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ABSTRACT
In this paper, we propose new detectors for Change Detection
between two multivariate images. The data is supposed to fol-
low a Compound Gaussian distribution. By using Likelihood
Ratio Test (LRT) and Generalised LRT (GLRT) approaches,
we derive our detectors. The CFAR behaviour has been stud-
ied and the simulations show that they outperform the classic
Gaussian Detector when the data is highly heterogeneous.

Index Terms— CFAR Change Detection, Compound
Gaussian, GLRT, Remote Sensing

1. INTRODUCTION

Change Detection (CD) is a classic problem in Remote Sens-
ing. When two images of a same scene at different times are
available, the aim is to detect zones on the image correspond-
ing to an alteration in the scene. Many techniques exist in the
literature depending on the nature of the data. The basic pro-
cedure is to select a quantity of interest on which a statistic
is computed. Then a decision is done given the value of this
statistic. For Synthetic Aperture Radar (SAR), we can for ex-
ample use the pixel value and compute correlations between
the two images. This is used in interferometric applications
[1]. Another way can be modeling the pixels by a density
probability and test the equality of its parameters through a
likelihood ratio [2].

Sometimes available images are multivariate images such
as polarimetric ones. In this case, each pixel consists of a vec-
tor of size p = 3 (each element corresponding to the backscat-
tering power in a given mode of polarisation). For such data,
several works [3, 4, 5, 6] have proposed to model the data as
Gaussian. From this modeling, the detection test was derived
using an assumption of covariance matrix equality.

When considering high-resolution images, the heteroge-
neous behaviour of the clutter has been studied and demon-
strated [7, 8]. It has been shown that the Gaussian assumption
does not fit the data well enough. A new family of distribu-
tions known as Elliptical distributions has been proposed to
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model the data. Specifically, the Compound Gaussian (CCG)
or Spherically-Invariant Random Vectors (SIRV) [9] which is
a subclass of the elliptical family is interesting for that mat-
ter. Under the SIRV assumption, composite hypothesis testing
the equality of covariance matrices was studied in [10, 11] for
classification purposes. In [12], a similarity measure using
SIRV model has been proposed for CD. But, to our knowl-
edge, no work has proposed to use Likelihood Ratio Test
(LRT) or Generalised LRT (GLRT) approaches to develop a
test of detection specifically for bi-date CD in CCG context.

The paper here aims at using approaches similar to ones
that were used in robust target detection, but in the bi-date
CD framework. LRT and GLRT are derived under a binary
hypothesis problem. Then their Constant False Alarm Rate
(CFAR) properties are studied. Finally, the performances of
the new detectors are measured.

2. RELATION TO PRIOR WORK
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Fig. 1. Description of the problem. A sliding window of N = N1 × N2 observa-
tions xi=1...N and yi=1...N is used to compute the ratio for the test pixel.

The problem under study has been explored in the Gaus-
sian assumption by testing the equality of covariance matri-
ces. In [3], results of statistics literature on equality of Wishart
matrices have been applied to CD.

Suppose we have two multivariate images Ix and Iy and
we want to detect local changes in the data. We have a win-
dow of N = N1 ×N2 observations around the test pixel. We
note p, the size of each vector and define Wx = {xi}i=1...N ,



Wy = {yi}i=1...N the windows on images Ix and Iy respec-
tively. Figure 1 gives an illustration of the local data selec-
tion. The pixels are modeled as multivariate complex Gaus-
sian vectors (CN ). The pixels xi=1...N , are supposed inde-
pendent and sharing the same covariance matrix. We make
the same assumptions for yi=1...N . The change detection is
done through as a binary hypothesis testing the equality of co-
variance matrices between the two images:
∀(xi,yi) ∈Wx ×Wy,{

H0 : xi ∼ CN (0,Σx) and yi ∼ CN (0,Σx)
H1 : xi ∼ CN (0,Σx) and yi ∼ CN (0,Σy)

. (1)

The GLRT detector under these hypotheses is [3]:

Λ̂G =
|Σ̂x + Σ̂y|2N

|Σ̂x|N |Σ̂y|N

H1

≷
H0

λ, Σ̂x =

N∑
i=1

xix
H
i

N
, Σ̂y =

N∑
i=1

yiy
H
i

N
.

