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This End-of-Studies Work presents a range of techniques of Modeling, Identification and Advanced Control applied to the study of Semi-Active Suspensions in Vehicular Systems. This work is divided into three main branches: i) development and application of LPV fault identification techniques on actuators of suspension systems; ii) development and implementation of a real-time model predictive control scheme applied the control of semiactive suspensions; iii) development and application of LPV reconfiguration techniques for fault tolerant control of suspension system. The developed control strategies are analysed through simulation and validation on a mechatronic test-bench and prove themselves satisfactory.

Résumé

Ce travail de Fin-d'études présente plusieurs techniques de modélisation, identification et de la commande avancée appliqués a l'étude des systèmes de suspensions semi-actifs. Ce travail est divisé en trois domaines principaux: développement et l'application des techniques LPV pour l'identification des défauts sur les actionneurs dans les systèmes de suspension; développement et mise-en-oeuvre d'un système de contrôle prédictif basé sur modèle appliqué en temps réel sur des suspensions semi-actifs; développement des techniques LPV de reconfiguration pour la commande tolerant aux défauts des systèmes de suspension. Les stratégies de commande développées sont analysées par simulation et validation et se montrent satisfaisantes.
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Monograph's Framework

This chapter introduces the author's work during the internship period at gipsa-lab, from February to end of June 2017. It is mostly important to remark that the work herein exposed was advised by professor Olivier Sename, whereas the project's responsables also include professor Luc Dugard (co-advisor) and others.

Collaborations

During this period at gipsa-lab, I had the opportunity to collaborate with professors Olivier Sename, Luc Dugard and Simone Formentin (Politecnico de Milano), with postgraduate students Manh Quan Nguyen and Vu Tan Vu and master students Alfonso Estrada Vela, Manh-Hung Do and Manuel Alejandro Molina Villa.

Monograph's Objectives

This monograph's main objectives are synthesized below:

• Present and compare Linear Parameter Varying approaches on Fault Estimation for loss of efficiency on actuators ;

• Test and develop viable ways for a real-time high-complexity Model Predictive Controller for the Soben-Car test-bench ;

• Present and justify new approaches for Fault Tolerant Control (of Multi-Input Multi-Output systems) in the case of sensor and actuator faults;

• Present the results of experimental validation of the Soben-Car test-bench.

Author's Activities

The author's activities during the internship period are summarized below:

• Preliminary literature review on dynamical systems, LPV systems, FTC, vehicle dynamics, vehicle suspensions and others ;

• Preliminary research on Fault Observers for Linear Systems and Closed-Loop Stabilizing Control for Faulty Systems ;

• Getting started with existing system models and Automative Control toolbox of GIPSA-lab tools ;

• Training on MATLAB Robust Control Toolbox and on Linear Matrix Inequalities ;

• Training on the Soben-Car test-bench ;

• Proposition, comparison and study of different approaches for Fault Estimation ;

• Study and developpement of viable high-complexity Model Predictive Controllers to be applied on real-time test-bench ;

• Proposition of Fault-Scheduling and Fault Tolerant Control structures ;

• Experimental validation on test-bench ;

• Result analysis and conclusions ;

• Documentation.

About this Document

The work done by the author is centered on the study and developpement of Linear Parameter Varying Approaches as Advanced Control Techniques, with application to Vehicle Dynamics. The rest of this document is organized in separate chapters, in the following sequence:

• Chapter 1 introduzes the this monograph's scope, preliminary concepts and the LPV4FTC project;

• Chapter 2 presents the literature review and key concepts to this work;

• Chapter 3 shows the study of different Linear Parameter Varying-based approaches for Fault Diagnosis and Identification for the case of actuator loss of effectiveness faults;

• Chapter 4 presents the results on the proposed implementation of a high-complexity Model Predictive Controller for the Soben test-bench;

• Chapter 5 presents the author's proposition of new approaches of LPV as FTC reconfiguration techniques, considering the control of a full vehicle model with actuator faults on each of its suspension systems;

• Finally, chapter 6 presents the conclusions to this work and themes for future studies;

• It is also important to enlighten that a prior report of a full semester period with a research course (Parcours Recherche) at EN SE 3 brought some background results used for this monograph; it is seen on [3].

Introduction

In the last decade, the SLR (Linear Systems and Robustness) Team of Gipsa-lab has developed several strategies for observation and control for vehicle dynamics [4], [5] in particular using the Linear Parameter Varying (LPV ) approach.

