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Abstract
The present work explores the challenges of handling the recovery phenomena in the degradation
behavior of the Proton Exchange Membrane Fuel Cells, from the perspective of the prognostics.
An adaptive Prognostics and Health Management approach with additional knowledge, such as the
Electrochemical Impedance Spectroscopy, from the State of Health characterization, is applied on
two fuel cell stacks under both stationary and quasi-dynamic operating regimes. Some improvements
in the prognostic performance are obtained in the view of the Remaining Useful Life predictions by
comparing with a classical Particle Filtering-based prognostic approach.
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Introduction
In mobile applications, the spotlight is presently on the fuel cell systems among energy conversion
devices. Proton Exchange Membrane Fuel Cell (PEMFC) has been considered as one of the most
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promising technologies for both stationary and mobile applications among different types of fuel cells.
Like other kinds of fuel cells, the PEMFC is a device which generates electricity from electrochemical
reactions continuously for as long as the inputs are supplied and it produces eco-friendly by-products
(water and heat):

Anode : H2 → 2H+ + 2e−

Cathode :
1

2
O2 + 2H+ + 2e− → H2O

Overall :
1

2
O2 +H2 → H2O

(1)

It is a complex system with dynamic conditions and local heterogeneities. The main parts of the cell are
the bipolar plates, the gas diffusion layer that transports gases and excess of water, the electrodes where
half-reactions take place, and the membrane which transports H+ and water. The membrane should be
well hydrated to ensure a good H+ conductance.

Even if this technology is close to being competitive, it is not yet ready to be considered for a large
scale industrial deployment because of its limited durability. The Prognostics and Health Management
(PHM) approaches are considered as favorable solutions to manage PEMFC’s reliability and durability.
The PHM is a combination of several processes to monitor, analyze and master the systems’ State of
Health (SOH). The prognostic results can be helpful in making decisions such as maintenance scheduling
and control strategy, such that early notification of degradation can be detected and early failures can be
avoided. Meanwhile, the repairing cost can be reduced. Prognostic techniques can provide an estimation
of a fuel cell’s degradation state and a prediction for its Remaining Useful Life (RUL). It can thus help
to better manage the health and residual life of the fuel cell system and to improve its performance,
for example through the control of the operating conditions or by adapted maintenance. The durability
of PEMFC can be affected by both internal and external aging factors. The external aging factors are
calendar aging under constant optimal conditions; start/stop cycles and deficient operating conditions
such as temperature, pressure and poor water management. The consequences are materials degradation
that can be seen in main fuel cell components (Dubau et al. 2014). Mechanical, thermal, chemical and
electrochemical mechanisms could lead to the change of physical properties and even damage the stack.
Those degradations of the PEMFC’s stacks cannot be directly measured. For RUL determination, the
output power degradation is mostly used as an aging indicator. However, the power degradation only
reflects a combination of the impacts of all aging factors. Hence, different behaviors can be observed from
the same stack under the same operating conditions, and identical stacks (different stacks of the same
type and manufacture) under the same conditions can also behave differently. To characterize the State of
Health (SOH) of a PEMFC stack, the Electrochemical Impedance Spectroscopy (EIS) and polarization
measurements are applied at regular time intervals. These measurements also induce a particular behavior
of PEMFC which leads to sudden drops and jumps of output power and which can be categorized
into recovery phenomena. All the aforementioned factors bring difficulties and challenges into PEMFC
prognostics.

A sequence of works has been conducted in this field of PEMFC prognostics, following different
approaches: model-based or data-based, even if the proposed approaches are often hybrid, in the sense
that they use both models and data. The state-of-the-art and remaining challenges of PHM for PEMFC
have been reviewed in (Jouin et al. 2013), which identifies the crucial requirements of a vast quantity
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of data to develop complete models for behavior, aging, and degradation. Moreover, data for different
applications and different operating conditions should be gathered to ensure the generality and the
transferability of the developed approaches. Approaches based on machine learning techniques have been
proposed: the method in (Morando et al. 2017) requires a large data series and a long time for tuning of
several model parameters. The work in (Javed et al. 2016) has overcome the data limitation, but it needs
state constraints to guarantee the RUL predictions. For approaches involving a model, the modeling level
depends on the level of understanding of PEMFC behaviors. For some not-well-understood behaviors,
e.g. the recovery phenomena, it can be interesting to rely on empirical (based on experimental data)
modeling of degradation trends to improve the precision of final prediction. When feasible, a physics-
based behavioral model to reproduce PEMFC aging behavior can be proposed, as in (Lechartier et al.
2015). The model is composed of a static part and dynamic parts that are independent. The static part
is developed thanks to equations describing the physical phenomena and is based on the Butler-Volmer
law that takes into account the activation loss at the cathode and the anode. In (Bressel et al. 2016), the
PEMFC RUL prediction subjected to a µ-CHP profile is carried out by using an Extended Kalman Filter
(EKF) throughout a physics-based voltage model.

