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Abstract
Today distributed systems are made of many software components with complex interactions.
One of the key challenges in such an environment is determining how to place the components
so that the system performs efficiently. In this paper, we illustrate the importance of compo-
nent placement with a case study, examining the performance of a common stream processing
pipeline comprising Kafka, Spark, and Cassandra. We study three applications (word count,
Twitter sentiment analysis, machine learning) and three placement strategies. Our results show
that (i) placement has a significant impact on the application throughput (up to 52%) and (ii)
the placement achieving best results differs depending on the application. We discuss why
existing solutions for performance troubleshooting in distributed systems are not sufficient to
help choosing an efficient placement or to detect if a chosen placement is significantly under-
performing compared to others. Finally, we describe research directions to address this open
problem.
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1. Introduction

Applications deployed in distributed environments are composed of a variety of software com-
ponents. These components provide different functionalities e.g., publish-subscribe messaging,
real-time analysis and rendering of streaming data, and storage. Besides, in order to achieve
scalability, each component can be divided into a number of partitions spread on separate
machines for parallel processing. In addition, for fault tolerance and high availability, each
component/partition typically has a number of replicas. Overall, all these components (and
their internal replicas and partitions) have many interactions, involving both control messages
and data. With such a complex and diverse architecture, it is generally difficult to understand
the overall behavior of a distributed system and how its performance can be improved. First
of all, it is difficult to determine whether or not a given system is performing efficiently with
respect to the capacity of the underlying hardware resources. In particular, the existence of a
saturated hardware resource does not guarantee that the resource is used efficiently (e.g., CPUs
may be saturated due to contention on a spinlock). Conversely, the absence of resource satura-
tion is not necessarily a sign of fluid operation (e.g., the system may be excessively idle due to
a cascade of blocking interactions with a slow thread). Second, even if an inefficiency has been
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detected in the distributed system, it is often difficult to determine the root cause and/or how
to fix it (e.g., if a deep modification is required or modest configuration changes are sufficient
to alleviate the issue).
In this context, the present paper considers the following problem: given an already deployed dis-
tributed system, is it possible to design a profiling tool able to (i) pinpoint that the system is significantly
under-performing and (ii) suggest simple configuration changes to improve performance? By “simple
configuration changes”, we mean actions such as adjusting the allocation of execution resources
(e.g., thread pool tuning) or changing the placement of software components on the physical
machines. In this paper, we only focus on the latter kind of configuration change (component
placement). The crux of the problem here is that the proposed tool cannot rely on previous
knowledge or trial-and-error (i.e., known performance results of alternative configurations),
because a brute-force exploration of the configuration space is not viable. In this paper, make
the case for the importance of this problem and report on preliminary experiments through a
concrete case study. Using a distributed data processing pipeline implemented with a popular
software stack (ZooKeeper, Kafka, Spark Streaming and Cassandra), we show that such a com-
mon distributed system can exhibit performance trends that are difficult to anticipate/explain
and very sensitive to the impact of workload changes and simple placement decisions. In other
words, there is no one-size-fits-all strategy for the placement of software components, and no
easy way to assert if a given placement strategy is yielding “good enough” performance. Fur-
thermore, we stress that the above problems are not specific to very complex systems with
factors such as large-scale deployments, massive input load, churn, resource virtualization and
multi-tenancy [23, 25]. Indeed, as we show, even a small-scale system deployed on a fixed set
of dedicated machines can be impacted.
The remainder of the paper is organized as follows. First, we start by describing the data pro-
cessing pipeline use case and the three different examined applications in Section 2. In Section
3, we present the evaluation methodology and the results. Finally, we discuss the related work
in Section 4 and provide research directions to address the problem in Section 5.

2. Context

In this section, we first present the components of the processing pipeline that we study. Then,
we briefly describe the three benchmark applications built on top of it.

2.1. Case Study: Data Processing Pipeline
We consider a data processing pipeline comprising ZooKeeper [7], a coordination service,
Kafka [5], a distributed publish-subscribe messaging system, Spark Streaming [6], a Big Data
processing and analysis framework, and Cassandra [4], a distributed NoSQL database manage-
ment system. The above-described software stack is nowadays a de facto standard in produc-
tion for data analytics. In our setup, we use a factor of replication of three for each component
(additionally, the processing performed by Kafka and Spark is parallelized via sharding) and
the whole pipeline is deployed on 6 dedicated physical machines. Additional details on the
studied configurations are provided in §3.1.

