
HAL Id: hal-01873338
https://hal.univ-grenoble-alpes.fr/hal-01873338

Submitted on 21 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ultrasound vibration measurements based on laser
optical feedback imaging

Vadim Girardeau, Olivier Jacquin, Olivier Hugon, Eric Lacot

To cite this version:
Vadim Girardeau, Olivier Jacquin, Olivier Hugon, Eric Lacot. Ultrasound vibration measurements
based on laser optical feedback imaging. Applied optics, 2018, 57 (26), �10.1364/AO.57.007634�. �hal-
01873338�

https://hal.univ-grenoble-alpes.fr/hal-01873338
https://hal.archives-ouvertes.fr


Ultrasound vibration measurements based on Laser 
Optical Feedback Imaging (LOFI)  

VADIM GIRARDEAU,1
 OLIVIER JACQUIN,1

 OLIVIER HUGON,1
 ERIC LACOT1,* 

1Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France 
*Corresponding author: eric.lacot@univ-grenoble-alpes.fr 

 

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX 

 
This paper is devoted to the detection of ultrasound vibrations with nanometric amplitude by using a LOFI (Laser 
Optical Feedback Imaging) setup. By means of numerical simulations, we show typical examples of ultrasound 
vibrations having different temporal shapes (harmonic and transient) extracted from the laser output power 
modulation induced by the frequency shifted optical feedback. Considering the laser quantum noise dynamic and 
the detection noise separately, we show that the simulated vibration noise is in good agreement with the 
theoretical prediction. Also, we demonstrate that Ultra High Frequencies (in the GHz range) can be detected by 
using a usual LOFI setup with a low power laser (few mW) and a conventional detection with a usual white noise 
level. Then we show how the noise of a short transient vibration can be reduced by the reconstruction of its wide 
vibration spectrum by concatenation. Finally, the experimental detection of transient-harmonics ultrasound 
vibrations propagating in water and detected at the air/water interface is presented.© 2018 Optical Society of 
America 

1. INTRODUCTION 
Laser properties (e.g. power, polarization, coherence, dynamical 
behavior) can be significantly affected and modified by optical 
feedback [1,2] that allows for the realization of non-conventional 
sensors. One potential application is Laser Feedback Interferometry 
(LFI), where the steady-state intensity of a laser is modified by 
coherent optical feedback from an external target. This technique is 
sensitive to the phase (distance and motion of the target [3]) and the 
signal depends on the reflectivity of the target. However, when the 
amount of re-injected light is very small, the interference contrast 
occurring inside the laser cavity is drastically reduced. To overcome 
this problem, one solution is to use the dynamical properties of the 
laser, which can be several orders of magnitude more sensitive to 
optical feedback than the laser steady-state properties. The maximum 
of the modulation is obtained when the frequency shift is resonant 
with the laser relaxation oscillation frequency. In this condition, an 
optical feedback level as low as -170 dB (i.e. 1017 times weaker than the 
laser intra-cavity power) has been detected [4]. Since the pioneering 
work of K. Otsuka on self-mixing modulation effect in a class-B laser 
[5], the dynamical sensitivity of lasers to frequency shifted optical 
feedback has been used in metrology [6,7], for example in self mixing 
Laser Doppler Velocimetry (LDV) [4,8,9], in vibrometry [10-12] and in 
Laser Optical Feedback Imaging (LOFI) [13-15]. Compared to 
conventional optical heterodyne detection, a LOFI setup allows for 
higher (several order of magnitude) signal to noise ratio when working 
with a low power laser (a few mW) and a conventional detection with 
a usual noise level [16-18]. 

The main objective of the present paper is to demonstrate the 
possibility to accurately measure very small vibration amplitudes (in 
the nanometer range) in the ultrasound domain (in the MHz range) by 
using a LOFI setup with a relatively low power laser (tens of mW). 
Even if nanometer measurements based on SMI (Self Mixing 
Interferometry) have already been realized, either for acoustic 
perturbations or for nm-sized vibrations [19-20], the use of a LOFI 
setup is motivated by the combination of the four following reasons: i) 
The LOFI interferometer is always self-aligned because the laser 
simultaneously fulfils the functions of the source (i.e. photons-emitter) 
and of the photo-detector (i.e. photons-receptor); ii) The phase of the 
LOFI beating is sensitive to the round-trip phase shift between the 
laser and the vibrating target. iii) The LOFI sensitivity allows to analyse 
targets from which the back-reflected (or back-scattered) electric field 
is very weak. iv) The LOFI detection is shot noise limited (even with a 
low power laser and a conventional detection) in a frequency range 
located near the relaxation oscillation frequency of the laser [17-18]. 
 
This article is organized as follows. In section 2, we firstly recall the 
equations governing the dynamics of a laser with a frequency-shifted 
optical reinjection back-scattered from a vibrating target. Secondly a 
conventional LOFI setup is described. The next section (section III) is 
devoted to the detection of ultrasound vibrations. The signal 
processing to extract vibration measurements from the laser 
modulation is explained and we show typical examples of numerical 
vibration signals (harmonic and transient) extracted from the laser 
dynamic. Considering the laser quantum noise and also the detection 
noise, we determine the maximum vibration frequency that can be 
detected by using a LOFI setup. The end of section 3 is devoted to the 
experimental measurement with a LOFI setup of transient-harmonics 
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ultrasound vibrations propagating in water and detected at the 
air/water interface. The final section (section 4) is a general discussion 
of these results and to their prospective applications, principally for 
Photo-Acoustic (PA) imaging. 