For the problem of PEMFC RUL prediction, taking into account the uncertainty is also mandatory.
It has been proven that the Bayesian estimation techniques provide a framework which can deal with
high uncertainties in degradation processes (Vachtsevanos et al. 2006). Bayesian estimation with particle
filters is not limited by either linearity or Gaussian noise assumption. Approaches based on particle
filters (PF) are more and more employed for prognostics purposes (Jouin et al. 2016b) and are chosen
for the degradation path estimation and prediction in this study. In (Jha et al. 2016), the authors proposed
parameters estimated from the PEMFC polarization curves as SOH degradation indicators. Their method
gives promising results despite its complexity and shows that the SOH characterization of PEMFC can
be very helpful in RUL prediction. In (Kimotho et al. 2014), the authors estimate the RUL by modeling
and tracking the voltage degradation trend using a Particle Filtering (PF) framework. They introduced
a self-healing factor after each characterization and adapted the degradation model parameters to fit
the changing degradation trend. In (Jouin et al. 2016a), the authors propose an empirical model for
power degradation taking into account recovery phenomena based on different features extracted from
the degradation pattern.

These works provide a promising basis for PEMFC RUL prediction based on degradation trend. It
has to be noticed however that, in those works, the output power (or voltage) of the stack is used as the
only indicator of PEMFC degradation. As explained in detail in the next section, our objective in this
work is to use the power degradation trend in combination with parameters estimated from another SOH
characterization – the Electrochemical Impedance Spectroscopy (EIS), which has been shortly addressed
in (Zhang et al. 2016).

The remainder of this paper is organized as follows. In the first section, the problem statement and the
motivation for the work contribution are introduced. Then, the PF-based prognostic algorithm enabling
the RUL prediction and the criteria of prediction quality evaluation are described in the second section.
The third section presents the proposed approach aiming at integrating information from the stack
characterization in the prognostic procedure. Finally, the experimental results are proposed to illustrate
the performance and interest of the proposed method.
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Problem Statement and Work Objectives

The stack voltage drop or power drop is the most obvious deterioration indicator used to implement a
procedure of deterioration tracking and prognostics. However, it might not be the best approach because
of at least two reasons: i) the voltage drop can be seen as a superficial symptom of the deeper deterioration
of the stack, and might not characterize it completely; ii) some recovery phenomena can appear on
the stack voltage evolution after e.g. a characterization procedure is carried out on the stack or after
a reversible fault disappearance. Our objective in this work is to investigate how information on the
deeper characterization of the stack can be used to better take into account the recovery phenomena and
to improve the prognostic performance.

Stack Degradation

The voltage drop is commonly used to indicate stack degradation in time. Due to degradation phenomena,
the ability of a fuel cell to keep a sufficient power will fall. In this paper, two long-term experimental data
sets from two identical PEMFC stacks, referred to as FC1 and FC2, will be used. These data are taken
from (Gouriveau et al. 2014).

0 200 400 600 800 1000 1200
Time (h)

215

220

225

230

235

240

P
ow

er
(W

)

FC1
FC2

Figure 1. Power degradation in PEMFC stacks.

Figure 1 shows the stacks’ power signals (Gouriveau et al. 2014) over time under both nominal and
dynamic current operating conditions. FC1 is operated under the nominal condition, and FC2 is operated
under dynamic current of 10% oscillations at a high frequency of 5 kHz. Degradation indicators are
supposed to only decrease with time. However, in this figure, one can see that some increases are also
noticeable. Thus, several peaks at certain time instances can be observed which are the consequence of
the characterization measurements which take place each week. These measures lead to sudden power
peaks which are due to temporary recovery phenomena in the stack. Furthermore, the general shape of
FC2 is different from the FC1, and dramatic drops occur. These drops are due to unknown reversible
phenomena as the power recovers its previous level after some period.

