, J. C. Young, and R. B. Tootell, The "parahippocampal place area" responds preferentially to high spatial frequencies in humans and monkeys, PLoS Biol, vol.9, p.1000608, 2011.

M. Riesenhuber, P. , and T. , Hierarchical models of object recognition in cortex, Nat. Neurosci, vol.2, pp.1019-1025, 1999.

L. C. Robertson and M. R. Lamb, Neuropsychological contributions to theories of part/whole organization, Cogn. Psychol, vol.23, 1991.

L. C. Robertson, M. R. Lamb, and R. T. Knight, Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans, J. Neurosci, vol.8, pp.3757-3769, 1988.

P. Rotshtein, A. Schofield, M. J. Funes, and G. W. Humphreys, Effects of spatial frequency bands on perceptual decision: It is not the stimuli but the comparison, J. Vis, vol.10, pp.1-20, 2010.

Y. Sasaki, N. Hadjikhani, B. Fischl, A. K. Liu, S. Marret et al., Local and global attention are mapped retinotopically in human occipital cortex, Psychology, vol.98, pp.2077-2082, 2001.
DOI : 10.1073/pnas.98.4.2077

URL : http://www.pnas.org/content/98/4/2077.full.pdf

A. P. Saygin and M. I. Sereno, Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex, Cereb. Cortex, vol.18, pp.2158-2168, 2008.
DOI : 10.1093/cercor/bhm242

URL : https://academic.oup.com/cercor/article-pdf/18/9/2158/17300475/bhm242.pdf

A. Schettino, T. Loeys, S. Delplanque, P. , and G. , Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic mapping study, Neuroimage, vol.55, pp.1227-1241, 2011.

G. Schulman, M. Sulivan, K. Gisch, and W. Sadoka, The role of spatial frequency channels in the perception of local and global structure, Perception, vol.15, pp.259-273, 1986.

P. G. Schyns and A. Oliva, From blobs to boundary edges: Evidence for timeand spatial-scale-dependant scene recognition, Am. Psychol. Soc, vol.5, pp.195-200, 1994.
DOI : 10.1111/j.1467-9280.1994.tb00500.x

P. G. Schyns and A. Oliva, Flexible, diagnosticity-driven, rather than fixed, perceptually determined scale selection in scene and face recognition, Perception, vol.26, pp.1027-1038, 1997.
DOI : 10.1068/p261027

P. G. Schyns and A. Oliva, Dr. Angry and Mr. Smile: when categorization flexibly modifies the perception of faces in rapid visual presentations, Cognition, vol.69, pp.243-265, 1999.

J. Sergent, Theoretical and methodological consequences of variations in exposure duration in visual laterality studies, Percept. Psychophys, vol.31, pp.451-461, 1982.

J. Sergent, Role of the input in visual hemispheric asymmetries, Psychol. Bull, vol.93, pp.481-512, 1983.

J. Sergent and J. B. Hellige, Role of input factors in visual-field asymmetries, Brain Cogn, vol.5, pp.174-199, 1986.
DOI : 10.1016/0278-2626(86)90054-0

S. L. Sheremata, K. C. Bettencourt, and D. C. Somers, Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load, J. Neurosci, vol.30, pp.12581-12588, 2010.
DOI : 10.1523/jneurosci.2689-10.2010

URL : http://www.jneurosci.org/content/30/38/12581.full.pdf

M. A. Silver, D. Ress, D. J. Heeger, M. , and A. , Topographic maps of visual spatial attention in human parietal cortex, J. Neurophysiol, pp.1358-1371, 2005.

M. A. Silver, D. Ress, D. J. Heeger, A. Michael, and D. J. Neural, Neural correlates of sustained spatial attention in human early visual cortex, J. Neurophysiol, pp.229-237, 2007.

