B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, vol.195, pp.2419-2430, 2010.

M. Armand and J. Tarascon, Building better batteries, Nature, vol.451, pp.652-657, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00258391

N. Li, G. Zhou, F. Li, L. Wen, and H. Cheng, A SelfStanding and Flexible Electrode of Li 4 Ti 5 O 12 Nanosheets with a N-Doped Carbon Coating for High Rate Lithium Ion Batteries, Adv. Funct. Mater, vol.23, pp.5429-5435, 2013.

X. Xue, P. Deng, B. He, Y. Nie, L. Xing et al., Flexible Self-Charging Power Cell for One-Step Energy Conversion and Storage, Adv. Energy Mater, vol.4, 2014.

G. Nystro?m, A. Razaq, M. Strømme, L. Nyholm, and A. Mihranyan, Ultrafast All-Polymer Paper-Based Batteries, Nano Lett, vol.9, pp.3635-3639, 2009.

H. Nishide and K. Oyaizu, MATERIALS SCIENCE: Toward Flexible Batteries, vol.319, pp.737-738, 2008.

S. Kim, K. Choi, S. Cho, S. Choi, S. Park et al., Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable, Power Sources with Aesthetic Versatility for Flexible Electronics, vol.15, pp.5168-5177, 2015.

W. Porcher, P. Moreau, B. Lestriez, S. Jouanneau, F. Le-cras et al., Stability of LiFePO 4 in water and consequence on the Li battery behaviour, Ionics, vol.14, pp.583-587, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00396736

R. Dominko, M. Gabers?c?ek, J. Drofenik, M. Bele, and S. Pejovnik, A Novel Coating Technology for Preparation of Cathodes in Li-Ion Batteries, Electrochem. Solid-State Lett, vol.4, p.187, 2001.

A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori, and K. Zaghib, LiFePO4 water-soluble binder electrode for Li-ion batteries, J. Power Sources, vol.163, pp.1047-1052, 2007.

W. Porcher, P. Moreau, B. Lestriez, S. Jouanneau, and D. Guyomard, Is LiFePO 4 Stable in Water?, Electrochem. Solid-State Lett, vol.11, p.4, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00396493

W. Porcher, B. Lestriez, S. Jouanneau, and D. Guyomard, Optimizing the surfactant for the aqueous processing of LiFePO 4 composite electrodes, J. Power Sources, vol.195, pp.2835-2843, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00468420

S. S. Zhang, K. Xu, and T. R. Jow, Evaluation on a water-based binder for the graphite anode of Li-ion batteries, J. Power Sources, vol.138, pp.226-231, 2004.

L. Jabbour, R. Bongiovanni, D. Chaussy, C. Gerbaldi, and D. Beneventi, Cellulose-based Li-ion batteries: a review, vol.20, pp.1523-1545, 2013.

L. Jabbour, C. Gerbaldi, D. Chaussy, E. Zeno, S. Bodoardo et al., Microfibrillated cellulosegraphite nanocomposites for highly flexible paper-like Liion battery electrodes, J. Mater. Chem, vol.20, p.7344, 2010.

K. S. Howe, E. R. Clark, J. Bowen, and K. Kendall, A novel water-based cathode ink formulation, Int. J. Hydrog. Energy, vol.38, pp.1731-1736, 2013.

C. Li, J. Lee, and X. Peng, Improvements of Dispersion Homogeneity and Cell Performance of Aqueous-Processed LiCoO 2 Cathodes by Using Dispersant of PAA-NH 4, J. Electrochem. Soc, vol.153, p.809, 2006.

H. Kipphan, Handbook of print media: technologies and production methods, 2001.

W. Zhang, X. He, W. Pu, J. Li, and C. Wan, Effect of slurry preparation and dispersion on electrochemical performances of LiFePO 4 composite electrode, Ionics, vol.17, pp.473-477, 2011.

G. Lee, J. H. Ryu, W. Han, K. H. Ahn, and S. M. Oh, Effect of slurry preparation process on electrochemical performances of LiCoO 2 composite electrode, J. Power Sources, vol.195, pp.6049-6054, 2010.

W. Li, Y. Yin, S. Xin, W. Song, and Y. Guo, Lowcost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material, Energy Environ. Sci, vol.5, p.8007, 2012.