(2)
Here, Σ̂x and Σ̂y correspond to the Sample Covariance Ma-
trices (SCM) of the data. Recent works on time series of SAR
images such as [13, 14] still use this modeling to derive tests
of detection. The contributions of the present paper are:
• We make a CCG assumption and derive the LRT and

GLRT of the bi-date CD problem.
• We study the CFAR properties of both detectors.

3. DETECTORS UNDER CCG ASSUMPTION

To model the highly heterogeneous behaviour of the data,
we model the probability distribution as a multivariate CCG
with zero mean, covariance matrices Σx,Σy and determinis-
tic textures τxi

, τyi
:

pxi(xi/Σx, τxi) =
1

πp|Σx|τpxi

exp

(
−xH

i Σ−1
x xi

τxi

)
. (3)

The change detection problem here can be written:
∀(xi,yi) ∈Wx ×Wy,{

H0 : xi ∼ CCG (0, τxi ,Σx) and yi ∼ CCG (0, τyi ,Σx)
H1 : xi ∼ CCG (0, τxi ,Σx) and yi ∼ CCG (0, τyi ,Σy)

.

(4)
We note here that we do not make any assumptions on the tex-
tures and focus solely on the covariance matrices. Alternative
hypotheses using constraints on the textures between the two
images will be investigated in a forthcoming paper.

To simplify the notations we note τx = [τx1
, . . . , τxN

]
T

and τy = [τy1
, . . . , τyN

]
T . We also use pWx,Wy(Wx,Wy)

when we refer to px1,...,xN ,y1,...,yN
(x1, ...,xN ,y1, ...,yN ),

the joint distribution of all observations.

3.1. Derivation of the LRT

A classic scheme in hypothesis testing is the so-called LRT.
It assumes that the distributions are perfectly known. Here,
it implies the knowledge of the matrices Σx, Σy and the tex-
tures τx, τy. The idea is to compute the ratio of the likelihood

of the data under hypothesis H1 and the likelihood of the data
under hypothesis H0:

lrt =
pWx,Wy (Wx,Wy/H1,Σx,Σy, τx, τy)

pWx,Wy (Wx,Wy/H0,Σx, τx, τy)
. (5)

The resulting value has then to be compared to a threshold
value. The Neyman Pearson lemma [15] ensures that the LRT
is the uniformly most powerful test (in the sense of maximis-
ing the probability of detection) at a given significance level
(a.k.a. Probability of False Alarm).

Proposition 3.1 (Likelihood Ratio). The Likelihood Ratio un-
der the binary hypothesis presented in (4) is the following:

Λlrt =
|Σx|N

|Σy|N
exp

(
Tr

(
(Σ−1

x −Σ−1
y )

N∑
i=1

yiy
H
i

τyi

)) H1

≷
H0

λ .

(6)

Proof. Straightforward calculus.

When the parameters are unknown, Maximum Likelihood
Estimates (MLE) of the unknown parameters are plugged into
the LRT.

Proposition 3.2 (2-step lrt). The detector obtained when re-
placing unknown matrices and textures in ratio (6) is:

Λ̂lrt =

∣∣∣Σ̂x

∣∣∣N∣∣∣Σ̂y

∣∣∣N exp

(
p

N∑
i=1

yH
i Σ̂−1

x yi

yH
i Σ̂−1

y yi

) H1

≷
H0

λ ,

where

Σ̂x =
p

N

N∑
i=1

xi xH
i

xH
i Σ̂−1

x xi

, Σ̂y =
p

N

N∑
i=1

yi yH
i

yH
i Σ̂−1

y yi

.

(7)

Proof. Straigthforward. See [16] for the estimators of covari-
ance matrices under CCG assumption.