The work herein presented is an end-of-studies monograph (Projeto de Final de Curso, Projet de Fin d'Études) supported by the project PERSYVAL LPV4FTC -A Linear Parameter Varying approach for Fault Tolerant Control design, in collaboration with CRAN Nancy and the Academy of sciences of Budapest (MTA SZTAKI ). This document is required by Universidade Federal de Santa Catarina for approval on the course DAS5511: Projeto de Final de Curso and for the title of Automation and Control Engineer. This monograph also expresses the meaning of the exchange period, by the author, at Grenoble, funded by CAPES, on the means of the BRAFITEC project.

Theoretical background and literature review are found on chapter 2, please refer to this chapter whenever doubts appear on terms and technical knowledge. Each other chapter tries to express its goals and topics individually, in order to be able to be read detached from the whole document.

Project Scope

It is very important to, first of all, explicit the studied project's main goals and scope. The author's research and studies were set in the context of the LPV4FTC PERSYVAL project.

The LPV4FTC project's objective is to propose Linear Parameter Varying (LPV ) approaches to develop an integrated Fault Detection and Diagnosis (FDD)/ Fault Tolerant Control (FTC ) scheme for dynamical systems, topic for which very few studies and results have been obtained.

The control of LPV systems has attracted a great deal of attention in the last decade, since they have shown to be an interesting extension of the Robust Control theory applied to nonlinear system.

The LPV approach is today known and well-suited to handle system non-linearities by modelling them as varying parameters (or to settled the controller's performances as varying through gain-scheduling). This is further investigated and discussed on section 2.5 of this document.

Active FTC systems are today crucial for real applications, in order to always maintain a controlled system operational whenever malfunctions and/or failures occur. The main issue of FTC, today, is an efficient integration of reconfiguration techniques to a FDD scheme. The background FTC systems and FDD schemes is seen on section 2.8 of this document.

The dynamical systems that are considered are vehicle systems, with plausible actuator/sensor faults. For this, the application of the proposed methodologies will be done on the Grenoble INOVE test-bench, Soben-Car. This will include objective assessment using direct measurement of achieved vehicle performance in case of faulty component (compared to the nominal case). The idea behind this project's goals is seen on figure 1, where we can see the combination of and LPV FDD scheme with an active LPV FT Controller. 

WP1: Specifications

This packet, the backbone of the project, includes definition of functional requirements, study of potential use cases realizable on the considered testbed and the definition of an internation benchmark (for the application of FTC methods on a mechatronic testbed).

WP2: Design Methods

For the second packet, the methodological core of the project, theoretical developments will be carried out, following by the proposition of generic LPV tools able to ensure stability and improve performances of FTC systems (under specification form WP1). In terms of tasks, these can be put as: i) Design LPV for FDD/FTC for single-actuator case;

ii) Design LPV automatic control reconfiguration approached for multiple component failures/faults.

WP3: Tests and Validation on Mechatronic testbed

The final packet, comprises the campaign of tests and results analysis on the Mechatronic testbed. This work is to be carried out into three main tasks: i) Application and tests of LPV4FTC to a quarter-car system with a faulty damper;

ii) Application and tests of LPV4FTC to a full car case with four dampers;

iii) Implementation and tests for the proposed benchmark (WP1).

On the Mechatronic Testbed

The Test-Bench that was used for this work was the Soben-Car, an experimental platform that allows dealing with several configurations and use cases (from single input to multi input systems). Figure 2 shows a picture of this test-bench. This testbed has been built in 2012, partially supported by the ANR funds of the ANR BLAN 0308 INOVE project, that is focused on the observation and control of vehicle dynamics using methods for estimation and observation, LPV approaches for observation and robust control and Fault-Tolerant control techniques; see [START_REF] Vivas-Lopez | Inove: a testbench for the analysis and control of automotive vertical dynamics[END_REF]. This testbed is composed of three main parts, as it is put in figure 3. Let us remark that:

• The Host PC represents the computer where the control interface is hosted. This interface is developed using MATLAB and SimuLink, [START_REF] Matlab R | a[END_REF];

• The Target PC runs a RT operating system [8]. In this computer, the control algorithm is compiled and executed at a sampling rate of f s = 200 Hz;

• The Process represents sensors, actuators and the scaled vehicle. The main component here is the 1 5-scaled racing car, which represents a full vehicle, including wheels, engine, steering, breaking system and a semi-active suspension system as a key element. It is important to remark that this scaled vehicle is most importantly dedicated to the study of vertical behaviour and, for this, neither the steering nor the breaking system will be in use. The Semi-Active suspension system involves four Electro-Rheological (ER) dampers wich have a force range of ± 50 N. These dampers are adjusted using a controlled voltage inside the range of [0 , 5] kV, generated by amplifier modules. The control input for these modules are PWM signals at 25 kHz. These amplifier proportionally transform the duty-cycle of the received PWM signal into voltage.