Thus the prognostic algorithm has to face a specific difficulty i.e. the power trend is not only a
degradation indicator but also includes reversible phenomena. However, the irreversible degradation of
the PEMFC stack can be assessed based on the internal characterizations of the stack’s State of Health
(SOH), such as the Electrochemical Impedance Spectroscopy (EIS).
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Stack Characterization
The Electrochemical Impedance Spectroscopy (EIS) is commonly used to characterize different
phenomena and component materials inside the stack. For a given frequency range, the internal
impedance allows constructing an EIS which is represented by the Nyquist diagram. The time impact
is depicted in the EIS in Figure 2.
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Figure 2. EIS diagram of a PEMFC.

Different phenomena can be directly observed from the shape of the EIS curve:

• An inductive part at the highest frequencies due to connection cables inductance.
• A capacitive loop due to the accumulation of charges at the electrode-electrolyte interface and the

resistance of transferring electrons.
• A diffusional part at lowest frequencies due to diffusion of species (reactants and products). It is

dominated by the electrochemical reaction with the slowest kinetics.

Parameters such as resistance, capacitance, and inductance can be identified from EIS by an Equivalent
Circuit Model (ECM) by fitting the ECM to the EIS curves.

Figure 3. Equivalent circuit model (ECM) of a PEMFC cell.

Figure 3 shows an ECM proposed by (Kim et al. 2015). The equivalent impedances of the PEMFC is
described as:
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Zeq =
(Z1 + Z2) · Z3

Z1 + Z2 + Z3
+ Z4 (2)

The aging effect can be thus investigated by the changes of the impedance. The work presented in this
paper precisely aims at using this stack aging information synthesized from the stack characterization
results within the prognostic procedure.

Using Stack Characterization Information for Prognostics

The RUL prediction is often based only on one source of deterioration and most of the time the existence
of multiple types of deterioration in decision making is ignored. Therefore, this work aims to integrate
additional information (i.e. EIS characterization) to improve the RUL estimation accuracy based on
the stack voltage or power degradation. The original contribution of this approach does not really and
only lie in the integration of the recovery phenomena since this issue has also been considered in other
works (Kimotho et al. 2014; Jouin et al. 2016a). One of the difficulty is that the recovery phenomena
and their amplitude varies with time (as shown by experimental evidence, for example in Figure 4) ; the
same model for the recovery phenomena cannot be used over the entire life of the PEMFC stack. If we
consider the same issue of prognostics with time-varying recovery phenomena as other authors did, we
do not resort to the same solution. Jouin et al. (2016a) consider a model with time-dependent parameters
for the recovery phenomena whereas we consider in this work a model whose parameters are function of
the internal state of the stack (internal impedance). The solution in (Jouin et al. 2016a) relies on the use
of joint multi-stage particle filters to track both the power decrease itself and the time evolution of the
coefficients of the power deterioration model with the recovery phenomena. Our contribution consists
in using the information delivered by the EIS characterization to update the model parameters of the
recovery phenomena. Our original proposition is hence to use information gathered at different levels in
the stack (i.e. power, but also EIS based SOH characterization summarized by an equivalent impedance)
to better adapt the deterioration estimation to its true state and to better predict the RUL. The two next
sections develop this approach.
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Figure 4. Recovery jumps and their variable amplitude over the stack lifetime
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Particle Filtering-based Prognostics
Particle Filtering (PF) is a hybrid (i.e. data- and model-based) method whose application in prognostics
aims at tracking the evolution of an equipment degradation state from a sequence of noisy measurements;
it relies on state-space description of the system evolution and observation with possibly non-linear and
non-Gaussian features, and it resorts to Bayesian algorithms (Arulampalam et al. 2002). The RUL of the
equipment is defined as the residual life from prediction time before the End of Life (EOL) when the
degradation state reaches a preset Failure Threshold (FT). From a given prediction point in time tp, the
RUL can be predicted by propagating the estimated state through the degradation evolution, as illustrated
in Figure 5.