Y. Du, Z. Yin, X. Rui, Z. Zeng, X. Wu et al., A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS 2 nanoplates for highperformance lithium-ion batteries, Nanoscale, vol.5, p.1456, 2013.

K. Kang, Y. Lee, D. O. Shin, J. Kim, and K. M. Kim, Performance improvements of pouch-type flexible thinfilm lithium-ion batteries by modifying sequential screenprinting process, Electrochemical Acta, vol.138, pp.294-301, 2014.

C. ,

P. Barrie,

R. Griffiths, I. Abbott, E. Grillo, C. Kudryashov, and . Smyth, Rheology of aqueous carbon black dispersions, J. Colloid Interface Sci, vol.272, pp.210-217, 2004.

T. Amari, K. Uesugi, and H. Suzuki, Viscoelastic properties of carbon black suspension as a flocculated percolation system, Prog. Org. Coat, vol.31, pp.171-178, 1997.

T. Amari, Flow properties and electrical conductivity of carbon black-linseed oil suspension, J. Rheol, vol.34, p.207, 1990.

J. Lee, J. Kim, Y. C. Kim, D. S. Zang, and U. Paik, Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries, Ultramicroscopy, vol.108, pp.1256-1259, 2008.

G. Lee, J. H. Ryu, W. Han, K. H. Ahn, and S. M. Oh, Effect of slurry preparation process on electrochemical performances of LiCoO 2 composite electrode, J. Power Sources, vol.195, pp.6049-6054, 2010.

S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska et al., Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells, Prog. Photovolt. Res. Appl, vol.15, pp.603-612, 2007.

F. C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Sol. Energy Mater. Sol. Cells, vol.93, pp.394-412, 2009.

M. R. Parikh, W. F. Quilty, and K. M. Gardiner, SPC and setup analysis for screen printed thick films, Compon. Hybrids Manuf. Technol. IEEE Trans. On, vol.14, pp.493-498, 1991.

M. Neidert, W. Zhang, D. Zhang, and A. Kipka, Screenprinting simulation study on solar cell front side AG paste, Photovolt. Spec. Conf. 2008 PVSC08 33rd IEEE, pp.1-4, 2008.

J. Hoornstra, A. W. Weeber, H. H. De-moor, and W. C. Sinke, The importance of paste rheology in improving fine line, thick film screen printing of front side metallization, 1997.

M. R. Somalu and N. P. Brandon, Rheological Studies of Nickel/Scandia-Stabilized-Zirconia Screen Printing Inks for Solid Oxide Fuel Cell Anode Fabrication, J. Am. Ceram. Soc, vol.95, pp.1220-1228, 2012.

J. Lee, S. Lee, U. Paik, and Y. Choi, Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance, J. Power Sources, vol.147, pp.249-255, 2005.

F. M. Lope-c2009, LOPE-C International Conference and Exhibition for the Organic and Printed Electronics Industry, 2009.

P. P. Prosini, R. Mancini, L. Petrucci, V. Contini, and P. Villano, Li 4 Ti 5 O 12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications, Solid State Ion, vol.144, pp.185-192, 2001.

A. S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J. M. Tarascon et al., Solution-Combustion Synthesized Nanocrystalline Li 4 Ti 5 O 12 As High-Rate Performance Li-Ion Battery Anode, Chem. Mater, vol.22, pp.2857-2863, 2010.

D. Rotureau, J. Viricelle, C. Pijolat, N. Caillol, and M. Pijolat, Development of a planar SOFC device using screen-printing technology, J. Eur. Ceram. Soc, vol.25, pp.2633-2636, 2005.

D. Y. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue et al., Study of LiFePO 4 by Cyclic Voltammetry, J. Electrochem. Soc, vol.154, p.253, 2007.

K. Hanai, T. Maruyama, N. Imanishi, A. Hirano, Y. Takeda et al., Enhancement of electrochemical performance of lithium dry polymer battery with LiFePO 4 /carbon composite cathode, J. Power Sources, vol.178, pp.789-794, 2008.

W. Lu, A. Jansen, D. Dees, and G. Henriksen, Olivine electrode engineering impact on the electrochemical performance of lithium-ion batteries, J. Mater. Res, vol.25, pp.1656-1660, 2010.