2. LASER OPTICAL FEEDBACK IMAGING (LOFI) FOR 
VIBROMETRY 

A. Basic equations of the laser dynamics  

For an optical feedback characterized by a weak power reflectivity (

1eR  ) and an optical frequency shift ( eF ), the dynamical behavior 

of the laser can be described by the following set of differential 
equations [17]: 
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where I  and D  are respectively the laser intensity (photon unit) and 

the population inversion (atom unit). 
1  is the decay rate of the 

population inversion, c  is the laser cavity decay rate, 1 0D  is the 

pumping rate and B is the Einstein coefficient related to the laser 
transition cross section. In this modeling, the laser output power 
(photons/s unit) and the intra-cavity laser intensity (photon unit) are 

linked through the equation:    out cP t I t . Regarding the noise, 

the laser quantum fluctuations are principally described by the 

Langevin noise functions  IF t  and  DF t , which have a zero mean 

value and a white noise type correlation function [21,22]. 
In Eq. (1a), the harmonic modulation expresses the coherent 

interaction (i.e. the beating at the angular frequency: 2e eF  ) 

between the lasing and the feedback electric field. The optical light 
back-reflected (or back-scattered) by a target is characterized by the 

effective power reflectivity eR (taking into account the albedo of the 

target under investigation, the efficiency of the frequency shifter, the 
optical losses between the laser and the target and also the overlapping 
between the feedback electric field and the intra-cavity laser mode). 
For a vibrating target, the optical feedback is also characterized by the 
time dependent optical phase shift: 

     0 0

2
2 ( )e a a

c

t t d d t



      , induced by the 

distance between the laser and the target, where c  is the laser 

wavelength, while 0d  and ( )a cd t   are respectively the mean 

distance between the laser and the target and the small target 
displacement induced by the vibration. Without loss of generality, we 

supposed that : 0 2m    .  

The use of Eqs. (1) supposes that the round trip time between the laser 
and the target is short compared to the modulation period (

02 1e ed c F   ) and therefore that the time-shift of the 

intensity feedback can be neglected (    eI t I t  ). 

In the absence of optical feedback ( 0eR  ), the laser steady-state is 

given by: 
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where 
0
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D
   is the normalized pumping parameter and 

1
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B


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is related to the saturation intensity of the laser transition. 
 

Also, for 0eR  , the intrinsic dynamics of a class-B laser ( 1c  

) is characterized by damped relaxation oscillations of the laser output 

power with a relaxation angular frequency  1 1R c      and 

a damping rate 1 2R    . This transient dynamics allows to 

determine the modulation transfer function of the laser dynamics (also 
called the LOFI gain): 
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In a real system, the transient dynamics is constantly stimulated by the 

laser quantum noise described by the Langevin forces  IF t  and 

 DF t .   

For a laser with frequency shifted optical feedback ( 0eR  ) and for a 

weak modulation contrast of the laser intensity (

 2 1e R eR G   ), the laser dynamics is linear and the output 

power modulation of the laser is given by the convolution product (
symbol) between the beating modulation at the carrier frequency and 
the impulse response of the laser dynamics [i.e. the inverse Fourier 

Transform (
1FT 

) of the modulation transfer function  RG  ]: 

   

 

  

1

2 exp

out out out

R

e out e a

P t P t P

FT G

R P i t t

cc



  

     
    

  
 
 

, (4) 

where “cc “ stands for complex conjugate. 

 

B. Experimental setup 

To measure the ultrasound vibration of a target (i.e. to determine 

 a t  ), we have used a LOFI setup. A schematic diagram of this 

setup is shown in Fig. 1. The laser is a diode pumped Nd:YAG 
microchip laser. The maximum available pump power is 400 mW at 
810 nm, giving a 50 mW output power at a central wavelength of 

1064c nm  for the microchip laser. It has a plane-parallel cavity, 

which is stabilized by the thermal lens induced by the Gaussian pump 
beam. The two dielectric mirrors are directly coated on the laser 
material (full cavity). The input dichroic mirror transmits the pump 
power and totally reflects the infrared laser wavelength. On the other 
side, the dichroic output mirror allows to totally reflect the pump 
power (to increase the pump power absorption and therefore the laser 



efficiency) and only partially reflects (95%) the laser wavelength. The 

microchip has a relatively short cavity 1cL mm , which ensures a 

high cavity damping rate ( c ) and therefore a good sensitivity to 

optical feedback.  

 

Fig. 1. Schematic diagram of the LOFI setup for vibrometry. µLaser: 
microchip laser with a relaxation oscillations frequency FR. L1, L2 and 
L3: Lenses, BS: Beam Splitter, PD: Photodiode, FS Frequency Shifter 

with a round trip frequency-shift eF  GS: Galvanometric Scanner, PZT: 

Piezo Electric Transducer with a vibration frequency Fa.. The 
transducer is immerged inside a tank fill with water and the acoustic 
wave is focused on the air/water interface in order to generate surface 
measurable perturbations of the surface of the fluid 

Part of the light diffracted and/or scattered by the vibrating target 
returns inside the laser cavity after a second pass through the 
frequency shifter. Therefore, the optical frequencies of the reinjected 

light are shifted by eF . This frequency shift can be adjusted and is 

typically of the order of the laser relaxation frequency RF , which is in 

the megahertz range for the microchip laser used here. Finally, the 
coherent interaction (beating) between the lasing electric field and the 
frequency-shifted reinjected field leads to a modulation of the laser 
output power. For detection purposes, a small part of the laser output 
beam is sent to reversed biased PIN photodiode 
(THORLABS/DET110). The delivered voltage is send to DAQ card 
(SPECTRUM/ M3I.4111) and processed by a PC to finally obtain 
quantitative vibration measurements.  
One can notice that even if the LOFI setup is usually used to obtain 
images pixel by pixel with a raster scan, only punctual measurements 
have been made in the present work. Also, one can notice that in 
comparison with a conventional heterodyne interferometer, the LOFI 
setup shown here does not require complex alignment. Indeed, the 
LOFI interferometer is always self-aligned because the laser 
simultaneously fulfils the functions of the source (i.e. photons-emitter) 
and the photo-detector (i.e. photons-receptor). 
Experimentally, to generate vibrations (i.e. a time dependant phase 

 a t ), an ultrasound transducer (NDT Systems, IBMF104) having a 

central frequency of 10aF MHz and a band-pass of several MHz 

has been used. The transducer, with a diameter of 13 mm and a focal 
length of 26 mm, is immerged inside a tank filled with water and the 
depth of the transducer is aligned in that way, that its focus lays near to 
the air/water interface in order to generate measurable perturbations 
in the surface of the fluid. 