Measurements
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Figure 5. PF-based prognostics for RUL prediction

Particle Filtering Algorithm
Consider a Markovian system under operation subject to degradation from new till its EOL. The
deterioration dynamics and its observation are assumed to be governed by a discrete-time state transition
model:

xk = fk(xk−1, ωk−1,Θk−1) (3a)

zk = hk(xk, νk) (3b)

where k is the time index, x is the system deterioration state, z is the measurement, f is the degradation
model (state transition function), ω is the system noise, Θ is the vector of the model parameters
(Θ = [θ1, θ2, ...]), h is the measurement model and ν is the measurement noise. Both the process noise
ωk and the observation noise νk are assumed to be sampled from a zero-mean Gaussian distribution, i.e.
ωk ∼ N (0, σω

2
k) and νk ∼ N (0, σν

2
k). In a PF framework (Arulampalam et al. 2002), the approximation

of probability distribution of the deterioration state and the estimation of the deterioration state itself
is based on the generated particles and their associated weights. The Bayesian update is processed
sequentially by propagating particles carrying probabilistic information on the unknown states and model
parameters and consists in 3 mains steps i) particles generation & propagation; ii) weights estimation and
iii) resampling, as summarized in Algorithm 1. The probabilistic model for the particles propagation
relies on the state transition model (3a) and the probability distribution of the process noise ωk. The main
steps are as follows:
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1. Propagate i = 1, . . . , n particles representing the system state probability density function (PDF)
from xk−1 to xk by state transition model described in Equation (3a) (line 5).

2. For each particle, estimate the associated weight by calculating its likelihood of xik given an
online measurement zk, which quantifies the degree of matching between the particle and the
online measurement (line 6). This gives the corresponding weight of each particle (assuming the
measurement noise νk ∼ N (0, σν

2
k) is normally distributed):

L(zk|xik, σνik) =
1√

2πσνik
exp[−1

2
(
zk − xik
σνik

)2] (4)

3. Re-sampling (Li et al. 2015) to remove the particles with small weights compared to a chosen
weight limit, the ones with great weights are duplicated which represent the estimated posterior
PDF (line 10 to 17).

4. The posterior PDF built using resampling in step (3) is used as the prior back into step (1). This
is performed until the online measurement is no longer available (prediction time tλ = kp ·∆t
reached).

For the RUL prediction (Algorithm 2), the posterior PDF of the state and model parameters, given the
observation sequence up to time tp, are used to estimate the future evolution of the particles. The RUL
PDF can be obtained when the particles of system state reach the preset failure threshold by extrapolating
the estimated degradation evolution.

PF Algorithm with Recovery Phenomena
The algorithm is then adapted to take into account the EIS and polarization measurements, which occur
at characterization time step C = [c1, c2, . . . ]. At these time steps, the degradation model Equation (3a)
is then replaced by a model including recovery phenomena (xc). The Algorithm 1 is modified such that
line 5 is replaced by Algorithm 3. In the case where the EIS and polarization measurement times are
known after tp, Algorithm 3 can also be modified to take this into account.

Performance Evaluation
To evaluate the quality of the performance of predicted RULs, the prognostic metrics proposed
by (Saxena et al. 2010) and (Rigamonti et al. 2016) are applied.

Accuracy The accuracy Accλ is computed from the RUL prediction error relative to the true RUL:

Accλ = 1− |RUL
∗
λ − R̂ULλ|
RUL∗

λ

(5)

where RUL∗
λ the ground true RUL and R̂ULλ the median value of predicted RULs at prediction time

tλ. Larger values of Accλ indicate better accuracy.

α-λ Accuracy The α-λ metric is a binary index which considers whether the predicted RUL at time tλ
lies within the ±α interval stating whether the requirements of prediction accuracy is met at a given time
tλ:
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Algorithm 1 Particle Filtering

1: Initialize xi0, σω
i
0, σν

i
0 and Θi

0 // Drawn from initial uniform distribution
2: Time step k = 1
3: while xik > FT and k ≤ kp
4: for i = 1, . . . , n

// Importance sampling:
5: Draw particles xik ∼ p(xik|xik−1, σω

i
k−1,Θ

i
k−1) using Equation (3a)

6: Assign weight wik = L(zk|xik, σνik) using Equation (4)
7: end for
8: Normalize weight wik = wik/

n∑
i=1

wik

9: Calculate the cumulative sum of normalized weights:
{Qik}ni=1 = Cumsum

(
{wik}ni=1

)
10: for i = 1, . . . , n

// Re-sampling (Multinomial):
11: j = 1
12: Draw a random value ui ∼ U(0, 1]
13: while Qjk < ui