K. D. Singh, A. T. Smith, and M. W. Greenlee, Spatiotemporal frequency and direction sensitivities of human visual areas measured using fMRI, Neuroimage, vol.12, pp.550-564, 2000.
DOI : 10.1006/nimg.2000.0642

M. Spiridon and N. Kanwisher, How distributed is visual category information in human occipito-temporal cortex? An fMRI study, Neuron, vol.35, pp.1157-1165, 2002.
DOI : 10.1016/s0896-6273(02)00877-2

URL : https://doi.org/10.1016/s0896-6273(02)00877-2

, Frontiers in Integrative Neuroscience www.frontiersin.org

S. M. Szczepanski and S. Kastner, Shifting attentional priorities: control of spatial attention through hemispheric competition, J. Neurosci, vol.33, pp.5411-5421, 2013.

S. M. Szczepanski, C. S. Konen, and S. Kastner, Mechanisms of spatial attention control in frontal and parietal cortex, J. Neurosci, vol.30, pp.148-160, 2010.

S. Thorpe, D. Fize, and C. Marlot, Speed of processing in the human visual system, Nature, vol.381, pp.520-522, 1996.

D. J. Tolhurst, Y. Tadmor, and T. Chao, Amplitude spectra of natural images, Ophthalmic Physiol. Opt, vol.12, pp.229-232, 1992.

R. B. Tootell, N. Hadjikhani, E. K. Hall, S. Marrett, W. Vanduffel et al., The retinotopy of visual spatial attention, Neuron, vol.21, pp.1409-1422, 1998.

R. B. Tootell, M. S. Silverman, S. L. Hamilton, E. Switkes, D. Valois et al., Functional anatomy of macaque striate cortex. V. Spatial frequency, J. Neurosci, vol.8, pp.1610-1624, 1988.

A. Torralba and A. Oliva, Statistics of natural image categories, Network, vol.14, pp.391-412, 2003.
DOI : 10.1088/0954-898x/14/3/302

URL : http://web.mit.edu/torralba/www/ne3302.pdf

D. C. Van-essen and E. A. Deyoe, Concurrent processing in the primate visual cortex, The Cognitive Neurosciences, pp.383-400, 1995.

L. K. Vass and R. A. Epstein, Abstract representations of location and facing direction in the human brain, J. Neurosci, vol.33, pp.6133-6175, 2013.

D. Voyer, On the magnitude of laterality effects and sex differences in functional lateralities, Laterality, vol.1, pp.51-83, 1996.

B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, Visual field maps in human cortex, Neuron, vol.56, pp.366-383, 2007.

D. B. Walther, E. Caddigan, L. Fei-fei, and D. M. Beck, Natural scene categories revealed in distributed patterns of activity in the human brain, J. Neurosci, vol.29, pp.10573-10581, 2009.

T. Watanabe, Y. Sasaki, S. Miyauchi, B. Putz, N. Fujimaki et al., Attention-regulated activity in human primary visual cortex, J. Neurophysiol, vol.79, pp.2218-2221, 1998.

D. H. Weissman and M. G. Woldorff, Hemispheric asymmetries for different components of global/local attention occur in distinct temporo-parietal loci, Cereb. Cortex, vol.15, pp.870-876, 2005.

D. T. Wilkinson, P. W. Halligan, J. C. Marshall, C. Buchel, and R. J. Dolan, Switching between the forest and the trees: brain systems involved in local/global changed-level judgments, Neuroimage, vol.13, pp.56-67, 2001.

X. Xu, T. J. Anderson, C. , and V. A. , How do functional maps in primary visual cortex vary with eccentricity?, J. Comp. Neurol, vol.501, pp.741-755, 2007.
DOI : 10.1002/cne.21277

S. Yamaguchi, S. Yamagata, and S. Kobayashi, Cerebral asymmetry of the "top-down" allocation of attention to global and local features, J. Neurosci, vol.20, p.72, 2000.

P. Zeidman, S. L. Mullally, D. S. Schwarzkopf, and E. A. Maguire, Exploring the parahippocampal cortex response to high and low spatial frequency spaces, Neuroreport, vol.23, pp.503-507, 2012.
DOI : 10.1097/wnr.0b013e328353766a

URL : http://europepmc.org/articles/pmc3378656?pdf=render

, Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest