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Abstract—This paper describes the Secure Time Synchroniza-
tion (STS) protocol that enables client and server mutual authen-
tication, supports the property of non-repudiation, and offloads
the negotiation and authorization phases to an Authorization
Server (AS). We also propose a solution for bootstrapping time
synchronization to solve the problem of certificate validation that
depends on time. We analyze the main security properties of STS
with the ProVerif tool, implement STS by extending OpenNTPD,
and compare its precision to unauthenticated NTP.

I. INTRODUCTION

The security of NTP is an important issue raised lately after
the discovery of several implementation flaws [1], [2], [3].
Several proposals tried to enhance NTP security: NTPv3 with
authentication based on symmetric keys and NTPv4 Autokey
[4] with authentication based on public key cryptography and
digital signatures. The IETF NTP Working Group develops
NTS (Network Time Security) [5].

The recent ANTP protocol [6], [7], [8] supports authentica-
tion of an NTP server based on symmetric key cryptography
and delayed authentication codes computed on NTP packets
to avoid the impact on synchronization precision. The design
of ANTP aimed at making the server stateless: clients obtain
the state encrypted with a long-term symmetric key and they
send the state back to the server in a subsequent NTP request.
The server retrieves the symmetric session key for signing
NTP packets from the encrypted state. Server authentication
relies on the server certificate that clients need to verify during
the negotiation phase, which requires already synchronized
time. Moreover, ANTP does not authenticate NTP clients nor
guarantees non-repudiation (only digital signatures based on
public key cryptography can guarantee non-repudiation), the
property required in some NTP deployments.

In this paper, we propose to go further in the support of NTP
authentication with the Secure Time Synchronization (STS)
protocol that enables client and server mutual authentication,
supports the property of non-repudiation, and offloads the
negotiation and authorization phases to a third party—an
Authorization Server that relieves the Time Server of the setup
and negotiation phases. We assume that the Authorization
Server as well as the Time Server benefit from a precise time
source so they do not require additional time synchronization.
The Authorization Server checks for authorizations and pro-
vides the required cryptographic material to Time Clients and
Time Servers over DTLS (Datagram Transport Layer Security)
sessions [9]. During the time synchronization phase between

a Time Client and a Time Server, time critical operations rely
on symmetric cryptography and if non-repudiation property is
required, STS supports fast digital signatures based on recent
high-performance schemes.

We also propose a solution for bootstrapping time synchro-
nization to solve the problem of certificate validation that
depends on time. The solution builds on the timestamps in
blocks of the immutable public blockchain as the basis for the
approximate time, which avoids trusting revoked certificates.

We have analyzed the main security properties of STS with
the ProVerif tool and implemented STS based on OpenNTPD
[10]. We have evaluated the overhead of the most time-critical
operations and show that the chosen cryptographic primitives
for generation of authentication codes and digital signatures
introduce little overhead, which contributes to the capacity of
the Time Server to accommodate a large number of clients.
We have also measured the precision of STS compared to
unauthenticated NTP.

The rest of the paper presents the requirements (Section
II), discusses related work (Section III), and describes the
operation of the protocol (Section IV). We then report on the
verification of its security properties (Section V), discuss the
implementation, evaluate the overhead of the cryptographic
operations, and provide a measurement-based comparison with
NTP (Section VI). Section VII concludes the paper.

II. REQUIREMENTS

The motivation for the STS protocol comes from SCPTime,
a research project on the dissemination of the certified legal
time [11] to use in any form of commercial transactions or
applications. Achieving this goal requires an underlying time
synchronization protocol that copes with many security threats
to a larger extent than the requirements for NTP [12]. In
particular, it needs to: i) authenticate servers and clients, ii)
authorize clients to access the time service, iii) authenticate
and protect integrity of the time information, and iv) enforce
non-repudiation of the time information. At the same time, the
security mechanisms integrated with the protocol should not
degrade the precision of time synchronization, which requires
some kind of a well balanced trade-off between security and
performance. Moreover, servers providing the time service
need to guarantee high availability, which means that their
processing rate should be high enough to support clients
despite possible DoS attacks. Finally, STS clients also require
some support for secure time bootstrapping: as certificate



validation depends on valid time, STS clients need to start
with some initial rough notion of time to validate certificates
used in authentication.