2.2. Applications
For each of the three applications described below, the input data is ingested through Kafka,
then processed by Spark Streaming, and the results are saved in Cassandra.
Word Count (WC) is a standard micro-benchmark for big data [11]. We use a randomly gener-
ated corpus of English words.
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Twitter Sentiments Analysis (TSA) monitors people’s opinion on different topics. We use the
SentiWordNet [8] dictionary for opinion mining. As a dataset, we use recent tweets in English
crawled through the Twitter API [21].
Flight Delays Prediction (FDP) uses machine learning (with a logistic regression classification
algorithm) to predict the delays of airline flights. We use input data from the U.S. Department
of Transportation’s (DOT) Bureau of Transportation Statistics (BTS) [22].

3. Evaluation

3.1. Testbed and Methodology
We deploy the data processing pipeline on a fixed number of homogeneous machines (here-
after named “nodes”) – in this setup, we use six nodes. Regarding the client side, we run
each single client thread on a separate machine (we increase the number of client machines as
needed to reach the system saturation point). The experiments are performed on the G5K [9]
testbed using the Nova cluster. Each host has the same hardware configuration with two 8-core
CPUs, 32GB RAM, a 600GB HDD, and a 10 Gbps Ethernet interface. For the software stack, we
use Debian 8 with a 3.16.0 Linux kernel, OpenJDK version 1.8.0_131, ZooKeeper 3.4.10, Kafka
0.11, Spark Streaming 2.1.0, and Cassandra 3.0.9.
In order to build and operate a high-performance data processing pipeline, various placement
strategies for the different software components can be chosen. Since a complete exploration of
the configuration space is impractical, we study only a subset of the possible placement strate-
gies, using the following methodology. We start by placing one component on dedicated nodes
(one node per replica) and co-locating the other components on the remaining machines. This
may help alleviate bottlenecks if the isolated component requires a large amount of resources
(e.g., CPU time, memory bandwidth or I/O bandwidth). In addition, consolidating the remain-
ing components on the other nodes may improve the performance of communications among
them (local vs. remote). Given that there are three main components in the pipeline that we
study (Kafka/ZooKeeper, Spark Master and Cassandra)1, exploring the above-mentioned ap-
proach leads to studying three concrete deployment strategies. We then fine tune the number of
Spark workers for each application, spreading them on three to six nodes2, in order to optimize
the application throughput. We end up with three placement strategies (P1, P2, P3). depicted
in Figure 1. P1 “isolates” the Cassandra components, while P2 and P3 respectively do the same
for the Spark Master and the Kafka/ZooKeeper components.
The system and application settings are tuned independently for each application (WC, TSA,
FDP). However, for a given application, we use the same settings between the different place-
ments, i.e., the only change between the different configurations is the placement of the com-
ponents. Table 1 shows the main settings for each application.

Application
Kafka

no. Partitions
Kafka

Replication Factor
Spark

no. Workers
Spark

Batch Interval (sec)
Cassandra

no. Partitions
Cassandra

Replication Factor
Word Count 12 3 6 4 3 3

Twitter Sentiment Analysis 32 3 3 2 3 3
Flights Delay Prediction 6 3 6 2 3 3

Table 1: Main settings for the three studied applications.

1 ZooKeeper is only used by Kafka, which relies on it for storing metadata information and fault-tolerance. Given
the tight coupling between Kafka and ZooKeeper, we systematically colocate Kafka and ZooKeeper. We have
checked that ZooKeeper is never under-provisioned in our different configurations.
2 We have checked that Spark workers never introduce saturation of hardware resources on their target nodes.
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Figure 1: The three studied placement strategies for the data processing pipeline.

3.2. Results and Discussions
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Figure 2: Throughput of the three placement
strategies for the WC application

We examine the performance for the three
placement strategies described earlier. For each
application, our results show significant differ-
ences in throughput between the three strate-
gies (up to 52%, 27%, and 48%). We measure
the system throughput as the number of input
messages (injected by Kafka clients) that can be
processed per time unit, varying the number of
clients. For a given application, we compute
the throughput differences using the worst per-
forming placement as a baseline. Below, we
mostly focus on the results for the highest in-
put load.

