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be described by two main parameters: the line width roughness (LWR), which is the variation of the critical dimension 

(CD) of a line along its length and the line edge roughness (LER), which is the variation of the edge roughness amplitude 

along the line. For the sub-20 nm technological nodes, LWR and LER must be controlled at less than 2 nm while best 

optical lithographies allow to achieve patterns of 4-5nm LWR. Understanding and minimizing line roughness at this 

nanometer scale thus requires an accurate and insightful characterization of the sidewall roughness.

In this work, we have developed a 20 nm half-pitch SADP process flow using 40 nm half-pitch resist patterns as the core

materials, and to characterize finely the LWR/LER evolution at each technological steps. A power spectral density (PSD)

fitting method is used to provide a spectral analysis of the roughness and the determination of unbiased roughness

values. Motivation for this study is that the SADP concept leads to 2 asymmetric populations of lines L1 and L2  and 4

populations of edges E1, E2, E3 and E4 (Figure 1), which could have different roughness behavior and impact the final

lines. Indeed, two of them, E2 and E3 originate from the line edge of the core material, while E1 and E4 originate from

spacer deposition.

2. EXPERIMENTAL SET-UP

This SADP process using a resist-core approach consists in depositing a spacer film directly on resist patterns printed by 

lithography. This integration presents several benefits compared to the conventional hard mask approach, since it uses a

simplified stack and requires less technological steps, leading to an improved cost of ownership. The next paragraphs 

describe the tools and characterization techniques involved in this process. 

2.1 Lithography 

E-beam lithography is used to define resist patterns with a pitch of 80 nm on a stack made of 30 nm-thick Silicium 

Antireflective Coating (SiARC), 70 nm-thick Spin On Carbon layer (SOC) and 300 mm diameter Si wafer. The e-beam 

lithography tool (SB3054 from VISTEC) is a single variable shaped electron beam exposure tool using a LaB6 source 

and an acceleration voltage of 50kV. With a dose of 8.6 µC/cm2, patterns with critical dimensions of about 40 nm, and 

height of 50 nm are printed in the positive chemically amplified resist, CAP64 from TOK.

2.2 Deposition tool  

SiO2 film are deposited on the photoresist patterns using Plasma Enhanced Atomic Layer Deposition (PEALD) 

technique in an EmerALD tool from ASM. Key advantages of this technique are highly conformal and uniform films. A 

low deposition temperature of 50°C is used to prevent resist degradation. The deposition process alternates cycles of

injection of bis(diethylamino) silane BDEAS (SAM 24) as silicon precursor followed by O2 plasma. The growth per 

cycle (GPC) is ~0.135 nm/cycle at 50 °C. Thickness uniformity is less than 0.4 % in 1 sigma (49 points measured by 

ellipsometry). The thickness deposited on the resist patterns is tuned by the deposition process time. 

2.3 Plasma etching tool 

The plasma etching processes are developed in an inductively coupled plasma (ICP) source, DPS from Applied

Materials. The DPS is a high density plasma source where both the source antenna and the bottom electrode are 

powered. The reactor chamber walls are coated with Al2O3. The plasma is excited inductively via two RF coils (13.56

MHz) to improve the ion flux uniformity. The chuck temperature is kept at 55°C, the chamber walls are kept at 60°C and

the ceramic dome is maintained at 65°C. To ensure a good reproducibility, the chamber walls are cleaned in SF6/O2 

plasma before each experiment.

2.4 Process characterization 

2.4.1 Pattern profiles

Patterns profiles are characterized at each technological step involved in the SADP process flow using SEM cross

sections observations performed in a HITACHI S5000. 