Linear servomotors mimics the desired road profile below each wheel. These servomotors have a bandwidth of 0 -20 Hz with a maximum velocity of 1.5 m s . Each motor has its own servo-driver and is operated from the Host PC, by sending the desired road profile through a Data Acquisition Card.

On terms of capturing the vehicle's behaviour, this test-bench is equipped with a wide variety of sensors. To measure the vertical accelerations of the nsprung masses ( z us ), four capacitive accelerometers are used. The deflection of the suspensions (z def ) are measured using four resistive linear displacement sensors and other four sensors are used to measure the road profile (z r ). Four draw-wire displacement sensors are also used to measure the unsprung masses displacement (z us ). To analyse the force variations upon the ER dampers, four force sensores are available for use. Also, other four sensors are used to measure tyre forces.

The main goal of this platform is to evaluate the dynamical behaviour of the full vehicle. For this, the system is equipped with a MEMS -based Attitude and Heading Reference System (AHRS ) which measures the movement of the sprung mass on three accelerations and on three angular velocities: longitudinal acceleration (ẍ), lateral acceleration (ÿ), vertical acceleration (z), pitch rate ( φ), roll rate ( θ) and yaw rate ( ψ).

It is important to remark that the data acquisition and signal outputs for all sensors and actuators are done through two National Instruments Data Acquisitions Cards (NI DAQs) [START_REF] Instruments | Data Acquisition Cards[END_REF].

The closed-loop scheme that represents the controlled test-bench is put on figure 4. 

Some Operational Remarks for the Test-Bench

As this system is specially designed to evaluate the vertical dynamics of a vehicle controlled by the semi-active suspension system, some operational remarks have to be taken into account:

• The only external input of the system is the movement of the linear servomotors (that impose the road profile, z r , for each wheel) ;

• The operation of the semi-active dampers considers that the control input should be the percentage of the duty cycle for the PWM command signal. These signals can vary in the range of 0.1 to 0.8, although some results show that when the PWM signals are higher than 0.35, the damper forces have the same behaviours (see [5]) ;

• Due to the physical characteristics of the system, only the vertical dynamics, pitch, roll and vertical bounce can be inferred from the system evolution. Even if the sensors detect other dynamics (lateral or longitudinal), these should be neglected ;

• The limitations on the type of controllers to be implemented are none, for the computation resides on the operation directly coming from the MATLAB interface.

Theoretical Background

This chapter presents a review on the availible literature on key concepts, theorems and propositions to this work.

On Automotive Suspension Systems

First of all, it is very important to provide the key concepts behind automotive suspensions.

An automative suspension comprises, basically, two components: a spring and a damping (shock absorbing) structure, as it can be seen on figure 50. These components have to work together to maintain the tyre's contact with the ground. The goal of the damping structure is to reduce the effect of travelling upon a rough road by absorbing shock and helping with driving performance, ensuring a smoother and safer drive. In a automative suspension without an efficient damping system, the vehicle is able to absorb damps, but continues to bounce, may causing the tyres to leave the road.

Figure 5 -Outline of Studied Suspension System

Automative suspension systems can be classified in two main groups: Passive Suspension Systems and Controllable Suspension Systems (Active and Semi-Active Suspensions). This is throughly exploited on [START_REF] Aubouet | Experimental results of an h ∞ -observer for an industrial semi-active suspension[END_REF] and [START_REF] Isermann | Mechatronic systems: fundamentals[END_REF].

On Passive Automative Suspension Systems

An automative suspension system is considered as passive if the characteristics of its components (spring and damper) are fixed. This is so described on [START_REF] Isermann | Mechatronic systems: fundamentals[END_REF] and [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF]. These characteristics are determined by the designer of the suspension according to the intended application. A passive suspension system is only able to dissipate the energy which is defined by the Speed Effort Rule (SER) between the suspension deflection speed (given by difference between chassis speed and wheel speed) and the damping force of the passive suspension. Notice that a passive damper is only able to dissipate energy! Figure 6 gives the SER diagram of a passive Electro-Rheological damper of the SOBEN Car for a fixed level duty cycle (see section 1.2 and [5]). 