3. ULTRASOUND LOFI VIBROMETRY 

To demonstrate how different kinds of vibrations (i.e.  a t ) can be 

extracted from the laser modulation [i.e. from Eq. (4)] induced by a 
frequency shifted optical feedback, we have numerically solved the set 
of differential equations given by Eqs. (1) with the following 

parameters for the laser and the detection, which correspond to typical 
experimental conditions when working with a LOFI setup [17,18]: 
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In Eq. (5c), DN
)

and 
SNN

)
are respectively the detection noise and 

the shot noise (both in photon unit) for a detection bandwidth F (i.e. 

a signal acquisition time T ). h  is the Plank constant and c  is the 

speed of light. Eq. (5d) gives the relationship between the shot noise 

and the laser quantum noise  QN 
)

when the dynamical 

amplification by the LOFI gain is taken into account. 
 
To clearly identify the contributions of the laser quantum noise and of 
the detector noise on the vibration measurements, our study is made 
in two steps. Firstly, the effect of the laser quantum noise is analyzed 

alone (   0QN  
)

and   0DN  
)

) and secondly, the detector 

noise is also taken into account (   0QN  
)

and   0DN  
)

).  

A. Numerical study of harmonic vibrations 

Fig. 2 shows a typical power spectrum of the laser dynamic when the 

laser is subjected to a weak optical feedback ( 5.4e RF F   and 

710eR  ) carrying the information of a harmonic vibration of the 

target:  

      
2 ˆ2 sina a a a a
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with a small vibration amplitude ( ˆ 2 50a   , i.e. 

ˆ 100 10a cd nm  ), an acoustic frequency of several megahertz (

2 4.3a a RF F    ) and a  an additional phase shift 

arbitrarily chosen equal to: 2 3a  . By using Eq. (4), this vibration 

leads to a laser output power modulation given by : 
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where  n aJ   is the Bessel function of the first kind and of order n. 

For a small vibration amplitude ( ˆ 2a   ) the sum over the Bessel 

functions reduces to only the following three terms:  
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Fig. 2. Numerical simulations. Normalized power spectrum of the laser 
intensity dynamics. The normalization is made with the shot-noise.  a) 
With the laser quantum noise alone. b) With the laser quantum noise 
and the detection noise. The dashed curve is a fit of the laser quantum 
noise power spectrum. The horizontal dashed-dotted line is the mean 
value of the detection noise power spectrum. Optical feedback: 

710eR  , 5.4e RF F  . Harmonic vibration: ˆ 2 50a   , 

2 3a   4.3a RF F   ( 1.1e a RF F F   ). The laser and 

detection parameters are given in Eqs. (5a-d). 

In Figs. 2(a) and 2(b), the beating signal is therefore principally 

composed of one peak at the carrier frequency ( eF ) and of the two 

vibration sidebands ( e aF F ). In Fig. 2(a), the noise corresponds to 

the dynamically amplified laser quantum noise, which presents a 

resonance at the laser relaxation oscillation frequency RF . Even if the 

feedback level is low (
710eR  ), the modulation contrast of the laser 

output power is relatively high (  2 0.56e eR G   ) and one can 

also observe smaller peaks induced by the non-linear laser dynamics, 

at sum and difference frequencies:  e e aF F F  , e RF F , … .  

 

Eqs. (7-8) shows that the parameters of a harmonic vibration ( ˆ
a  and 

a ) can be simply determined from the Fourier spectrum by doing 

the ratio between the rectified amplitudes of the complex peaks at the 
carrier frequency and at the side-band frequencies: 
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with    outI FT P t    

)
, where “ FT “ stands for Fourier 

Transform.  

 

 

Due to the assumption  0
ˆ 1aJ   , the spectrum of Fig. 2(a) allows 

us to remind what is usually called the signal to noise ratio (SNR) of the 
LOFI modulation [17] : 

 

 

 

 

2
2

2

e e out R e

LOFI

out R eQ e

e out

I R P G
SNR

P G FN

R P

F

 
 

 




)

)

,  (10) 

where in the Fourier domain,  eI 
)

 and  Q eN 
)

 are 

respectively, the height of the peak at the modulation frequency e  

and the amount of laser quantum noise in the detection bandwidth

F around this frequency. In Eq. (10) the multiplicative number 2  

comes from the fact that the LOFI signal is usually obtained by using 

both the positive ( e ) and the negative ( e ) modulation 

frequencies of the Fourier spectrum.  
Since the LOFI signal and the laser quantum noise have the same 
amplification gain, the last part of Eq. (10) shows that the LOFI SNR is 

independent of the frequency shift e . Eq. (10) also shows that the 

LOFI detection is shot-noise limited when the detection is limited by 
the amplified laser quantum noise [17]. Indeed, with Eq. (10), one 

obtains 1LOFISNR  , when only one photon is reinjected inside the 

laser cavity during the detection integration time. In the example of  

Fig. 2(a), the LOFI SNR is roughly equal to : 
32 10LOFISNR    (i.e. 