14: j = j + 1
15: end while
16: Update state xik = xjk

Update noises σωik = σω
j
k, σν

i
k = σν

j
k

Update parameters Θi
k = Θj

k

17: end for
18: k = k + 1
19: end while

Algorithm 2 RUL prediction

1: k = kp // Start from the prediction time
2: for i = 1, . . . , n // For each particle
3: Use model parameters estimated at time tp (from Algorithm 1) : Θi

k, σω
i
k

4: while xik > FT
5: k = k + 1
6: Propagate particles xik = f(xik−1, σω

i
k−1,Θ

i
k−1) using Equation (3a)

7: end while
8: Estimate R̂UL

i

k = (k − kp) ·∆t
9: end for

(1− α) ·RUL∗
λ ≤ R̂ULλ ≤ (1 + α) ·RUL∗

λ (6)
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Algorithm 3 PF Modification (Replaces line 5 in Algo. 1)

1: if k = c1 or k = c2, · · ·
2: Draw particles xic ∼ p(xic|xik−1, σω

i
k−1,Θ

i
k−1,Θ

i
c)

3: xik = xic
4: else
5: Draw particles xik ∼ p(xik|xik−1, σω

i
k−1,Θ

i
k−1)

6: end if

The α− λ Accuracy is the probability of this condition being met, higher values correspond to better
performance.

Precision The precision Prcλ computes the relative width of the prediction interval, which is defined
by:

Prcλ =
R̂UL

CI+

λ − R̂UL
CI−

λ

RUL∗
λ

(7)

where R̂UL
CI+

λ and R̂UL
CI−

λ are the upper and lower bounds of the Confidence Interval (CI) of the
predicted RULs distribution (e.g. CI=50%) while RUL∗

λ is the corresponding true RUL. Smaller values
of Prcλ indicate more precise predictions.

Coverage The Coverage Cvgλ is a binary index which considers whether the true RUL lies within the
RUL prediction interval at time index λ for each trajectory:

Cvgλ = R̂UL
CI−

λ ≤ RUL∗
λ ≤ R̂UL

CI+

λ (8)

The value of Cvg close to CI indicates a good representation of the uncertainty (Baraldi et al. 2013).

Degradation Models
Choosing a relevant degradation model to build the state transition model of the particle filter is a key step
to reach good performance for the PF-based prognostic procedure. In the present case, two deterioration
models are required: one for the main degradation trend of the stack voltage, and one for the recovery
phenomena. This section presents the used degradation models and details how the stack characterization
information is integrated in the model of the recovery phenomena.

Degradation Trend Models
By degradation models, we refer to empirical models for degradation trends; linear, polynomial,
exponential and logarithm models, etc. are commonly used in prognostics (Jouin et al. 2013). By
comparing the RUL prediction errors reported in the literature, the 2nd order polynomial decreasing
model proposed in (Kimotho et al. 2014) is chosen for the main degradation trend:

xk = α · (tk − tk−1)2 + β · (tk − tk−1) + xk−1 (9)
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where xk is the current state, α and β are the polynomial degradation model parameters, tk and tk−1 are
the current time step and previous time step, respectively.

Several models have been tested to adapt the recovery trends, see Table 1. xc is the state including
recovery phenomena. In Model 1, α0 is the average recovery amplitude of power increase after each
characterization. In Model 2, the model parameters fit the shape of the recovery phenomena with two
parameters: the recovery amplitude α1 and its subsequent decreasing trend β1.

Table 1. Trend Models

N0 Model

classical xk
1 xc = xk + α0

2 xc = xk + α1 · exp(β1 · (tk − tk−1))

The drawback of Model 2 is that the amplitude of the recovery phenomena changes with the SOH of
the stack and tends to higher peaks with time. For that reason, the model is improved in the next section
by linking the parameters with the SOH of the stack.

Recovery Phenomena Model from EIS
The first stage is to determine which parameter available from EIS results is the most representative
of the SOH degradation. The identification results issued from (Kim et al. 2015) show that only the
internal resistances have to be taken into account because the other parameters (such as the capacitance
C1 and C2, the inductance L1 and L2) do not exhibit significant changes due to degradation. Besides the
polarization resistance is calculated as:

Rpol =
(R1 +R2) ·R3

R1 +R2 +R3
+Rel (10)

The results of the parameter identification on FC1 and FC2 measurements (Gouriveau et al. 2014), are
listed in Table 2.