A. Security Threats

We consider the threat model specified in the NTP re-
quirements [12]. We assume that STS clients and servers are
sufficiently protected against internal attacks performed by
exploiting vulnerabilities in devices. We thus focus on external

(also called in-band) attackers that may have control over the
network (including access to a trusted segment of the network).
In particular, they can [13]:

• intercept, modify, or remove a message sent in the
network,

• record messages and replay them later,
• generate messages with any values and claiming to pos-

sess any identity they choose.
The protocol needs to consider many types of attacks. In the

Man in the Middle (MITM) attack, the attacker can intercept
packets, change and relay them to their respective destinations
to alter the protocol operation. In a replay attack, the attacker
intercepts and resends previous packets. An attacker can also
attempt a delay attack to increase the time packets spend in
transit and impact time synchronization. In the masquerade or
spoofing attack, the attacker takes the identity of a legitimate
client or a server. In addition to all these attacks, one or more
attackers can collaborate in a Denial of Service (DoS) attack
that attempts to make the service unavailable by overwhelming
protocol entities with a high level of requests. We assume that
there is no need for guaranteeing confidentiality.

III. RELATED WORK

For the sake of brevity, we focus below on ANTP that
inspired our design.

ANTP [6], [7], [8] supports authentication of NTP servers
based on certificates and guarantees message integrity via
MAC (Message Authentication Code) computed with a sym-
metric key. ANTP operates in three phases: negotiation, key
exchange, and time synchronization.

In the first phase, the client and the server agree on
supported cryptographic algorithms. The server sends its cer-
tificate and opaque state C1 containing the hash computed
over the client negotiation message, the certificate, and the
negotiated algorithms, encrypted with long-term secret s. The
client validates the server certificate and obtains its public key.

In the key exchange phase, the client uses a key encapsu-
lation mechanism based on the server public key to establish
shared session key k. The server offloads the state by replying
with opaque state C2 containing the algorithms to use in the
synchronization phase and session key k.

After these phases, the client sends an NTP synchronization
message along with offloaded state C2 and a nonce to prevent
replay attacks. The server retrieves session key k from C2,
responds immediately with an NTP reply message, and sends
an additional message with MAC based on session key k that
authenticates and guarantees the integrity of the NTP reply

message. This way of operation involves little impact of the
security mechanisms on the precision of time synchronization.

ANTP assumes an existing out-of-band method for valida-
tion of the server certificate, so the problem of having already
synchronized time for certificate validation is not solved by the
protocol. It is a vicious circle: certificate validation requires
the knowledge of time and authenticated time synchronization
relies on certificate validation (Mizrahi also points out the
problem without suggesting a possible solution [12]). More-
over, ANTP does not authenticate clients nor guarantees non-
repudiation: as MAC that authenticates and guarantees the
integrity of the NTP reply message is based on shared key
k, the server may refuse to admit the provision of the time
information that could have caused some damage to a client.

As the protocol uses public key operations only in the first
two phases, the time synchronization phase benefits from good
performance. Nevertheless, clients need to renegotiate session
key k periodically to keep the key fresh.

One of the ANTP design goals was to make the server
stateless: it offloads the required information to the client in
opaque C1 and C2, which contributes to a high capacity of
the server to serve a large number of clients.

IV. STS PROTOCOL

Our protocol has the following design goals:
• server and client mutual authentication,
• authentication of time synchronization messages,
• guaranteed integrity and/or non-repudiation,
• little impact on time synchronization precision,
• stateless, lightweight operation of the Time Server.

A. Architecture

Time Synchronization 

Bootstrap 
Synchronization 

Time Client (TC) Time Server (TS) 

Bitcoin Blockchain 

Authorization Server (AS) 

Figure 1. STS architecture

To make the time synchronization server the most efficient
and lightweight possible, we propose to offload computa-
tionally heavy operations to a third party—an Authorization

Server. Figure 1 presents the architecture of all the parties
involved in the protocol: a time client (TC), a time server
(TS), and an authorization server (AS). We assume that AS



and TS benefit from a precise time source so only TC needs to
synchronize its time. To deal with the problem of certificate
validation by clients, we propose a scheme for rough time
synchronization of a client based on the Bitcoin blockchain—
when the client boots and its clock is not yet synchronized,
it obtains an approximate value of the current time from the
blockchain timestamps.