66 dB ) in agreement with the theoretical prediction given by Eq. (10) 

for an effective feedback reflectivity of 
710eR  . We will show 

farther in this paper how the vibration amplitude noise ˆ
a (or 

equivalently
ˆ

ˆ
2 2

a
ad






  ) and the vibration phase noise a  

can be expressed simply from the LOFI SNR given by Eq. (10). 
 
 In Fig. 2(b), the LOFI signal is the same, but now the noise is composed 
of the sum of the resonant laser quantum noise and of the detection 
noise, which is an additive white noise with a flat spectrum. In the 
example of Fig. 2(b), one can observe that the resonant laser quantum 



noise is higher than the detection noise in a frequency range roughly 

given by: 0.5 2RF F  . Therefore the LOFI detection is shot-noise 

limited only in this range located in the vicinity of the relaxation 
oscillation frequency [17]. 
Also, the comparison of Figs. 2(a) and 2(b) shows that the SNR of the 

lower vibration side-band ( e aF F ), which is located near the 

relaxation frequency is the same with an without the detector noise, 

while the SNR of the upper vibration side-band ( e aF F ), which is far 

away the relaxation frequency, is reduced by the detector noise, which 
is the dominant noise at this frequency. In a real experimental situation 
where the detector noise exists, we therefore used Eq. (9a) [instead of 
Eq. (9b)] to determine the vibration parameters with the lowest noise. 
  

 

Fig. 3. Numerical simulations. Detection of a harmonic vibration with 

an amplitude ˆ 2 50a   (i.e. ˆ 1064 100 10.64ad nm nm  ) 

and a phase shift 2 3 2.094a rad   , for an increasing value of 

the acoustic frequency aF . Optical feedback: 
710eR  ,

1.1e a RF F F   . Left column (a,c) measured signal (

ˆ
ˆ

2 2

a c

ad





 ) and noise  ( ˆ

ad ) of the vibration amplitude. Right 

column (b,d), measured signal ( a ) and noise ( a ) of the vibration 

phase shift. Diamonds: measurements made when only the laser 
quantum noise is taken into account. Circles: measurements made 
with both the detector noise and the laser quantum noise. Horizontal 
dashed line: mean value of the signal. Full lines: theoretical predictions 
of the vibration noises given by Eqs. (13, 14) and (17). The laser and 
detection parameters are given in Eqs. (5a-d). 

Fig. 3 shows the extraction of the vibration amplitude ˆ a  and of the 

vibration phase a  obtained [by using Eq. (9a)] for different values of 

the angular acoustic frequency a , with the imposed constraint that 

the lower side-band is always at the same position near the relaxation 

frequency: 1.1e a R     Under this constraint, the lower side 

band is always shot noise limited and an increase of the acoustic 

frequency ( a ) is always linked with the same increase of the carrier 

frequency ( e ).  

To determine the vibration noises  ˆ ˆ 4a ad      and a , 

the measurements are made ten times for each acoustic frequency and 

the standard deviations are calculated, while an average  is made 

to obtain the vibration parameters ( ˆ
ad  and a ). 

Figs. 3(a) and 3(b) clearly show a good agreement between the values 
extracted from the numerical simulations and the exact values for both 

the vibration amplitude ˆ
ad  and of the vibration phase a . Figs. 3(c) 

and 3(d) show the vibration noises ( ˆ
ad  and a ) obtained with 

and without the detector noise (i.e. when the detector noise is added or 
not to the amplified laser quantum noise). One can observe that the 
vibration noises are frequency independent when only the laser 
quantum noise is taken into account, while it increases when the 
detection noise is added. 
Without the detector noise, (i.e. when only the laser quantum noise is 
taken into account in the numerical simulation), Eq. (9a) allows 
calculating the relative noise of the amplitude of a harmonic vibration 
(subscript h) in the quantum shot-noise limit (subscript Q): 

 

 

 

 

 

 

2 2

, ,
ˆ

ˆ

Q e a Q ea h Q

a e a e

Q e a

e a

N N

I I

N

I

     
    
      
   

 


 

) )

) )

)

)

, (11) 

In the case of a small vibration amplitude, Fig.2(a) shows that the 
relative noise at the carrier frequency is at least 2 orders of magnitude 
lower than the relative noise of the lower side-band frequency. This 
observation justifies the approximation that is made in the last part of 
Eq. (11). 
Remembering that the noise amplitude is proportional to the laser 
dynamic gain [see Eq. (5d)] one obtains: 

       Q e a Q e e a eN N G G      
) )

,  (12) 

and finally, by using Eqs. (9-12): 

 

 
, ,

2 2ˆ 2 2 2
Q e

a h Q

LOFI e oute

N F

SNR R PI

 
   



)

) . (13) 

Also, as already explained in the appendix of [23], the measured 
amplitude and phase noises of a modulation with an additive white 
noise are linked through the following equations: 

 
, ,

, ,

ˆ

ˆ
a h Q

a h Q

a




 


.   (14) 

In agreement with the theoretical prediction given by Eq. (13) and 
(14), the numerical simulations shown in Figs. 3(c) and 3(d) show that 
the noises on the vibration amplitude and phase are frequency 
independent when the LOFI detection is limited by the amplified laser 



quantum noise. More precisely, with: 
32 10LOFISNR   , 

ˆ 2 50a    (i.e. ˆ 100 10a cd nm  ) and 

2 3 2.094a rad   , one obtains: 3

, ,
ˆ 1.4 10a h Q rad    

(i.e. 
, ,

ˆ 0.12a h Qd nm  ) and 
2

, , 1.1 10a h Q rad    . 