Table 2. ECM parameters identification.

FC1 FC2

t (h) Rpol(mΩ) t (h) Rpol(mΩ)

48 14.8 35 15.2
185 15.4 182 15.7
348 15.5 343 16.2
515 15.9 515 17.2
658 16.2 661 16.9
823 16.5 830 17.4
991 16.1 1016 18.6

It can be seen that the resistances generally increase in time, which enables the feasibility of using
Rpol as aging indicator. For each characterization time, the polarization resistance can be estimated from
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the polarization curve. Figure 6 pinpoints the correlation between Rpol and the stack power degradation
for FC1.
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Figure 6. Rpol as a function of the decreasing stack power for FC1.

The R-squared measure of goodness-of-fit of the linear regression is 0.966 for FC1 and 0.969 for FC2,
which shows that these data follow a strong linear function for both stacks. The stack power value drops
as the resistance increases.

The challenge is now to find relevant relations between α1 and Rpol, β1 and Rpol. The variable
parameter Rpol can thus be included in a new model (Model 3) as:

xc = xk + α2(Rpol) · exp(β2(Rpol) ·∆t) (11)

As the fuel cell ages, the recovery reversible amplitude parameter α1 and trend parameter β1 become
greater, and so does Rpol as shown in Figure 6. The idea is thus to model this recovery amplitude and
this trend parameter as a function of Rpol and we choose to use Rpol as a correcting factor on α1 and β1.
We then set:

α2(Rpol) = α1 ·
Rpol(k)

Rpol(1)

β2(Rpol) = β1 ·
Rpol(k)

Rpol(1)

(12)

where Rpol(1) is the value of Rpol at k = 1.
Making the coefficients of the model in Equation (11) dependent onRpol, and not only time-dependent,

allows a better adaptation of the recovery model to the internal state of the FC, and consequently a better
prognosis, as shown in the next section.

RUL Prediction Results

PF Settings
The estimation performed by PF (e.g. in Figure 7), is realized with N = 5000 particles. Since there are
no available prior information, it is assumed that the initial distributions of the system state x and the
unknown parameters Θ are uniformly distributed between their lower and upper bounds:
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x0 ∼ U(x−0 , x
+
0 )

Θ0 ∼ U(Θ−
0 ,Θ

+
0 )

(13)

The bounds of x0 are set to ±5 W around FC1 initial power (represented by the first measurement) and
the measurement noise variance σν20 ∈ (0, 5) is set accordingly to ensure a good estimation of the noisy
measurement. The value for process noise variance is found through successive tuning as σ2

ω ∈ (0, 0.04),
to obtain a desirably smooth estimation. It is necessary to note that, for the measurement function in
Eq.(3a), it is assumed that yk is the same as the output power including measurement noise νk. In the PF
framework, particles will be updated by being propagated through the state transition model in Eq.(9).
When the scheduled characterizations take place, they are updated according to the models described in
Table 1 and Eq.11.

Stationary Regime (FC1)
The stack power degradation of FC1 over 1000 hours is estimated by PF for all the models. The RUL of
a PEMFC stack is predicted regarding its output power Failure Threshold (FT). The FT of the stack is
defined as a given portion of its initial output power (e.g. 96% of its power at t = 0 h).
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Figure 7. Degradation estimation for FC1 (Model 3).

Figure 7 shows an example of the estimation of degradation path at prediction time tλ = 600 hours for
Model 3. One can see the recovery phenomena have been adapted both in learning and prediction phases.
The predicted RUL with its uncertainty is illustrated in Figure 8. The bi-modal PDF of the predicted RUL
is due to the specific behavior of the considered fuel cell around time 800 hours : it can be explained by
the fact that there is a high amplitude recovery phenomena just at the same time when the deterioration is
about to cross the failure threshold, see Figure 7. Taking into account the uncertainty, this could lead either
to a failure around 800h or, in the cases where the propagated deterioration does cross the threshold at
800h, to a later failure around 900h; hence the bi-modal PDF that integrates these two possible scenarios.
With 80%CI , the predicted RUL at tλ = 600 hours is within [170; 330] whereas the true RUL is 210
hours.