Discussion: It is interesting to note that when the param-
eters are known, the lrt uses solely observations on one image
Iy . The ratio test whether the data Wy is better described
by the covariance matrix Σy than Σx. When the covariance
matrices are unknown, classic Tyler’s fixed point estimators
are used [17]. We remind that an infinite number of matri-
ces are solution to the fixed point equation (if M̂ is solution,
then so is a M̂ ,∀a ∈ R∗). Classically to resolve this, a nor-
malization constraint is imposed on the matrix (Tr(M̂) = p).
Contrarily to the Gaussian case, the estimation is more robust
to arbitrary change in the power of the scatterers. We focus
more on the correlation structure between the different chan-
nels of the images. This also means that a punctual change
(on a pixel), even corresponding to the arrival of a powerful
target, is less likely to be detected. Indeed, contrarily to the
SCM, such a change is considered as an outlier and would
not impact much the estimated covariance matrix. We expect
this detector to provide enhancements in situations where the
change is distributed with a low SNR.



3.2. Derivation of the GLRT

When the parameters of the distribution are unknown, another
way around is to use the GLRT. This method differs from the
previous one in that the estimation of the parameters is not
done using the likelihood of the observations but rather the
likelihood under both hypotheses:

glrt =

max
Σx,Σy,τx,τy

pWx,Wy (Wx,Wy/H1,Σx,Σy, τx, τy)

max
Σx,τx

pWx,Wy (Wx,Wy/H0,Σx, τx, τy)
.

(8)

Proposition 3.3 (Generalised Likelihood Ratio). The Gener-
alised Likelihood Ratio under binary hypothesis presented in
(4) is the following:

Λ̂glrt =

∣∣∣Σ̂x,H0

∣∣∣2N∣∣∣Σ̂x,H1

∣∣∣N ∣∣∣Σ̂y

∣∣∣N
N∏
i=1

(
xH
i Σ̂−1

x,H0
xi

)p (
yH
i Σ̂−1

x,H0
yi

)p
(
xH
i Σ̂−1

x,H1
xi

)p (
yH
i Σ̂−1

y yi

)p H1

≷
H0

λ

where Σ̂x,H0 =
p

2N

N∑
i=1

(
xi xH

i

xH
i Σ̂−1

x,H0
xi

+
yi yH

i

yH
i Σ̂−1

x,H0
yi

)

and Σ̂x,H1 =
p

N

N∑
i=1

xi xH
i

xH
i Σ̂−1

x,H1
xi

, Σ̂y =
p

N

N∑
i=1

yi yH
i

yH
i Σ̂−1

y yi

.

(9)

Proof. See Appendix A.

Discussion: The GLRT here is slightly more complex
than the LRT. The estimation of Σ̂x,H0

differs from a clas-
sic Tyler’s estimator. One can wonder about its convergence
under H1 regime, but this is out of the scope of the paper.
The ratio can be seen as a product of two separate functions:
the ratio of determinants which is similar to the GLRT under
Gaussian assumption and a function that computes a ratio be-
tween the textures under H1 and H0 regime. Similarly to the
LRT, the matrices are normalised by the trace.

3.3. Statistical properties

Proposition 3.4 (CFARness of the LRT and GLRT). Λ̂lrt is
CFAR texture but not matrix. Λ̂glrt is CFAR texture and ma-
trix.

Proof. See Appendix B.

An interesting problem is the calculus of the detector dis-
tributions under H0. Unfortunately, as the analytical expres-
sion is composed of statistically dependent quadratic forms,
the calculus is intricate. The problem is let open as of now.