 
When the detector noise (which is frequency independent) is added, 
Fig 2(b) shows that the power spectrum of the detection noise is flat. If 

DN
)

 is the amount of detector noise in the detection bandwidth F

[see Eq. (5c)], one can see that the noise on the vibration sideband is 

always given by the laser quantum noise (  Q e a DN N  
) )

), 

while the noise at the carrier frequency is now dominated by the 

detector noise (  D Q eN N 
) )

). Under these typical conditions, 

Eq. (11) becomes:  

 

   

2 2

,

2 2

, , , ,

ˆ

ˆ

ˆ ˆ

ˆ ˆ

Q e a Da h

a e a e

a h Q a h D

a a

N N

I I

    
    
      
   

    
    

     

) )

) )

 (15) 

Eqs. (11 and 15) allows to define the contribution of the detector noise 
(subscript D) in the measured amplitude noise of a harmonic vibration 
(subscript h): 

 
   

, ,

2ˆ ˆ ˆD D

a h D a a

LOFIe Q e

N N

SNRI N
    

 

) )

) ) . (16) 

Finally, by combining Eqs. (13a) and (16), one obtains the noise on the 
vibration components:  

 

 

2 2

, , , , ,

1

2 2

ˆ ˆ ˆ

ˆ2 2
1

2

a h a h Q a h D

D
a

LOFI Q e

N

SNR N

    

  
   

  
   
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  (17a) 

 ,

,

ˆ

ˆ
a h

a h

a




 


    (17b) 

When the LOFI detection is limited by the detector noise, Figs. 3(c) and 
3(d) show in agreement with the theoretical prediction given by Eqs. 
(17a-b) an increase of the noise on the vibration amplitude and phase 
when the acoustic frequency increases (i.e. when the carrier frequency 

increases through the constraint: 1.1e a R     ). This increase 

of the noise comes from the fact that the peak at the carrier frequency 
drowns more and more in the detector noise spectrum as the carrier 
frequency increases.  
 Also, Eq. (17a) allows to determine the maximum possible value of the 

acoustic frequency ,maxa  that can be detected by using a LOFI setup, 

for a given detector noise level. Indeed, far away from the resonance (

,maxe R R    ), the condition ,
ˆ ˆ

a h a   reduces to 

, ,
ˆ ˆ

a h D a   and therefore to:  ,max 2
D

Q e

LOFI

N
N

SNR
 

)
)

 [see 

Eq. (16)].  
 
By using the following approximation for the quantum noise: 

 ,max

,max

1
2

2

c

Q e out

e

N P F
F




   , one finally obtains: 

 ,max

,max
2 2

oute c

e LOFI

D

P F
F SNR

N



 


   )   (18a) 

 ,max ,max 1.1a e RF F F       (18b) 

With the numerical conditions given in Eqs. (5a-d) and corresponding 
to the results shown in Figs. 2 and 3, one obtains: 

,max ,max 2 2000a e RF F GHz F    , which is a quite high 

ultrasound frequency, despite the fact that the detection is made with a 
conventional detection, with a usual white noise level (thermal noise 
and quantization noise). One can also notice that the high value of 

,maxeF  (and therefore of ,maxaF ) principally comes from the use of a 

microchip laser with a high value of the laser cavity damping rate (
9 15 10c s   ). Let us recall that the high sensitivity of the LOFI 

setup to small reflectivities ( 1eR  ) also comes from this high value 

of c  [16]. To summarize, Eq. (17a) gives: 

, , , , ,
ˆ ˆ ˆ2a h Q a h a h Q      if  

, ,
ˆ ˆ10a a h Q    and 

,max0 10a aHz F F  . With the numerical conditions given in Eqs. 

(5a-d) one obtains: 
,

ˆ0.12 0.17
9000 6000

a hnm d nm
 

      

for 
,

ˆ 1.2a hd nm  and 0 200aHz F MHz  , which corresponds  

to the  following SNR range 
, ,

ˆ ˆ10 2 10a h a hd d    for the 

vibration amplitude. So even at high frequency the noise of the 
vibration amplitude keeps near the quantum limit given by Eq. (13). 
Also Eqs. (13) and (10) shows that the sensitivity of the LOFI 

vibrometer can be increased (i.e. 
,

ˆ
a hd decreases and ,maxaF

increases) if the laser output power and/or the  effective reflectivity 
are increased. Average measurements and/or detection bandwidth 

reduction can also decrease the value of 
,

ˆ
a hd . In conclusion, the LOFI 

setup seems to be well adapted to measure, at high frequencies, the 
small amplitudes of harmonic vibrations of a target from which the 
back-reflected (or back-scattered) electric field is very weak

 R 1e  .  

B. Generic signal processing for vibrometry 

In a more general situation where the vibration is not purely harmonic, 

but still in the specific case of small vibration amplitude:  a cd t 

, the time evolution of the phase induced by the vibration of the target (

 a t ) can be retrieved with the signal processing given by the 

following equation [12]: 



 
   

 
 12arg exp

out

a e

R

BPF FT P t
t FT i t

G



             
      

 (19a) 

 

 

1 ;

0

e e eBPF for

BPF otherwise

    

 
 (19b) 

Firstly, the Fourier Transform ( FT ) of the time evolution of the laser 
output power is calculated. Secondly, this spectrum is filtered using a 

band-pass filter  BPF   that only keeps the lower sideband 

(corresponding to the negative vibration frequencies) of the vibration 
spectrum located around the carrier frequency where the filter 

bandwidth e  is adapted to the frequency range of the vibration 

spectrum. A typical value is e a   , where: a is the half 

width of the full vibration spectrum composed of both the negative and 
positive frequencies. As already explained, this specific filtering allows 
to keep the side of the vibration spectrum that is closest to the 
relaxation frequency and therefore with the lower relative noise. 
Thanks to this filtering, the noise of the LOFI vibrometer is minimized. 
Thirdly, the distortion of the vibration spectrum induced by the laser 

dynamics (i.e. the amplification gain  RG  ) is rectified. Back to the 

time domain, the signal is then demodulated (at the carrier frequency 

e ) and finally, the time evolution of the target displacement is 

extracted by taking two times the argument of the complex signal. One 

can notice that the multiplicative factor 2 , in the beginning of Eq. 
(19a), allows to compensate for the loss of vibration energy induced by 
the band-pass filter, which only keeps the lower half of the vibration 
spectrum. This factor 2 corresponds to the one in Eqs. (9a-b) that 
comes from the approximation: 

        1 0 1 02 2a a a a aJ J J J         . 