The RUL predictions are then applied with time index tλ from 200 hours to the End of Life (EOL)
every 20 hours to evaluate the average performance of each model. The boxplot in Figure 9 shows the
predicted RUL uncertainties with CI = 50% and accuracy bounds α = 0.2.
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Figure 8. Histogram of the predicted RUL for FC1 at 600 hours (Model 3).
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Figure 9. Model 3 RUL predictions with uncertainties for FC1 (α = 0.2 and CI = 50%).

The performances evaluated by all metrics for FC1 are compared in Table 3. Model 3 shows better
performances on α-λ Accuracy and Acc indexes which implies that this model gives more accurate
predictions than other models. Such a model also has better performances on Prc (the lowest value) and
Cvg (the closest to CI = 80%), which indicates that it provides more precise RUL predictions while
maintaining a better coverage performance than other models.

Table 3. Prognostic performance for FC1 (α = 0.2,CI = 80%).

Classical Model 1 Model 2 Model 3

α-λ 0.645 0.548 0.677 0.774
Acc 0.675 0.793 0.810 0.856
Prc 0.894 0.853 0.731 0.681
Cvg 0.742 0.581 0.6129 0.774

Figure 10 shows the RUL predictions with α bounds of all models. It can be seen that the results of
Model 3 are better suited within the bounds than the others.

Dynamic Current Regime (FC2)
The same algorithm is applied to the other stack FC2. In Figure 11, the classical model gives a realistic
RUL prediction, but this prediction may not be robust to other experiments, as the characterization
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Figure 10. RUL predictions with different models for FC1 (α = 0.2).
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Figure 11. Degradation estimation for FC2 (Classical PF).
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Figure 12. Degradation estimation for FC2 (Model 1).
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Figure 13. Degradation estimation for FC2 (Model 2).
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Figure 14. Degradation estimation for FC2 (Model 3).

times are not taken into account. For Model 1 and Model 2, the characterization times are taken into
consideration, but the magnitude and the rate are estimated during data training. Thus, the prediction
RUL is too short (Figure 12 and Figure 13). For Model 3, taking into account the polarization resistance
allows adapting the magnitude and the degradation rate (Figure 14). The RUL prediction is thus more
accurate than the other models. However, it can be seen that the peak at time 850h cannot be predicted
without additional information on this event.

An example of predicted RUL PDFs (e.g. at tλ = 600h) by all models is shown in Figure 15. One can
see that the RUL PDFs are thinner for the model 3. The boxplot in Figure 16 shows the predicted RUL
uncertainties of model 3. This figure highlights that the dramatic drop between t = 400h and t = 500h
induces difficulties in the RUL prediction. Figure 17 shows the RUL predictions with α bounds of all
models and classical PF. One can see that Model 3 gives the best predictions after t = 500h.
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Figure 15. Predicted RUL for FC2 at 600 hours.

Table 4 reports all performance metrics obtained when using all models for FC2. It can be noticed
that the performances on FC2 are globally worse when compared with those on FC1. The classical PF
provides in this case more precise predictions but lacks accuracy. Model 3 shows better performances
on α-λ Accuracy, Acc and Cvg indexes. The poor performance on Prc index for Model 3 is due to the
fact that the predicted RUL distribution does not converge as fast as with the classical PF because of the
adaption to the recovery phenomena.
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Figure 16. Model 3 RUL predictions with uncertainties for FC2 (α = 0.2 and CI = 50%).
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Figure 17. RUL predictions with different models for FC2 (α = 0.2).

Table 4. Prognostic performance for FC2 (α = 0.2,CI = 80%).

Classical Model 1 Model 2 Model 3

α-λ 0.237 0.263 0.342 0.421
Acc 0.485 0.632 0.633 0.718
Prc 0.695 0.765 0.932 0.755
Cvg 0.342 0.553 0.632 0.789

Conclusion

The purpose of this study was to improve the prognostic quality of the empirical power degradation model
by handling the impact of PEMFC stacks’ recovery behavior. The parameter of polarization resistance
estimated from EIS helped to improve the RUL prediction accuracy. The proposed model gives the best
performance among all the tested models, especially for long-term predictions. This study brings the idea
of integrating SOH characterization into RUL prediction, which leads to a better performance of RUL
predictions. Even if the results obtained on the set of real data considered in the paper are promising, the
proposed approach still has to be tested and validated in a broader range of data which for sure will raise
new challenges. In future work, other available information regarding the SOH characterization and their
interest for RUL prediction will also be explored.
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