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In this paper, we study the problem of detecting and estimating change-points in a time series of multivariate images. We extend existent works to take into account the heterogeneity of the dataset on a spatial neighbourhood. The classic complex Gaussian assumption of the data is replaced by a complex elliptically symmetric assumption. Then a robust statistics are derived using Generalised Likelihood Ratio Test (GLRT). These statistics are coupled to an estimation strategy for one or several changes. Performance of these robust statistics have been analyzed in simulation and compared to the one associated with standard multivariate normal assumption. When the data is heterogeneous, the detection and estimation strategy yields better results with the new statistics.

I. INTRODUCTION

Recent years have seen the increase of remotely sensed imaging systems and the number of satellite images available have grown significantly. Missions such as Sentinel-1 or TerraSAR-X deliver daily Synthetic Aperture Radar (SAR) images on a global scale. In this context, analysis of Image Time Series (ITS) for Change Detection (CD) purposes is a growing problematic. The information about change is useful for many applications such as environment monitoring or sea traffic surveillance.

New systems can provide multivariate images encompassing a certain kind of diversity. For example, Polarimetric radar sensors record the backscattering of the scene for different modes of polarization. For high-resolution Synthetic Aperture Radar (SAR) images, a diversity can be found in the spectral behaviour of the scatterers which may lead to vectors of great size [START_REF] Ovarlez | Multivariate linear timefrequency modeling and adaptive robust target detection in highly textured monovariate sar image[END_REF]. In Hyperspectral images, the size of vectors is also large since the scene is imaged in numerous wavelengths. In those kind of images, the heterogeneity of the data is more apparent since the neighbourhood needed for the analysis is wider. The present paper considers the problem of changepoint detection in ITS of such multivariate images.

CD literature is wide and many techniques have been investigated in the past years [START_REF] Hussain | Change detection from remotely sensed images: From pixel-based to object-based approaches[END_REF]. When considering pixelbased statistical techniques, classic schemes use a probability model from which a statistic of decision is derived. Works such as [START_REF] Novak | Coherent change detection for multi-polarization SAR[END_REF]- [START_REF] Conradsen | Change detection in polarimetric SAR data and the complex Wishart distribution[END_REF] have modeled the multivariate pixels as random Gaussian vectors and derived statistics of decision for bi-date CD as a test of covariance matrix equality. Recently, [START_REF] Nielsen | Omnibus test for change detection in a time sequence of polarimetric SAR data[END_REF], [START_REF] Ciuonzo | On multiple covariance equality testing with application to SAR change detection[END_REF] have considered and explored the problem of testing ITS. [START_REF] Conradsen | Determining the points of change in time series of polarimetric sar data[END_REF] proposed a method to estimate the point of change in such series using a Gaussian model.

However, when considering highly heterogeneous images such as high-resolution SAR images, it has been shown that the Gaussian assumption reflects poorly the distribution observed [START_REF] Ollila | Compound-Gaussian clutter modeling with an inverse Gaussian texture distribution[END_REF], [START_REF] Greco | Statistical analysis of high-resolution SAR ground clutter data[END_REF]. In those contexts, the Complex Elliptically Symmetric (denoted CE) family of distributions has been proposed to model the dataset and solid results have been obtained in many applications. The Complex Angular Elliptical (denoted CAE) family, which is strongly linked to the CE distributions [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF], is of interest in the present paper. CD under non-Gaussian context has been explored in [START_REF] Liu | Change detection of multilook polarimetric SAR images using heterogeneous clutter models[END_REF] where a similarity measure has been proposed under a bi-date framework. Recently, a Generalized Likelihood Ratio Test (GLRT) for similar distributions has been proposed by the present authors for bi-date CD in [START_REF] Mian | A robust change detector for highly heterogeneous images[END_REF].

In this paper, we consider the problem of change-points detection in an ITS under CE distributions assumption. We propose to adapt the methodology of [START_REF] Conradsen | Determining the points of change in time series of polarimetric sar data[END_REF] to this non-Gaussian context and derive the necessary statistics under the new formulation of the problem. We first remind the methodology of detection estimation and the statistics under Gaussian model. Then we derive the new robust statistics by means of GLRT. Finally, we test the algorithm of detection and estimation with the new statistics in simulation and conclude.

II. THE DETECTION AND ESTIMATION ALGORITHM

A. Definitions and Problem p t = 1 Assume we have T multivariate images of the same scene at different dates. We define T = {1 . . . T }, p the size of the vectors and N the number of local observations (pixels) {x (t) k , k = 1 . . . N } at a given date t. On this local neighbourhood, we model the pixels as the realization of a random variable x with a probability density function (PDF) p x (x; θ), where θ is a parameter of the PDF.

Under classic schemes, the Gaussian hypothesis has been privileged to model the data p x (x; θ) = p CN x (x; Σ) where Σ is the covariance matrix of the data and sole parameter of the distribution since the mean is assumed to be null.

The problem considered presently is the following: Consider a Time Series of random vectors x (t) ∼ p x (x; θ(t)); given N independent observations {x

(t) k } k=1...N , find all t C ∈ T\{1} so that θ(t C -1) = θ(t C
). The number of total changes is unknown.

For simplification, the notation θ(t) ∆ = θ t will be used henceforth.

B. Detection problem: Binary Hypothesis testing

The first step consist in detecting the presence of a change in the time series. If the series is stationary, we assume that there is no change-point to be estimated. The so-called omnibus test scheme is intended to chose between the two following hypotheses:

Let (t 1 , t 2 ) ∈ T 2 , so that t 2 > t 1 , H t1,t2 0,omni : θ t1 = . . . = θ t2 = θ t1,t2 H t1,t2 1,omni : ∃(t, t ) ∈ {t 1 , . . . , t 2 } 2 , θ t = θ t (1) 
An appropriate statistic of the observations must be used to choose between the two hypotheses. Under Gaussian assumption (θ t = Σ t ), several statistics have been derived for this problem [START_REF] Nagao | On some test criteria for covariance matrix[END_REF]- [START_REF] Hallin | Optimal tests for homogeneity of covariance, scale, and shape[END_REF]. A comparative study can be found in [START_REF] Ciuonzo | On multiple covariance equality testing with application to SAR change detection[END_REF]. We remind here the statistic obtained by using the GLRT of the problem:

Λt1,t2 CN ,omni = t2 t=t1 Σt (t2-t1)N t2 t=t1 Σt N H1 ≷ H0 λ, (2) 
where ∀t,

Σt = 1/N N k=1 x (t) k x (t) k H
are the sample covariance matrices for each date, |•| is the determinant operator and λ is a threshold of detection.

C. Estimation Strategy

The scheme 1 allows to determine if there is one or more change. In case of a positive test, the location of the changes in the time series is to be estimated. To this end, successive bi-date detections scheme can be implemented:

∀t ∈ T \ {1}, H t 0,bi-date : θ t-1 = θ t = θ t-1,t H t 1,bi-date : θ t-1 = θ t (3) 
However, this scheme exploits at most the data of two successive dates which is sub-optimal. An alternative scheme proposed in [START_REF] Conradsen | Determining the points of change in time series of polarimetric sar data[END_REF] is to consider successively the following marginal hypotheses:

Consider (t 1 , t 2 ) ∈ T 2 , so that t 2 > t 1 , H t1,t2 0,marg : θ t1 = . . . = θ t2-1 = θ t1,t2-1 and θ t2-1 = θ t2 H t1,t2
1,marg : θ t1 = . . . = θ t2-1 = θ t1,t2-1 and θ t2-1 = θ t2 (4) The GLRT for these hypotheses under CN assumption has been derived as well:

Λt1,t2 CN ,marg = t2 t=t1 Σt (t2-t1)N Σt2 N t2-1 t=t1 Σt (t2-t1-1)N H1 ≷ H0 λ. (5) 
D. The algorithm Both detection and estimation can be done jointly using problems (1) and ( 4). [START_REF] Conradsen | Determining the points of change in time series of polarimetric sar data[END_REF] Store t 1 + r -1 as a change point 8:

Update t 1 ← t 1 + r 9: end while

The presented algorithm allows to detect several change points by first detecting a global change in the series and then refining the detection by iterating on the number of dates processed.

One key-point in the algorithm is the fact that statistics (2) and ( 5) have the Constant False Alarm (CFAR) property which means that their distribution is independent of the covariance matrix of the input data. In practice, this allows to select a threshold to guarantee a P FA independently of the images of consideration. Hence, the strength of this method lies in the possibility to select a P FA and the fact that the number of changes is not required to be known a priori.

When considering heterogenuous images, the Gaussian assumption is not realistic [START_REF] Greco | Statistical analysis of high-resolution SAR ground clutter data[END_REF]. In this context, (2) and ( 5) are not optimal for detection. We propose in the next section to derive new statistics which are designed under more robust CE model.

III. EXTENSION TO NON-GAUSSIAN CASE A. CE and CAE distributions

A thorough description of CE family can be found in [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. We remind the PDF for any vector x ∈ C p :

p CE x (x; Σ, g) = C p,g |Σ| -1 g x H Σ -1 x , (6) 
where Σ ∈ S p H is a positive definite Hermitian matrix called the scatter matrix, and g : R + → R + is a function called density generator that satisfies regularity conditions. C p,g is a normalization constraint ensuring that C p p CE x (x)dx = 1. Under this assumption, we consider the problems (1), ( 3) and ( 4) with θ t = {g t , Σ t }. However, the derivation is impossible when the density generators g t are unknown.

