Solid State NMR studies of intact lipopolysaccharide endotoxin

Cedric Laguri¹, Alba Silipo², Alessandra M. Martorana³, Paul Schanda¹, Roberta Marchetti², Alessandra Polissi³, Antonio Molinaro^{2,*} and Jean-Pierre Simorre^{1,*}

¹Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble

² University of Naples Federico II, Department of Chemical Sciences, via cintia 4, Napoli, Italy

³ University of Milano, Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, Milano, Italy

* **Correspondence:** jean-pierre.simorre@ibs.fr (JP. S.) and molinaro@unina.it (A. M.)

C		T-1-1-	1
Suppl	lementary	I able	Т

		C1	C2	C3	C4	C5	C6	H1	H2	H3	H4	H5	H6
Lipid A	6-α-GlcN 1P	95,0	53,4	74,5									
Lipid A	6-α-GlcN 1P	95,7	53,2	74,4									
Lipid A	6-β-GlcN 4P	103,2	55,3	75,0			64,4		4,26				
Core	α-Kdo	175,6	102,7										
Core	α-Kdo	175,3	100,8										
Core	3-α-Hep 4-P	99,9	72,3	78,6	74,7					3,644			
Core	3,7 -α-Hep 4P	101,5	71,5	81,2									
Core	3-α-Glc	100,3	73,1	77,0	74,4			5,38	3,53				
Core	t-α-Gal	96,5	69,3	66,9	66,9	52,7	60,6	5,49		4,15		3,74	3.84/4.14
Core	3-αGlc*	101,1	73,1										
Core	2-α-Glc*	103,3	74,3	70,8				4,51					
Core	t-α-Rha*	102,3	71,5										
		C1	C2	C3	C4	C5	C6		H1	H2	НЗ	Н4	
Lipid	C=O-CH2-COH/OR-	174.0		<u></u>	07.7	07.4	01.0						
A	C=O-CH2-COH/OR-	174,3	44,4	69,3	37,7	27,4	31,6						
A	CH2-CH2-CH2x	173,5	43,1	68,8	39,0	27,0	31,6			4,06			
Lipid A	CH2-CH2-CH2x	175,5	35,7	71,9	35,5	26,6	31,3			2,38	5,31		
Lipid	C=O-CH2-CH2-CH2x	174,4	35,2	26,2	31,0					2,35	1,63		
Lipid	C= <u>C-CH2-CH2x-</u>	130,6	28,4	31,1					5,33	2,03	1,32		
Lipid	Cyclopropane	12,1	16,8	29,9	31,3				0.61/- 0.30	0,68	1,48	1,13	
		CH₃	CH21	CH22	CH2x			CH₃	CH21	CH22	CH2x		
Lipid A	CH3-CH2-CH2-CH2x-	14,8	23,7	33,1	31,0			0,89	1,31	1,28	1,34		
		Cα	Сβ	Сү			Hα	Нβ	Нγ				
P-Etn	P-O- <u>CH2-CH2</u> -NH3+	41,6	63,9				3,31	4,24					
P-Etn	P-O- <u>CH2-CH2</u> -NH3+	41,8	63,4				3,30	4,13					
D Chi	P-O- <u>CH2-CHOH-CH2</u> -	GE 1	71.0	64.2			4.05	2.01	4 47				
P-Gly	ОП	65,1	71,9	64,3	~	05	4,05	3,91	4,47				
	ß-MurNac	101.0	50.0	01.0	72.6	76.0	C6	Hl	H2	нз	H4	H5	H6
PG	B-MurNac	102.5	50,9	81,0	725	76.0	61 7	4.10				2.00	
PG	B-GloNac	102,5	50,3	80,8	13,5	10,2	01,7	4,13				১, ୪୪	
PG	p-Gicivac	101,1 C	56,8 Cα	73,6 CB				Ηα	нβ				
DC	Alanine	175 1	EQ.0	10 4				4.24	1 40				
		176.0	50,9 70 F	10.5				4,34	1,43				
PG PC	Glutamate	170,0	79,5 55.0	19,5 20 F									
гG	Cistumate	110,1	55,0	23,3	1	1			1	1	1	1	

Escherichia coli K12 LPS ¹³C and ¹H chemical shift (ppm) assigned from solid state NMR experiments.