4. SIMULATION RESULTS

Table 1. Simulation-relevant parameters
α, β ρx, ρy p N SNR

shape and scale
for Γ-distribution

coefficients for
Toeplitz matrices

Size of
vector

Number of
observations

Signal to
Noise Ratio

The CFARness behaviour of the two detectors has been
studied in simulation. Table 1 summarizes the relevant param-
eters of the simulation. We generated observations through
a K-distribution (the texture is distributed according to a Γ-
distribution) with same covariance matrix. The covariance
matrix Σx = Σy (under H0) was chosen to be a Toeplitz
matrix of the form (Σx)(m,n) = ρ

|m−n|
x . Figure 2, corre-

sponding to PFA − λ curves for several matrix and texture
parameters validates CFAR behaviour of the GLRT. We ob-
serve that indeed, in practice Λ̂lrt is not CFAR matrix due to
the trace constraint. We can see that Λ̂G detector does not
respect the CFAR texture property which is expected as the
textures are not taken into account in the design of the detec-
tor. It is thus not suited in our situation.

Matrix CFARness

Texture CFARness

Fig. 2. PFA − λ. Left = Λ̂G, Middle = Λ̂lrt, Right = Λ̂glrt. p = 10, N = 25.
Top: α = 0.3, β = 0.1. Bottom: ρx = 0.3, β = 0.1.
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Fig. 3. PD − PFA with p = 10, N = 25, ρx = 0.1, ρy = 0.9, α = 0.3,
β = 0.1. Top: SNR = 0 dB. Bottom: SNR= 20 dB.

The performances of the detectors have also been mea-
sured. We used two synthetic images where each pixel is gen-
erated through a K-distribution of same texture parameters
and covariance matrices. On one image, a patch of 10 × 10
pixels, corresponding to the change, has been generated with
a different covariance matrix. The SNR is applied through the
scale parameter: as the product αβ corresponds to the power



of the data, we increase the scale parameter on the patch to fit
the given SNR. Figure 3 shows an example of a performance
obtained through 1000 Monte-Carlo trials. As expected, the
new detectors outperform the Gaussian one. The GLRT ap-
proach seems to fare better overall. We also observe that the
performance of the new detectors do not vary much with the
SNR comparatively to Λ̂G. This result was expected as the
textures are systematically compensated in the ratio to test
the structure of the covariances matrices alone.

5. CONCLUSION

In this paper, new detectors for Change Detection on highly
heterogeneous multivariate images have been proposed. The
data have been modeled as Compound Gaussian and by us-
ing Likelihood Ratio approaches, the detectors have been de-
rived. The CFAR behaviour of the detectors have been studied
both theoretically and in simulation. A ROC curve has also
been computed to test the performances of the detectors and
it shows that the new detectors, specifically Λ̂glrt, outperform
the Gaussian one even at high SNR by a significant factor.

A. DERIVATION OF THE GLRT

The expression of the ratio in eq (8) leads us to an estimation
of the parameters which maximize the likelihood under both
H0 and H1 hypothesis. We will treat both separately.

Under H0: Since the log function is monotone, we can
focus on the following optimization problem:

argmax
Σx,τx,τy

log pWx,Wy(Wx,Wy/H1,Σx, τx, τy)

= −2N log |Σx| −
N∑
i=1

(
xHi Σ−1

x xi
τxi

− yHi Σ−1
x yi

τyi

)
.

• Estimation of τx, τy: deriving log pWx,Wy with respect to
τx gives, for each element of τx: ∀i, τ̂xi

= xHi Σ−1
x xi/p.

Similarly, ∀i, τ̂yi = yHi Σ−1
x yi/p.

• Estimation of Σx: deriving log pWx,Wy with respect to Σx

lead to Σ̂x =
1

2N

N∑
i=1

(
xi x

H
i

τxi

+
yi y

H
i

τyi

)
and replacing the

texture by their estimates gives the expression of eq (9). For
clarity, this estimator will be noted as Σ̂x,H0

.

Under H1: We have the following optimization problem:
argmax

Σx,Σy,τx,τy

log pWx,Wy(Wx,Wy/H1,Σx,Σy, τx, τy).

• Estimation of τx, τy: By the same procedure as H0, we
have ∀i, τ̂xi

= xHi Σ−1
x xi/p, τ̂yi

= yi
HΣ−1

y yi/p.
• Estimation of Σx, Σy: A simple optimization on the covari-
ance matrices using the differential identities given previously
results in Tyler’s fixed point estimators for both. For clarity,
we will note Σ̂x as Σ̂x,H1

.