Coming back temporarily to the specific case of a purely harmonic 
vibration and by using a band-pass filter with a bandwidth given by: 

e a   , one obtains:  

   
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

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 

(20a) 

and therefore:  
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  

1 / exp
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And finally, for ˆ 2a   , we can determine the time evolution of 

the target displacement by keeping the argument of the complex 
function given by Eq. (20b):  

   

 

 

 

1

2arg

exp

ˆ sin

out

R

e

a a a

BPF FT P t
FT

G

i t

t 



          
      
    

     

 (20c) 

 
In a more general situation where the vibration is not purely harmonic, 

its Fourier transform:      ˆ expa at j t d





        is simply 

a linear summation (over the frequency spectrum) of harmonic 
vibrations. Therefore, the signal processing given by Eqs. (19a-b) is 
generic and can be applied whatever the time evolution of the target 
displacement (harmonic or not).  

C. Numerical study of transient vibration. 

In order to verify that our signal processing can also be applied to the 
detection of non-harmonic vibrations with broad spectra, we have 
numerically simulated a laser with an optical reinjection coming from a 
target with a transient vibration (subscript ): 

   ,
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1

a

a
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




 

 
  

 

  (21) 

Fig. 4 shows different RF power spectra of the laser intensity dynamics 

for a frequency shift of 6.5e RF F  ,a feedback reflectivity of the 

vibrating target of 
710eR   and for a transient vibration with a 

maximum amplitude ,
ˆ 2 10a     ( ˆ 20 50a cd nm  ), a half 

time width at half maximum 0.05a RF   (i.e. a broad spectral 

bandwidth
1

3
2

a R

a

F F
 

   


) and an arbitrary time delay 

52d a   . Without noise, Fig. 4(a) shows that the RF power 

spectrum is principally composed of a line at the modulation frequency 

( eF ). At the foot of this line, one can observe the broad vibration 

spectrum (with a half width aF ) of the transient vibration:  
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 (22) 

On can also observe a broad line at the relaxation frequency ( RF  ) not 

due to the noise, but due to the residue of the transient dynamic of the 

laser, and two small lines at e RF F  induced by the nonlinear laser 

dynamics.  
 



 

Fig. 4. Numerical simulations. Normalized power spectrum of the laser 
intensity dynamics. The normalization is made with the quantum shot-
noise. a) Without noise, the broad line centered at the relaxation 

frequency ( RF  ) is a residue of the transient dynamic of the laser. b) 

With laser quantum noise and detector noise. The dashed curve is the 
theoretical laser quantum noise power spectrum. The horizontal 
dashed-dotted line is the mean value of the detection noise power 

spectrum. Optical feedback: 
710eR  , 6.5e RF F  . Transient 

vibration: ˆ 2 10a   (i.e. ˆ 20 53ad nm  ), a full time width 

at half maximum 2 0.1 100a RF ns    (i.e. a broad spectral 

bandwidth
1

3 3
2

a R

a

F F MHz
 

    


). The laser and 

detection parameters are given in Eqs. (5a-d).  

When the detector noise and the laser quantum noise are added [Fig 
4(b)], the vibration spectrum is completely drowned under the noise 
spectrum.  
Altough this situation seems unfavorable for the vibration detection, 
Fig. 5 shows that an accurate short transient vibration can be extracted 
from the RF power spectrum of the laser intensity dynamics by 
applying the signal processing given by Eqs. (19a-b). In the time 

domain, the vibration pulse is above the noise level (
, ,

ˆ ˆ
a a    ), 

due to the coherent addition (during the inverse Fourier transform 
operation) of the spectral components of the vibration signal, while for 
the noise, the different spectral components add incoherently. 
Also, Fig. 5 allows to compare the noise levels on the transient 

vibration (subscript ) amplitude: ,
ˆ

a  , obtained by using different 

band-pass filters in the signal processing given by Eqs. (19a-b). 

 

Fig. 5. Numerical simulations. Detection of a transient vibration with a 

maximum amplitude: 
,

ˆ 20 53ad nm    (i.e. ,
ˆ 2 10a    , 

with a full time width at half maximum: 2 0.1 100a RF ns    

and an arbitrary time delay: 2.6 2.6d RF µs   ) for two kinds of 

signal processing. Solid line: exact vibration motion. Circles: vibration 
obtained after the signal processing. The dashed horizontal line shows 
the noise level corresponding to 3 times the standard deviation (i.e. 
99.7% probability) of the phase fluctuations. a) Full band-pass filtering. 
b) Partial band-pass filtering. In this case, the full vibration spectrum is 
reconstituted by the concatenation of 4 partial spectra obtained for 4 
different frequency shifts. All the measurements are made with the 

same feedback reflectivity 
710eR  . The laser and detection 

parameters are given in Eqs. (5a-d).   