AS takes care of managing authorizations and storing the
algorithms supported by servers. TS establishes a DTLS
session with mutual authentication with AS to provide the
supported algorithms and obtains long-term secret S as well
as a pair of public/private keys (Ke,Kd). Similarly, TC starts
a DTLS session with mutual authentication with AS to obtain
the algorithms to use with a given server TS, its public key
Ke, and symmetric key K. To authenticate AS, TC uses the
approximate time from the blockchain to validate the AS
certificate.

B. Protocol Description

We present below the details of the protocol operation.
1. Bootstrap time synchronization. In this initial phase, a
client obtains approximate time in a secured way so that it
can validate the server certificate. The idea is to begin with
rough time precision of several hours to avoid trusting revoked
certificates. We use the timestamps in blocks of the immutable
public blockchain as the basis for the approximate time: in
fact, the Bitcoin protocol provides a distributed timestamp
service on a peer-to-peer basis [14].

More specifically, we assume that initially, TC does not have
a synchronized clock and it is configured with the hash of the
N�m block in the Bitcoin blockchain, N being the last block
at the time of the configuration. A reasonable value for m is
for instance 10 to be sure that the block is immutable—there
are some blocks chained after block N �m. When TC starts
to operate, it behaves like a Simplified Payment Verification
(SPV) lightweight blockchain client: it discovers peers in
the Bitcoin P2P network and synchronizes the blockchain
headers with a peer without storing the whole blockchain. To
find peers, TC can use several DNS seeds or hardcoded IP
addresses proposed by the Bitcoin Core. Then, TC requests
from a peer the headers starting from the N �m block hash
using a GetHeaders message of the Bitcoin protocol. A
peer takes the hash of the N � m block and replies with
up to 2000 headers chained after block N � m. TC repeats
the header synchronization to reach the end of the blockchain
and chooses the Last � m block to get the timestamp from
its header, this block considered as the last immutable block.
The timestamp represents the rough time.

To avoid MITM and masquerade attacks, TC can repeat the
synchronization process with several peers to check whether
the returned headers correspond to the Bitcoin blockchain.
2. Client/Server Setup. This phase starts with the establish-
ment of a DTLS session between TS and AS with mutual
authentication based on certificates. Using the secure channel,
TS sends its supported MAC, Digital Signature (DS), and en-
cryption algorithms to AS and obtains two parameters required

for its operation: long-term secret S and public/private key pair
(Ke,Kd).

After bootstrapping time synchronization, TC opens a DTLS
session with AS and validates the AS certificate against the
approximate time. It sends its supported MAC schemes to
AS and TSID, the identifier of TS with which it wants to
synchronize its clock (AS can also propose TS to use). It
obtains the following parameters: the algorithms to use in
the synchronization phase, symmetric key K, server public
key Ke, and state C encrypted with long-term secret S of
TS. State C encodes all the information required by TS to
process client NTP requests. To provide this information to
TC, AS maintains the relationships: TSID—[S, (Ke,Kd)],
and TCID—[K,C], where TCID is the client identifier.
3. Time Synchronization. In this phase, TC sends a time
synchronization request along with a nonce and opaque state
C to chosen TS. Then, it sends a second message with MAC
computed with symmetric key K over the first message. TS
decrypts symmetric key K and algorithms to use from opaque
state C, and verifies MAC of the second message with key
K. Then, TS sends the reply message and generates another
one with MAC computed with symmetric key K over the
request and reply messages. If TC requires non-repudiation,
TS generates DS, a digital signature over the request and reply
messages computed with TS private key Kd. TC computes the
offset based on the timestamps transmitted in unauthenticated
NTP messages to avoid impacting time precision and updates
its clock after validating MAC or DS received in the last
message. If computed RTT is greater than parameter � (the
bound on RTT to eliminate outliers), TC rejects the message
and aborts time synchronization, which prevents TC from
delay attacks.

Figure 2 presents the principles of the setup and time
synchronization phases of the STS protocol.