2.4.2 CD control and LWR/LER 

CD-SEM technique is used to characterize the critical dimension (CD), and the sidewalls roughness (LWR and LER) of 

the lines after each technological step involved in the SADP integration. Top view SEM images are captured with a 

Hitachi CG4000 using a rectangular scanning mode and a 1024*1024 pixel definition. This mode allows different

magnifications along the x and y axis, 300000 and 49000 respectively in our case, which is very convenient to get a high 
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resolution along the x axis while analyzing a significant section of the line along the y axis. The pixel size is 2.69 nm and 

0.44 nm along the y and x axis respectively. The accelerating voltage is 300 V if resist patterns are under observation and

500 V otherwise. 

SEM images are then analyzed off-line using Terminal PC software from Hitachi. In agreement with another study [13],

our choice is to average 25 pixels across the resist line (smoothing parameter), 7 pixels otherwise. Three other

parameters are available on the Terminal PC software and have an impact on sidewall roughness values: the inspect area,

IA (or the measurement line length), the measurement points, N and the sum line, S (or averaging pixel along the y axis). 

The values chosen are IA=800 pixels corresponding to a line length of L=2152 nm, S=2 and N=400.

It is known that metrology tools introduce some noise and cause errors in roughness measurement. The edge detection of 

CD-SEM images include some noise, which is white and uncorrelated to the “real” roughness [12]-[15]. It can been

described as follow: σ0	2 	=		σreal2 	+	σnoise2 	 (1) 

where, σ0² is the variance of the edge positions as measured by the metrology tool, σreal² is the variance of the “real” edge

positions and σnoise² is the variance of the random noise. To extract the noise level, a method has been recently developed

[16], based on the PSD fitting method proposed by Hiraiwa and al. [13-14]. It consists in acquiring a large set of CD-

SEM images of lines (N*) in order to calculate a power spectral density (PSD) of the LWR and LER. The final PSD is

the average of the N* calculated PSD and is then adjusted with an analytical function. In this study, we choose N*>200 

to have better statistics and smooth the PSD. The analytical function used to fit the experimental data is composed of

three components (Equation (2)). The two first components described the self-affine fractal behavior of the roughness to 

take into account its low frequency distribution and the third one represents the white noise level of the equipment.

= ∆2 ∆ − | | + ∆2 ∆ − | | + ∆2
(2) 

For each two first components, the roughness is described by three parameters: 

-the roughness amplitude, σreal1 and σreal2 

-the correlation length, ξ1 and ξ2, that represents the distance beyond which edge points can be considered 

uncorrelated

-the roughness exponent, α1.and α2, which varies between 0 and 1 and gives the relative contribution of high 

frequency fluctuations to LER or LWR. Large values of α indicate less high frequency fluctuations. 

In equation (2), Δy is the measurement interval, i.e. L/N=2152/400 in our case.

Finally, the real LER (or LWR) is given by equation (3): 

= 3 ∗ = 	3 ∗ 	 + 	  (3) 

More details on the proposed PSD fitting method and its efficiency to extract the measurement noise (3σnoise), and the

unbiased roughness parameters (3σreal, ξ and α ) can be found in reference [16].

3. EXPERIMENTAL RESULTS

3.1 SADP process flow 

Figure 2 describes all the technological steps involved in our SADP process flow with the corresponding top view CD-

SEM and cross-sectional SEM images. Figure 3 summarizes the CDs of the lines and its CD variation extracted from the

CD-SEM images at each steps.  
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- CDspacer, the spacer thickness deposited on the core sidewalls. It defines CDs of the final lines L1 and L2. 

- CDcore, the CD of the core patterns that will define the space S1, In our case, the core is made of resist as

referred on Figure 1 and Figure 2. 

As the pitch P is constant and equal to P= L1+L2+S1+S2, then the space S2 is naturally adjusted if CDResist and CDspacer 

are well controlled.

While CDspacer is easily tuned by the deposition process duration, CDResist can be adjusted by introducing a plasma

etching step, called resist trimming before the deposition step. This plasma step was introduced in the early 2000’s to

overcome optical lithography resolution limit and to reach the appropriate critical dimension required at each technology

node. This particular plasma step typically uses O2-based plasma chemistry in order to achieve an isotropic etching of the 

resist pattern and induce a controlled lateral erosion of its critical dimension [17-19]. If trimming processes can decrease

the resist dimensions, they cannot increase the pattern density. The reduction in resist linewidth is also accompanied by a 

corresponding increase in space between lines, thereby preserving the original pitch defined by the lithography. In this 

study, a HBr/O2 plasma process with no bias power applied to the substrate is developed and leads to -0.7 nm/s lateral

etch rate. By adjusting properly the resist trimming step, the resist CD can be finely tuned. 