Ratio: Finally, we replace the unknown parameters by their
estimate in the likelihood ratio which allows to maximise the
likelihoods. The calculus leads to (9).

B. CFARNESS OF THE 2-STEP LRT AND GLRT

CFAR texture: It suffices to write ∀i, xi =
√
τxi

ẍi and yi =√
τyi

ÿi with ẍi ∼ CN (0,Σx), ÿi ∼ CN (0,Σy). The LRT
is rewritten as:

Λ̂lrt =
|Σ̂x|N

|Σ̂y|N
exp

(
p

N∑
i=1

ÿHi Σ̂−1
x ÿi

ÿHi Σ̂−1
y ÿi

)
with

Σ̂x =
p

N

N∑
i=1

ẍi ẍ
H
i

ẍHi Σ̂−1
x ẍi

, Σ̂y =
p

N

N∑
i=1

ÿi ÿ
H
i

ÿHi Σ̂−1
y ÿi

.

Here, the textures simplify, which means that the ratio does
not change for any given set of textures. Thus, the LRT is
CFAR texture. The proof is similar for the GLRT.

CFAR Matrix: First of all we verify that the trace nor-
malization constraint does not affect the ratio. One way to
see the normalization is by replacing the estimated matrix Σ̂•
by p Σ̂•

Tr(Σ̂•)
in the detectors’ expression. For the 2-step LRT,

we write:

Λ̂lrt =
|Σ̂x|N Tr(Σ̂y)pN

|Σ̂y|N Tr(Σ̂x)pN
exp

(
p

Tr(Σ̂y)

Tr(Σ̂x)

N∑
i=1

yHi Σ̂−1
x yi

yHi Σ̂−1
y yi

)
.

The traces are dependent on the covariances matrices of
the data, which means that even if we whiten the data, the
ratio will be dependent on the covariance matrix of the data.
Thus, in practice the 2-step LRT is not CFAR matrix.

The GLRT, on the other hand, is written as:

Λ̂glrt =
|Σ̂x,H0 |2N Tr(Σ̂x,H1)pNTr(Σ̂y)pN

|Σ̂x,H1 |N |Σ̂y|N Tr(Σ̂x,H0)2pN
×

N∏
i=1

Tr(Σ̂x,H0)2p

Tr(Σ̂x,H1)pTr(Σ̂y)p

(xHi Σ̂−1
x,H0

xi)
p (yHi Σ̂−1

x,H0
yi)

p

(xHi Σ̂−1
x,H1

xi)p (yHi Σ̂−1
y yi)p

.

It is easy to see that the traces terms simplify in the expres-
sion. We note Σ̃• = Σx

− 1
2 Σ̂•Σx

− 1
2 and x̃i = Σx

− 1
2 ẍi,

ỹi = Σx
− 1

2 ÿi. And we can rewrite the GLRT as:

Λ̂glrt =
|Σ̃x,H0 |2N

|Σ̃x,H1 |N |Σ̃y|N

N∏
i=1

(x̃Hi Σ̃−1
x,H0

x̃i)
p (ỹHi Σ̃−1

x,H0
ỹi)

p

(x̃Hi Σ̃−1
x,H1

x̃i)p (ỹHi Σ̃−1
y ỹi)p

.

We have x̃i ∼ CN (0, I) and ỹi ∼ CN (0, I), which are
not dependent on Σx. Since Σ̂x and Σ̂y are classic Tyler
fixed point estimators, Σ̃x and Σ̃y are estimators of iden-
tity matrix I as per the results of [18]. For Σ̃x,H0 , we name
xN+1, ...,x2N = y1, ...,yN so that Σ̂x,H0 is also a Tyler’s
estimator with 2N samples, and thus Σ̃x,H0 is also an esti-
mator of I. In the end, no member of the ratio is dependent
on Σx under H0 which ends the proof.
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