More precisely, to obtain the results shown in Fig. 5(a), the bandwidth 
of the filter is given by: 

,1 max min 5.4e RF F F F      with 

max 6.5e RF F F    and min 1.1 RF F  . This RF filter with a 

large bandwidth ( ,1 2e aF F   ) allows to keep 97 % of the energy 

of the lower sideband of the vibration spectrum. As we can see, this 
adapted filter allows to restore the good shape of the transient 

vibration. One can notice that if ,1eF  is larger, the noise increases 

without any significant improvement of the reconstructed pulse shape 

while if ,1eF  is smaller, the noise decreases, but the strongest 

truncation of vibration spectrum induces a deterioration of both the 
amplitude and the duration of the reconstructed transient vibration. 
 

In the simulations of Fig. 5, the numerical noise level ,
ˆ

a   is 

obtained by calculating the standard deviation of the phase 
fluctuations measured outside the time domain of the transient 
vibration. 



In Fig. (5a), the measured phase noise is equal to: 

, ,1
ˆ 0.082a rad   (i.e.

, ,1
ˆ 6.7ad nm  ) in agreement with

2 2

, ,1 , , , ,
ˆ ˆ ˆ 0.086a a Q a D rad        where, for a transient 

vibration, the phase noise induced by the laser quantum noise and the 
detection noise are respectively given by:  

 

2

, ,

, ,

ˆ
ˆ

2 2
0.038

e

e e

F

a h Q

a Q

F F

e

LOFI

dF
F

F
rad

SNR F






 




 




  (23a) 

 

2

, ,

, ,

,max

ˆ
ˆ

2 0.077

e

e e

F

a h D

a D

F F

ee

a

e

dF
F

FF
rad

F F






 




  




.  (23b) 

 
The result shown in Fig. 5(b) has been obtained with bandpass filter 
narrower than the previous one: 

,4 max min ,11.35 4e R eF F F F F      , but with the same value 

of min 1.1 RF F  , and  therefore a smaller value of 

max 2.45 RF F  With this filter , to restore the good shape of the 

transient vibration, the full vibration spectrum has been reconstituted 
by the concatenation of 4 partial spectra obtained with the same band-
pass filtering near the relaxation frequency, but with 4 different values 

of the frequency shift:  , 2.45 1 1.35e n RF n F        with 

 1,2,3,4n .  

 
One can notice that the width of the filter and its central position 
haven’t be chosen arbitrarily, but have been optimized in order to 
minimize the phase noise (i.e. to minimize the effect of the detection 
noise) of the restored vibration with the minimum number of partial 
spectra. For the laser and detection parameters given by Eqs; (5a-d) 
this number is equal to: 4.  Indeed, by using this optimized protocol, 
one can see in Fig. 5(b), that we are able to retrieve the good shape for 

the transient vibration with a noise (
, ,4 , ,

ˆ ˆ0.040a a Qrad    

) at the laser quantum noise level [see Eq. 23(a)].   
 
One can also notice, the vibration shape could also have been restored 

by the concatenation of a larger number ( 4)n  of narrower partial 

spectra, but, when the number of partial spectra is increased, the 
concatenation method becomes less and interesting by comparison 
with an averaging of n measurements obtain with the initial filter (with 
the full width 

,1 5.4e RF F   ). 

 
The conclusion of this section is that whatever the width of the 
vibration spectrum (i.e. whatever the duration of the transient 
vibration), its seems that we are always able to restore the shape of a 
transient vibration at the shot noise level by acquiring the vibration 
spectrum part by part, in the vicinity of the laser relaxation frequency. 
This protocol seems to be particularly interesting in the case of 
detection noise that can’t be reduced by averaged measurements. 

D. Experimental study of transient-harmonic vibrations 

With a LOFI setup (Fig. 1), we have experimentally measured the 
transient-harmonic vibrations of the air/water interface of our tank. 
The laser is set to an output power of 10 mW  with a relaxation 

frequency of 1.3RF MHz  and the carrier frequency (controlled by 

two AODs) is tuned to 11.6eF MHz  (i.e. 9 RF  ). 

Experimentally, the observed LOFI SNR is equal to 1298LOFISNR  , 

corresponding to a weak effective feedback reflectivity of 
84 10eR    (controlled by  playing with the efficiency of the  two 

AODs ).  
The transient-harmonic vibration of the air/water interface is 
generated by an immersion ultrasound transducer (NDT Systems, 

IBMF104, 10aF MHz ). The transducer, with a diameter of 13 mm 

and a focal length of 26 mm, is immerged inside a tank filled with water 
and the depth ( 3cm ) of the transducer is aligned in that way, that 

its focus lays near to the air/water interface in order to generate 
significant perturbations in the surface of the fluid. 
 
The transducer is used in a “burst mode”, where the applied voltage is 
composed of 100 harmonic oscillations at a frequency of 

10aF MHz . Experimentally, the vibration of duration 

10a µs   (i.e. 100aF kHz  )) is triggered after a  time delay 

of 310 µs . The total recording time is 1.31T ms  (i.e. 

1 763F T Hz   ) with a sampling rate of 
81 10 /samples s

(DAQ card: SPECTRUM/ M3I.4111). 
 

The applied voltage  on the transducer has a rms  amplitude of 33V , 

obtained from the association of a function generator (Agilent 33250A) 

with an output rms amplitude of 100mV and a RF amplifier 

(E&I/325LA) with a power gain of 50dB . Under this condition, the 

delivered power is equal to the nominal power of the RF amplifier (i.e. 

25W ) and due to the duty cycle (10 1.31µs ms ) the mean power 

applied to the PZT is relatively high : 180mW  (i.e. near the damage 

threshold). 
 
Under these conditions, the overpressure generated at the acoustic 
focus point (i.e. near the air/water interface) is high and equals to: 

,exp
ˆ 700ap kPa; . Experimentally, this overpressure has been 

measured by using a hydrophone (DAPCO Industries), roughly 

calibrated ( 5 @2V MPa MHz ). 