C. Discussion

Security of STS. DTLS supports mutual authentication of TS
and AS as well as TC and AS. A random nonce prevents
from replay attacks. MAC computed on the request message
guarantees its integrity and allows the server to authenticate its
sender. Similarly, MAC on the response message guarantees
integrity and authenticates TS. If a digital signature (DS) is
used instead of MAC, it guarantees non-repudiation. �, the
bound on RTT prevents TC from delay attacks.
Bootstrap synchronization. The Roughtime project by
Google [15] attempts to provide a similar service based on
a set of time servers. A client starts with the first one, passes
the response to the second one, and so on with other servers.
The process results in finding the maximum of the time at
different servers due to the causal relation between successive
queries. Nevertheless, servers are not authenticated, so a client
can suffer from masquerade attacks.
Stateless server. The server does not need to keep state
per client because clients send the necessary cryptographic
material (symmetric key, negotiated algorithms) in opaque
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m4 ��������
Verify MACK(m1km3) or Verify DSKe(⌧2)

If Verify fails then ↵ reject and abort else ↵ accept

Time  Now() + Offset
Figure 2. Principles of the STS protocol. The protocol flow assumes that TS either uses MAC or DS for signing reply messages. Notation: EncS(), DecS()
- encryption/decryption with symmetric key S, MACK() - MAC code with key K, DSKd

() - digital signature with key Kd, ↵ - session state
(in� progress, accept, reject), � - bound on RTT.

value C. DTLS operates in a lightweight way compared with
TLS.
Time-critical operation. As in ANTP, the entities send unau-
thenticated NTP messages to avoid increasing the transmission
time with cryptographic operations. The overhead that may be
introduced at this stage is related to the copy of the NTP reply
message with the timestamp inserted by hardware just before
transmission—the server can only compute MAC/DS after the
insertion of the timestamp.
Key freshness. Servers and clients need to refresh the cryp-
tographic material periodically by contacting AS. When TS
decides to refresh its keys, it redoes the setup phase with
AS, obtains new keys, and replies to client requests with an
error indicating that they need to refresh the keys. Clients thus
need to redo the setup phase with AS and proceed with the

synchronization phase with new keys.
Efficient cryptography. Digital signatures may impact the
performance of the time server because they take more time
than MAC operations. Nevertheless, efficient schemes for
signature exist such as Ed25519 [16] and MQQ-SIG [17].
Annessi et al. used this kind of high-performance signatures
in the context of secure multicast time synchronization [18].
DoS. The design of TS aims at the capacity to serve a large
number of clients without keeping state per client. Moreover,
TS avoids acting as a DoS amplifier by never responding to a
request with a packet larger than the request.

V. STS SECURITY VERIFICATION

After the specification of the protocol, we have performed
a formal analysis of STS. Since it is difficult to perform



an analysis on protocols depending on time [19], [20], we
have limited its scope to the analysis of security properties:
authentication, integrity protection, and secrecy of keys. A
formal model checker seemed a good approach because it
provides an easy and fast way to identify vulnerabilities in
protocol specifications.

We have used ProVerif [21], a powerful automatic tool for
proving properties on traces of protocols. ProVerif supports
a wide range of cryptographic primitives defined by rewrite

rules [22] or by equations [21]. It can prove various security
properties: secrecy, authentication, and process equivalence. It
takes as input a description of the protocol in a dialect of
the applied Pi calculus, translates it into Horn clauses, and
determines whether the desired security properties hold by
resolution on these clauses [21].

As stated in Section II-A, we consider an attacker that
may have control over the network, which corresponds to
the Dolev-Yao model [13]. We have modeled the participant
roles in STS as processes in the ProVerif input language and
fed them into ProVerif to analyze the protocol and prove
reachability properties, correspondence assertions, as well as
observational equivalence. To test properties, we have specified
queries for which ProVerif attempts to prove that the state
in which the query does not hold is unreachable—if the
query is proved, it means that there is no successful attack,
otherwise ProVerif discovers an attack against the desired
security property.

We have analyzed the setup phase based on a formal
analysis of DTLS to which we have added our message
exchange between AS, TC, and TS to be sure that the key
material is protected during the DTLS session. Then, the
analysis of the time synchronization phase has shown that STS
achieves authentication and session key secrecy under standard
assumptions on the security of cryptographic primitives. If
a client considers the data from the response message from
the server as authentic, then the server has indeed sent the
response message with the same time data and the same nonce.
If the server accepts state C from the request message as being
legitimate, then the content of C is unknown to the attacker.
Finally, we have verified the propriety of non-repudiation
guaranteed by digital signatures based on public/private keys.