To address this problem, we consider the self-normalized observations. Let x ∼ CE(0 p , g, Σ) and define z = x x 2 . The self-normalized vector z is has a Complex Angular Elliptical distribution which is denoted as CAE(0 p , Σ ) [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF], [START_REF] Soloveychik | Tyler's covariance matrix estimator in elliptical models with convex structure[END_REF]. Since the normalized observations are systematically on the unit sphere of dimension p denoted CS p , they do not depend on the density generators and their PDF are fully known:

p CAE z (z; Σ ) = S p -1 |Σ | -1 z H Σ -1 z -p , (7) 
where S p = 2π p /Γ(p) and Γ is the gamma function. As for the Gaussian case, the only parameter to consider is the scatter matrix. The derivation of statistics for problems (1) and ( 4) are done using θ t = {Σ t } and the PDF [START_REF] Ciuonzo | On multiple covariance equality testing with application to SAR change detection[END_REF].

B. Omnibus Detection Test

Let us define, ∀k, ∀t, z

(t) k = x (t) k / x (t) k 2 .
To solve problem (1), we consider the following GLRT:

Λt1,t2 CAE,omni = max {Σt 1 ,...,Σt 2 } t2 t=t1 N k=1 p CAE z (t) k (z (t) k ; Σ t ) max {Σt 1 ,t 2 } t2 t=t1 N k=1 p CAE z (t) k (z (t) k ; Σ t1,t2 ) (8) 
We treat both optimizations separately:

• First, let us consider the numerator. We have to maximize:

L = t2 t=t1 N k=1 p CAE z (t) k (z (t) k ; Σ t ) ∝ t2 t=t1 |Σ t | -N N k=1 z (t) k H [Σ t ] -1 z (t) k -p .
The optimization is performed by solving separately for each {Σ t } t∈{t1,...,t2} . The obtained solution is the wellknown Tyler's estimator:

∀t, ΣTE t = p N N k=1 z (t) k z (t) k H z (t) k H [ ΣTE t ] -1 z (t) k . (9) 
• Now, let us consider the denominator. We have to maximize:

L = t2 t=t1 N k=1 p CAE z (t) k (z (t) k ; Σ t1,t2 ) ∝ t2 t=t1 |Σ t1,t2 | -N N k=1 z (t) k H [Σ t1,t2 ] -1 z (t) k -p
.

Optimizing L towards Σ t1,t2 leads to:

ΣTE t1,t2 = p (t 2 -t 1 )N N k=1 t2 t=t1 z (t) k z (t) k H z (t) k H [ ΣTE t1,t2 ] -1 z (t) k . ( 10 
)
By replacing the estimates ( 9) and ( 10) in eq. ( 8) and we obtain the final statistic:

Λt1,t2 CAE,omni = ΣTE t1,t2 (t2-t1)N t2 t=t1 ΣTE t N t2 t=t1 N k=1 z (t) k H [ ΣTE t1,t2 ] -1 z (t) k p z (t) k H [ ΣTE t ] -1 z (t) k p . (11) 

C. Marginal Detection Test

The GLRT statistic for the problem ( 4) is given by:

Λt1,t2 CAE,marg = max {Σt 1 ,t 2 -1,Σt 2 } N k=1 t2-1 t=t1 p CAE z (t) k (z (t) k ; Σ t1,t2-1 ) p CAE z (t 2 ) k (z (t2) k ; Σ t2 ) max {Σt 1 ,t 2 } N k=1 t2 t=t1 p CAE z (t) k (z (t) k ; Σ t1,t2 ) (12) 
The derivation is similar to those of the omnibus test and yields:

Λt1,t2 CAE,marg = ΣTE t1,t2 (t2-t1)N ΣTE t2 N ΣTE t1,t2-1 (t2-t1-1)N × N k=1 t2 t=t1 z (t) k H [ ΣTE t1,t2 ] -1 z (t) k p t2-1 t=t1 z (t) k H [ ΣTE t1,t2-1 ] -1 z (t) k p z (t2) k H [ ΣTE t2 ] -1 z (t2) k p , (13) 
where the estimates have been given in eq. ( 9) and [START_REF] Greco | Statistical analysis of high-resolution SAR ground clutter data[END_REF].

D. Properties of the new statistics

As for (2) and ( 5) statistics, the new statistics ( 11) and ( 13) have the matrix CFAR property. The proof is omitted, but is straightforward from the one presented in [START_REF] Mian | A robust change detector for highly heterogeneous images[END_REF]. The improvement comes from the fact that the new statistics are independent of the density generator which makes them more robust. This property is often referred as texture CFAR property.