WC: As shown in Figure 2, P3 achieves the best throughput, with respectively a 52% and a 23%
improvement over P1 and P2. Besides, P2 achieves a 24% improvement over P1.
TSA: As shown in Figure 3a, P3 achieves the worst throughput (unlike with WC). P2 achieves
the best throughput, with respectively a 15% and a 27% improvement over P1 and P3. Besides,
P1 performs 11% better than P3.
FDP: This application yields yet another performance hierarchy. As shown in Figure 3b, P2
achieves the best throughput, with resp. a 48% and a 33% improvement over P1 and P3. Be-
sides, P3 performs 10% better than P1.

Table 2 shows the resources usage for the three studied applications for each placement (mea-
sured at the peak load). We can notice that these resources are far from being saturated, even in
the worst case: e.g., CPU consumption and memory usage never exceed 55% and 25% respec-
tively. Besides, these indicators do not necessarily exhibit large variations between the best and
the worst strategies (e.g., P3 vs. P1 for WC). This discards trivial explanations for the observed
performance differences between strategies.
To summarize, our results show that: (i) the placement achieving the best/worst results differs
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depending on the application; (ii) the ratios of performance differences between placements
vary significantly depending on the applications; (iii) none of the studied configuration exhibits
any noticeable bottleneck/saturated hardware resource.
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(a) TSA application throughput
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(b) FDP application throughput

Figure 3: Throughput of the three placement strategies for the TSA and FDP applications.

Resource usage P1 P2 P3
WC TSA FDP WC TSA FDP WC TSA FDP

CPU (%) Max 25 55 32 35 53 48 25 53 23
Avg 19 37 18 21 33 22 16 30 13

Memory (%) Max 19 16 19 20 18 16 22 23 23
Avg 10 10 9 10 8 15 12 13 10

Network I/O
(MB/sec)

Max
sent 57 39 316 78 38 338 85 33 314

Avg.
sent 15 12 96 20 13 76 29 11 71

Max
rece. 56 37 306 83 33 369 92 37 337

Avg.
rece. 14 11 93 19 12 73 28 11 69

Disk I/O
(MB/sec)

Max 47 10 257 68 15 312 77 12 287
Avg 11 5 69 14 6 55 21 5 52

Table 2: resources usage for the three studied applications.

4. Related work

There has been much research devoted to performance troubleshooting for distributed systems
[20, 24]. Below, we discuss the most closely related works, organized into three categories.

Is the system performing efficiently?

CPI2 [25] uses cycles-per-instruction (CPI) data obtained by hardware performance counters
to identify slow tasks out of a set of independent but similar tasks running on a cluster of
machines. To identify interfering tasks, CPI2 looks for correlations between the CPI of the
slow tasks and the CPU usage of the other tasks running on the same machine. CPI2 then
uses CPU hard capping to throttle the CPU consumption of interfering tasks and improve the
performance of slow tasks. This technique is not sufficient for our problem, in which there are
not only interferences between local tasks but also interdependencies (via synchronous and/or
asynchronous interactions) between local and remote components. Altman et al. present the
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WAIT tool [2], for pinpointing the causes of idle time in server applications. The tool provides a
dashboard and a rule-based system for the business component of Java Enterprise applications,
highlighting where threads wait (e.g., locks, database, network, disk). However, this tool only
focuses on a single component, whereas, in our case, a complete view of all the components of
an application is necessary to fully understand and debug performance [10, 12].

What are the performance issues and where do they lie?

In order to fix performance issues in a system, it is necessary to identify the symptoms (“what?”)
and also the root cause (“where?”). In the context of data analytics frameworks, Ousterhout et
al. [17, 18] propose blocked time analysis, which allows quantifying how much faster a job
would complete if its tasks never blocked on disk or network I/O. Applying their method-
ology to Spark, they identify several causes for performance issues including high CPU uti-
lization, garbage collection, and disk I/O. This approach is useful but currently limited to the
scale/context of a single component (Spark), with specific instrumentation and assumptions
regarding the execution model. Pivot Tracing [16], is a recent monitoring framework for dis-
tributed systems that combines dynamic instrumentation with causal tracing. It correlates and
groups system events across components and machines boundaries. As an example, this al-
lows identifying the components that create resource contention downstream on other parts of
the system. Pivot Tracing requires instrumentation provided by the developers or system users
in order to propagate specific metadata. By design, Pivot Tracing is only aimed at pinpointing
the root cause of known performance issues, not at detecting such issues, nor at suggesting
optimizations.