VI. STS IMPLEMENTATION AND PERFORMANCE

In this section, we describe the implementation of STS
based on OpenNTPD [10] and the OpenSSL libcrypto library
for cryptographic operations [23].

A. Cryptographic Primitives

We have chosen the following algorithms for cryptographic
primitives:

• AES-GCM [24] for symmetric encryption the server uses
to decrypt the opaque value sent by the client,

• HMAC-SHA256 [25] and AES-CMAC [26] for the MAC
algorithms,

• Ed25519 [16], [27] and MQQ-SIG [17], [28] for the DS
algorithms.

Table I
EXECUTION TIME OF MAC PRIMITIVES

MAC Algorithms Execution Time
HMAC-MD5 (generation) 4 µs
HMAC-SHA256 (generation) 4 µs
AES-CMAC (generation) 3 µs

Table II
EXECUTION TIME OF DS PRIMITIVES [18]

DS Scheme Execution Time
Ed25519 (generation and verification) 75 µs
MQQ-SIG (generation and verification) 28 µs

TC
NTP/ STS

GPS

PPS PPS

TS

ITS

Figure 3. LAN testbed for measurements.

The choice of HMAC-SHA256 and AES-CMAC is mo-
tivated by the state of standardization and availability of
their open source implementations (available in the OpenSSL
library) [29].

With respect to performance, STS mostly adds MAC and
DS generation and verification compared with the regular NTP
operation. To evaluate their impact, we have tested different
algorithms and measured the time needed for the operations.

We have evaluated three types of MAC: two hash-based
HMAC-SHA256 and HMAC-MD5, and a block cipher-based
AES-CMAC. Table I presents the execution time of the MAC
primitives computed over the longest message in the STS
protocol (a client request that includes two extension fields
with a nonce and opaque state C). The client ran Linux 4.13.0-
39 on an Intel Core i5-6200U processor with 8GB RAM.

For digital signatures, we report the performance data on
the Ed25519 and MQQ-SIG schemes measured by Annessi et
al. [18]: Table II presents the execution time of the DS schemes
computed over an NTP message. The choice of Ed25519 or
MQQ-SIG also depends on the key size: MQQ-SIG generates
smaller signatures than Ed25519 (32 B vs. 64 B), but the size
of its public key is larger than that for Ed25519 (32 kB vs.
517 B) [18].

B. STS Implementation

We take advantage of the NTP extension fields for trans-
porting the information specific to STS. The implementation
extends OpenNTPD with the operation described in Figure 2.

To evaluate the STS performance in the time synchro-
nization phase, we have measured its precision on a LAN
testbed presented in Figure 3: we run two PCs as TC and TS
synchronized with the Gorgy Timing LEDI Network ITS v2m
(GPS time reference) as the time source over the PPS (Pulse-
Per-Second) interface. TC runs STS and unauthenticated NTP
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Figure 4. Offset estimation precision during a 1 min. period.

for a comparison based on the time reference at TC also
obtained from ITS through the PPS interface.

Figure 4 shows the precision of the offset estimation by
STS and NTP over a period of 1 min. We can observe that
the precision of both protocols is comparable and we cannot
really distinguish the overhead of the STS operation (note that
the data for two protocols are not gathered at the same time).

We have also measured the latency of client-server interac-
tions on the LAN testbed: STS - 600 µs, NTP - 510 µs (RTT
estimated with ping is 400 µs). The results show that STS
only introduces a small overhead to time synchronization.

VII. CONCLUSION

In this paper, we have proposed the STS protocol that
enables client and server mutual authentication, supports the
property of non-repudiation, and offloads the negotiation and
authorization phases to an authorization server. We have im-
plemented the protocol based on OpenNTPD. In measurement
experiments, we have evaluated the overhead of the chosen
cryptographic primitives for generation of authentication codes
and digital signatures as well as compared the precision of
STS to unauthenticated NTP. The evaluation shows that the
primitives introduce little overhead and STS provides precision
comparable to NTP.
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