PG (peptidoglycan). Underlined chemical groups are the ones for which the assignment is given. CH2x accounts for CH2s constituting the middle of the lipid chains and that are all chemically equivalent. *Putative assignments

		CH₃	CH21	CH22	CH2x			CH₃	CH21	CH22	CH2x			
Lipid A	<u>CH3-CH2-CH2-</u> CH2x-	14.9	23.9	33.3	31.0			0.90	1.32	1.29	1.31			
		Cα	Сβ											
Lipid	C= <u>C-CH2-</u>	130,4	28,2											
		C1	C2	C3	C4	C5	C6	C7	H1	H2	НЗ	H4	H5	H6
core	α-Kdo	176,3		35,4	73,1									
core	3)-α-Hep(1-5	105,3	74,6	76,8	70,6	77,0		61,8						
core	3)-α-Rha	101,2	71,2	81,2	73,8	70,2	18,1					3,49		
		Cα	Сβ											
core	Alanine	50,5	18,1											
core	Alanine	51,5	17,9											
A-Band	2)-α-Rha	101,9	79,3	73,7	71,1	70,4	17,8		5,20	4,06	3,55		3,86	1,30
A-Band	3)-α-Rha	103,3	71,1						4,98	4,16				
A-Band	3)-α-Rha'	102,5	67,4						5,12	4,20				
A-Band O- CH3	Rha	57,4							3,45					
O-Acetyl		21,3	174,6						2,15					
		C1	C2	C3	C4	C5	C6		H1	H2	нз	H4	H5	H6
B-Band	α-Fuc1	98,4	48,7	79,1	70,9	68,1	16,5		4,92	4,12	3,89	3,95	3,98	1,14
B-Band	β-Man2	100,9	52,7	52,8	77,0	78,2	176,4		4,93	4,32	4,08	3,68	3,83	
B-Band	β-Man3	100,0	51,1	57,8	71,7	79,9	175,3		4,66	4,36	4,10	4,02	3,83	
		СН3 <u>-С=</u> О	<u>CH3</u> - C=0	CH3 <u>-</u> <u>C=</u> N	<u>CH3-</u> C=N				<u>CH3</u> -C=O 2/3	<u>CH3</u> - C=N				
B-Band	α-Fuc1	175.3/176.1a	23,1						1,94					
B-Band	β-Man2	175.3/176.1a	23,1						1.942/2.023					
B-Band	β-Man3	175.3/176.1a	23,1	167,3	19,8				1,94	2,11				

Supplementary Table 2

Pseudomonas Aeruginosa PAO1 LPS ¹³C and ¹H chemical shifts (ppm) obtained from solid state NMR experiments. t: terminal sugar (glycosydic bond only involving anomeric group) a: ambiguous value

Supplementary Figure 1

(a) ¹³C-¹H-INEPT spectrum of *E. coli* R-LPS at 34kHz. (b)¹³C-¹³C Single Quantum J-correlation experiment of *E. coli* R. LPS at 12.5kHz. Asterisks mark a diagonal of artefacts on the spectra. CP: cyclopropane.

Supplementary Figure 2

¹³C-¹H-INEPT spectrum of *P. aeruginosa* PAO1 S-LPS at 34kHz. Assignments labels are colored orange, red and cyan for lipidA, B-band and A-band parts, respectively.

Supplementary Figure 3:

LPS from *E. coli* and *P. aeruginosa* EM and ssNMR comparison

a) Negative stain Electron micrographs (23000x magnification) of *E. coli* LPS (left) that forms mainly large vesicles in solution and *P. aeruginosa* LPS (right) which forms structures corresponding to elongated micelles.

b) Overlay of *E. coli* (red) and *P. aeruginosa* (blue) ssNMR spectra with ¹³C-¹H-INEPT on the left and ¹³C-¹³C DARR on the right.

Supplementary Figure 4

LPS PAO1 interacts strongly with gentamicin antibiotic

(a) 1D ¹H solution NMR spectrum of 25mM gentamicin (black). PAO1 LPS is added to the gentamicin and solution is ultracentrifuged into the NMR rotor. The ¹H solution 1D spectrum of the supernatant (green) displays only broad NMR signal.

(b) T_1 relaxation time constants of PAO1 LPS in absence (hatched) and presence (green) of gentamicin.

Supplementary Figure 5

¹³C-¹H INEPT ssNMR spectrum of *P. aeruginosa* LPS in absence or presence (red) of 25mM gentamicin. Spectra are normalized to the intensity of lipid CH₃ peak. Several regions of the spectra are enlarged (x4) to visualize chemical shift variations of LPS induced by gentamicin. Vertical bars were drawn to highlight ¹H chemical shift induced by gentamicin.