Theoretically, this overpressure allows to generate a transient-
harmonic displacement of the water surface with an amplitude of: 

,exp

,

ˆ2ˆ 15
2

a

a th

eau a

p
d nm

Z F
  , where 

6 11.5 10eauZ Pasm  is the 

acoustic impedance of water [24]. 
 
 
Fig. 6 shows that quantitative vibration measurements can be 
experimentally extracted from the laser dynamics with a LOFI setup. 
Indeed, the averaged value of measured vibration amplitude is equal 

to: ,exp
ˆ 24 5ad nm nm   (Fig 5a) or ,exp

ˆ 21 2ad nm nm  (Fig 

5b), in relatively good agreement with our “linear” theoretical 



prediction ,
ˆ 15a thd nm  and this, even if the generated acoustic 

overpressure pressure is very important. 
 
The time delay ( 20 µs ) between the time gates when the ultrasonic 

transducer is triggered and when the ultrasonic vibration is detected is 
due to the transit time of the acoustic wave in water with a velocity: 

1490 m s (room temperature) and a propagating distance of 

3 cm . It should be noted that each presented time trace is an 

average of 10 acquisitions.  
The measurements shown on Figs. 6(a and b), have been obtained 
with a selective band-pass filter:  
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BPF F for F F F F F
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 

     



 (24) 

where 8e aF F    for the result in Fig. 6(a) and 1e aF F    

for Fig. 6(b). 
When the width of the band-pass filter decreases, one can also observe 
how the truncation of the vibration spectrum deteriorates the 
rectangular shape of the vibration envelope. One can also observe how 
the experimental (subscript exp) phase noise decreases: 

,exp
ˆ 0.059a rad  (

,exp
ˆ 5ad nm  ) and 

,exp
ˆ 0.021a rad   

( ,exp 1.78ad nm  ) proportionally to 
eF .  

According to us, the last case [Fig. 6(b)] is a good compromise. Indeed, 
although the shape of the reconstructed vibration envelope is not good 
(not a rectangular temporal gate), this filtering allows to roughly 
determine the maximum of the vibration amplitude, the duration of 
the time gate (by measuring the full width at half maximum of the 
reconstructed vibration) and to minimize the phase noise. Regarding 
this last point, the measured value is in perfect agreement with the 
theoretical prediction given by Eq. (25) for a ten times averaged 
measurement: 
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This simple experiment example confirms that the LOFI setup is 

adapted to detect at ultrasound frequency ( 10aF MHz ) the small 

amplitudes (
,exp

ˆ2 4ad nm  ) of short vibrations ( 10a µs  ) 

of a target with a weak feedback reflectivity ( 
84 10eR   ).  

4. CONCLUSION AND PERSPECTIVES 
In this paper, we have demonstrated the possibility to accurately 
measure very small vibration amplitudes in the ultrasound domain by 
using a LOFI setup with a low power laser and a conventional 
photodiode and that the smallest vibration amplitude which can be 
detected is shot noise limited and is given by:  
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where is N  the number of averaged measurements. 

 

 

Fig.. 6. Experimental results. Detection on the water surface of a 
transient-harmonic vibration generated by an ultrasonic transducer 

located 3 cm  below the air/water interface. Oscillation frequency: 

10aF MHz , vibration duration: 10a µs  . The measurement 

is made for 11.6eF MHz  and the signals are extracted from 

different bandwidth filters: a) 8 0.8e aF MHz    ; vibration 

amplitude: 24 5ad nm nm  ,  b) 1 0.1e aF MHz    ; 

vibration amplitude: 21 2ad nm nm  . Full line: the vibrations 

extracted by the signal processing; Dashed curve: the time gate when 
the ultrasonic transducer is triggered; Dotted curves: the time gate 
when the ultrasonic vibrations need to appear due to the transit time 
of sound in water.  

More precisely, we have shown that for a harmonic vibration with an 
amplitude in the nanometer range, the amplitude of the laser intensity 
modulation at the carrier frequency is several order of magnitude 
higher than the amplitude of the vibration sidebands induced by the 
acoustic frequency. Nevertheless, the lower vibration sideband, which 
has a small amplitude, can be detected if it is located near the laser 
relaxation frequency, where the LOFI detection is shot-noise limited. 
By using this method, we have theoretically demonstrated that an 
acoustic frequency of the order of several GHz can be detected with a 
LOFI setup, even if a conventional detection, with a usual noise level is 
used to detect the laser intensity modulation. Let us recall that the high 
sensitivity of the LOFI setup for the detection of high acoustic 
frequencies comes from the use of a microchip laser with a small cavity 
length and therefore with a high value of the laser cavity damping rate.  
 
For a transient vibration, we have also shown that it is possible to 
reconstruct the temporal shape of the vibration by acquiring the 
vibration spectrum part by part, through a band-pass filter that selects 
the frequencies in the vicinity of the laser relaxation frequency. This 
protocol allows to realize phase measurements with very low noise 



(i.e. at the laser quantum noise limit), even if the detection has a high 
noise level. From our numerical study, we can conclude that the LOFI 
setup seems to be well adapted to detect high vibration frequencies (or 
broad vibration spectra), up to the ultra-high frequency domain, with 
subwavelength amplitudes on surfaces with a very weak feedback 
reflectivity. 
 
Finally, we have experimentally detected (at the air/water interface) 
transient-harmonic vibrations with nanometer amplitude, generated 
by an ultrasonic transducer with a central acoustic frequency of 10 
MHz, immerged 3 cm below the water surface. These conditions 
correspond to the detection at the surface of a biological tissue of an 
ultrasound vibration generated by a photoacoustic effect in an 
absorbing blood vessel with a characteristic diameter of 50-100 µm 
[25-27]. The use of a LOFI setup for the optical detection of 
photoacoustic signals is currently in progress. 
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