The analytic distribution of both Λt1,t2 CAE,omni and Λt1,t2

CAE,marg
under H 0 is unfortunately unknown. The problem will be considered in future developments. The selection of thresholds is done by obtaining the P FA vs threshold of detection (a.k.a P FA -λ) curve by means of Monte-Carlo (M-C) Trials. 
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IV. SIMULATIONS

A. Description of simulation

The new statistics have been tested in simulation and compared to the Gaussian ones. Complex Compound Gaussian (CCG) random vectors, which is sub-family of the CE distributions, have been considered. They are random vectors used are of the form x = √ τ x where τ is a random monovariate variable with a given PDF, referred as the texture, and x ∼ CN (0 p , Σ). We choose τ ∼ Γ(α, β), where Γ(α, β) denotes the Gamma distribution with shape parameter α and scale parameter β.

The covariance matrices are chosen to be Toeplitz of the form Σ t (m, n) = ρ |m-n| t . ρ t is the sole parameter governing the change over time.

Table I summarizes the relevant parameters for the simulations presented hereafter.

B. False alarm regulation

We first consider the regulation of false alarms for both robust omnibus and marginal detectors and compare them to the Gaussian one. To this end, synthetic images have been made where the background is a CCG noise. A cross-shaped pattern appear, moves and disappear while a circle grows over time. The patterns correspond to realisation of CCG vectors where the covariance matrix is different than for the background. The parameter β has been used to fix the Signal to Noise Ratio (SNR) of the patterns. The figure 2 present the different images of the series and the result of detection and estimation using algorithm 1 with both Gaussian and robust statistics. A white point on the resulting image t and position (x, y) correspond to a point that has been detected as a change in the time series at position (x, y) and estimated to be at time t. The thresholds have been chosen to guarantee a P FA = 10 -4 using theoretical relationship for Gaussian statistics (given in [START_REF] Conradsen | Determining the points of change in time series of polarimetric sar data[END_REF] for example) while M-C trials have been used for the robust one. Results show that for Gaussian statistics, the P FA chosen is not respected: a significant number of false alarms are present. Results with robust statistics show that the number of false alarms is greatly reduced. This result is expected since the Gaussian statistics do not account for the nature of the data. We observe that the curves are not the same for the Gaussian statistics while for robust statistics, the curves are the same. This result confirms the texture CFAR property of the robust statistics.

C. Probability of detection

To compare the performance of detection of Gaussian and robust schemes, we choose to compute the probability of detection at the good date P D , through means of M-C trials, on a simple situation where there is only one change at a date t C . Before the change, we choose ρ t<t C = 0.01 and after the change several values have been used. Both Gaussian and CCG models have been simulated and the expetimental thresholds, for the given noise, have been chosen for the P FA selected. The Bartlett distance [START_REF] Frery | Analytic Expressions for Stochastic Distances Between Relaxed Complex Wishart Distributions[END_REF] on covariance matrices has been used as a measure of the amplitude of the change:

d B (Σ 1 , Σ 2 ) = log( |Σ 1 + Σ 2 | 2 |Σ 1 | |Σ 2 | ) -2p log(2). (14) 
The results, presented at Figure 4, have also been compared to the bi-date scheme presented at eq. (3). When the data follows a Gaussian distribution, we notice that the performance is lower for the robust statistics in comparison to the Gaussian ones. The plot also shows that even for a single change, the algorithm 1 performs better than the bi-date one. When the data follows a CCG distribution, the performances are the same for the robust statistics while the performances strongly decrease with Gaussian V. CONCLUSION The present paper has studied the problem of changepoint detection in a series of multivariate images under non-Gaussian assumption. An extension of [START_REF] Conradsen | Determining the points of change in time series of polarimetric sar data[END_REF] to CE family has been proposed and studied in simulation. The proposed detector yields a robust behaviour for a large family of distributions. Future works concern the performance analysis of this methodology on real experimental data such as Sentinel-1 SAR images.
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 1 Fig. 1. Illustration of spatial neighbourhood (N = 9). The gray zone corresponds to the local observations at each date.

Fig. 2 .

 2 Fig. 2. Example of detection/estimation on synthetic images. T = 5, p = 3, N = 25, P FA = 10 -4 . The background has parameters α = 0.3, β = 0.1, ρ = 0.99. For the cross pattern: α = 0.3, β = 1, SNR = 10 dB, ρ = 0.3 and the circle pattern: α = 0.3, β = 1, SNR = 10 dB, ρ = 0.2.
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 3 Fig. 3. P FA -λ relationships for several parameters of the CCG distribution.
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 4 Fig. 4. Probability of detection versus Bartlett distance.
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