How to place logical resources?

There has been much research devoted to improving the performance of distributed systems
by optimizing the placement of its logical resources. By logical resources we refer to both (i)
data and (ii) application components (i.e., code). In this Section, we first discuss related works
regarding data placement [1, 14, 15]. Then, we discuss works concerning application place-
ment [3, 13, 19, 26].
Agarwal et al. [1] present Volley, a system that optimizes data placement across geographically
distributed data-centers by analysing request logs based on data access patterns and client lo-
cations to decide how to migrate data between data centers. The migration decision is taken
according to administrator-defined trade-offs between performance and cost. Kumar et al. [15]
develop SWORD, a workload-aware data placement and replication approach for minimizing
resource consumption. SWORD focuses on deciding which data items should be replicated
and where to place the data as well as the replicas. Moreover, SWORD monitors the workload
changes in order to identify candidate sets of data items whose migration has the potential to
reduce the query (request) span the most and then performs the migrations during periods of
low load.
Karve, et al. [13] propose a controller that dynamically configures the placement of clustered
Web applications consolidated on the same set of machines. The goal is to optimize the re-
source allocation and the load balancing between component instances according to the input
load variations of the different applications/tiers. ClouDiA [26] is a deployment advisor map-
ping latency-sensitive application components (e.g., graph processing) to virtual machine in-
stances in public clouds. Taking the application communication graph, ClouDiA outputs an
optimized deployment plan minimizing the largest latency between application nodes. The
above-mentioned works [13, 26] are focused on optimizing a specific objective function (re-
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source consolidation under a service-level agreement or network latency) and do not consider
the detection and analysis of bottlenecks in the system. Amiri et al. have introduced the ABA-
CUS system [3,19], which handles dynamic function placement for a data-intensive application
deployed on a cluster. ABACUS continuously collects statistics and dynamically migrates com-
ponents across machines if it predicts that the net effect will improve the average application
response time across all the applications that are accessing a given server. This work shares
some goals and building blocks with our research but also has significant differences. ABA-
CUS strongly relies on the assumption that all the application components are designed with
a specific framework and a dedicated programming model. Moreover, the design of ABA-
CUS is mostly aimed at applications with a specific topology (a set of client and server nodes)
and a specific type of problem (figuring out which subset of components executing currently
on clients can benefit the most from computing closer to the data, without overloading the
servers). In contrast, our work (in progress) addresses a more general version of the problem:
in particular, we do not make strong assumptions about the design or implementation of the
software components (although our approach may require to instrument some of them), nor
about the distributed topology of the application or the performance metrics to be optimized.

5. Conclusion and research directions

This paper highlights the fact that the placement of software components can have a significant
impact on the performance of distributed systems and that selecting an efficient placement
is not trivial. We aspire to build a tool that is able to automatically suggest a more efficient
placement strategy.
In order to address this challenge, we are currently designing a tool that will combine several
kinds of inputs and build on existing methodologies for providing better insight. In addition
to metrics about utilization of hardware and OS-level resources, the tool will also gather (i)
network-level statistics (latency, throughput, data volumes, timing of communication patterns)
and (ii) application-specific indicators both for synchronous and asynchronous interactions be-
tween components (e.g., timing and contextual information about blocked time, growth rate of
producer-consumer queues).
The tool will use the above-mentioned data to perform distributed blocked time analysis. This
technique will extend notions from blocked time analysis [17] (identification of hardware and
software bottleneck resources) and articulate them with insights from workflow-centric tools
like Pivot Tracing [16] (distributed causality tracking of thread interactions and resource con-
sumption). By bridging these different insights, we hope to both (i) detect inefficient interac-
tions between components and (ii) identify better placement strategies through “what-if” sim-
ulations.
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