Preliminary studies have shown that to get regular 20/20 nm line/space features in silicon, CDResist must be about 30 nm 

prior deposition and the thickness deposited on the resist core sidewalls, CDspacer should be of 20 nm. Starting from resist 

CDs of about 40 nm after lithography, the HBr/O2 plasma etching time is adjusted to target a resist CD of 30 nm. After 

the deposition step, SEM cross-sections observations of Figure 2c confirm a 20 nm-thick conformal SiO2 spacer material

deposited on the resist pattern. The resist patterns profile are preserved during the deposition step, confirming that this

low temperature deposition step is indeed compatible with the low thermal resist budget. However, SEM cross-sections 

of Figure 2c and CD-SEM measurements of Figure 3a show that there is a 9.4 nm resist CD loss during the deposition

step. This is not surprising since the PEALD process involves one cycle of oxygen plasma that is known to lead to resist 

trimming. This lateral erosion occurs during the first cycles of the PEALD process, when the SiO2 layer is not thick

enough to prevent from the diffusion of oxygen radicals down to the resist. After a CF4 plasma process dedicated to the

etching of the SiO2 spacer material followed by an O2 plasma step aimed to remove the resist core materials, two 

populations of line are generated with similar CD of about 24.5 nm. The patterns CD are decreased down to 22.4 and 

21.1 nm during Si ARC etching in CHF3/CF4/Ar plasma and SOC etching in HBr/O2 respectively. Finally, after silicon 

etching in SF6/CHF3/Ar plasma and SOC hardmask removal in O2 plasma, regular line equal space 20/20nm silicon 

patterns are obtained. Figure 3b shows the critical dimension variation measured over 200 line segments in the same dye

after each technological steps involved in the SADP process. It is observed that the CDvariation is very high after the e-

beam lithography step, of about 3.5nm and that this significant value is transferred during both the resist trimming and

deposition steps. However, once the two population of lines are generated after the spacer etching step, the CDvariation of

both lines are very low, of 0.7 nm, reaching thus the ITRS specifications in terms of CD control.

This first section demonstrates the potential of a resist-core SADP process to achieve line equal space 20/20 nm silicon

features with a CDvariation below 1 nm, starting with an 80 nm pitch lithography. 

3.2 LWR/LER evolution 

Using the protocol described section 2.4.2, real roughness values for LWR and LER have been determined and spectral 

analyses have been performed after each technological step of the SADP process as shown in Figure 4 and 5 

respectively. Concerning the LER, LERleft and LERright are measured for each population of lines present after each

technological step. Thus, after the lithography and resist trimming step, LER2 and LER3 correspond to LERleft and

LERright of the resist patterns, respectively. After the deposition step, LER1 and LER4 correspond to the LERleft and

LERright of the spacer deposition. After spacer etching and core removal, two asymmetric populations of lines L1 and L2 

are generated with LERleft and LERright originating from different technological step. LER1 and LER2 are the LERleft and

LERright of L1, while LER3 and LER4 are the LERleft and LERright of L2.

After the lithography step, the resist LWR and LER are quite significant of 6.3 nm and 4.4 nm, respectively. Similar

trend is observed for both LWR and LER after the resist trimming and the deposition steps. The LWR and LER are

decreased of about 20% after the resist trimming step, resulting in a 3.8 nm LWR and 3.3 nm LER. Figure 4(b) and 5(b) 

show that the roughness reduction occurs in the high-frequency roughness range. This trend has already been observed 

for 193 nm photoresist patterns exposed to HBr and HBr/O2 plasma treatment [20-22]. It can be explained by the

simultaneous actions of the VUV plasma emission and the chemical etching of the atomic oxygen present in O2 based
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