On Controllable Automative Suspension Systems

Controllable Automative Suspension Systems can be divided into Active and Semi-Active Suspension Systems.

Active Suspension

An automative suspension system is considered as active if the passive damper (or the passive damper and the spring) are replaced by a force actuator. This actuator should be able to both generate and dissipate energy for (from) the system, as it is represented on figure 7.

In an active suspension, the actuator can apply force independent of the relative displacement across the suspension. Given a sensible control strategy, an active suspension can present better results in respect to ride confort and vehicle stability, as seen on [START_REF] Fischer | Mechatronic semi-active and active vehicle suspensions[END_REF] and [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF].

The disadvantages of active suspension systems reside on the fact that the actuator of these systems usually have large power requirements, so that these types of suspensions are mostly found in more expensive passenger vehicles. The power demands of active suspensions in luxury and (or) heavy vehicles is much greater than standard vehicular supplies.

Figure 7 -Force over Speed deflection characteristics of an Active Damper

Semi-Active Suspension

An automative suspension system is considered semi-active when the conventional spring component is retained, but the damper is replaced by a controlled damper structure. Semi-active suspension systems have gained much attention by car manufacturers during the last decades, for they do not require great amounts of external energy sources to power actuators as active suspension systems. The power used by semi-active suspensions is only to adjust the damping levels and operate an embedded controller and a set of sensors. This embedded controller is adjusted to determine the level of damping, based on the used control strategy. Likewise as the passive suspension systems, semi-active systems can only dissipate energy, although the damping capacity (practically, the damping coefficient) can be modified online to meet the tradeoff between passanger confort and driving (vehicle) safety. The characteristic set that represents a semi-active damper by the Force over Speed graph is seen on figure 8.

Further details on semi-active suspension systems are throughly discussed on [START_REF] Patten | Suppression of vehicle induced bridge vibration via hydraulic semi-active vibration dampers[END_REF], [START_REF] Fischer | Mechatronic semi-active and active vehicle suspensions[END_REF] and [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF]. 

Vehicle Modeling

Vehicles can be placed as a part of complex dynamical systems. Vehicular systems are composed of many components: engine, gearbox, clutch, wheels, suspensions, shock absorbers, brakes and many other subsystems. As of this, dynamical models of these systems are highly nonlinear and very complex, as their behaviours change frequently due to each driving situation.

Enhancing vehicle dynamics and performances using advanced control techniques and smart systems has become, nowadays, a key requirement for the automotive industry. For this, the undestandment of vehicle behaviour and a good, consistent physical model is of uttermost importance to control design. Vehicle modelling is not an easy task, but has been throughly discussed on [START_REF] Gillespie | Fundamentals of vehicle dynamics[END_REF], [START_REF] Milliken | Race car vehicle dynamics[END_REF] and [START_REF] Kiencke | Automotive control systems: for engine, driveline, and vehicle[END_REF]. Figure 9 represents the idea behind the modelling of a vehicular system.

Figure 9 -Modelling of Vehicular Systems

Throughout literature, some well-established models are dedicated to specific studies (for example, the vertical dynamics, including suspensions). This section shall present three very interesting models for the study of suspensions systems and vertical vehicular dynamics. These models are: the vertical quarter-car model, the full vertical vehicle model and the full vehicle nonlinear model. These models will be referred to and used for validation and control design throughout this work. On background and auxiliary literature, see [START_REF] Zin | A nonlinear vehicle bicycle model for suspension and handling control studies[END_REF], [START_REF] Poussot-Vassal | Robust multivariable linear parameter varying automotive global chassis control. Tese (Doutorado)[END_REF] and [START_REF] Fergani | Full vehicle dynamics control based on LPV/h ∞ and flatness approaches[END_REF].

Linear Matrix Inequalities

Let us remark some of the important topics on linear matrix inequalities, crucial for many of the solutions presented throughout this work. A thorough review of the application of LMI s in control theory can be found on [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. The references [START_REF] Dettori | LMI techniques for control-with application to a compact disc player mechanism[END_REF] and [START_REF] Trofino | Multivariáveis: Uma abordagem via LM Is[END_REF] also present well this subject.

Convex Optimization

First of all, a brief on optimisation is necessary. Let us define:

Definition 2.1. A function f ∶ R m → R is said to be convex if and only if for all x, y ∈ R m and λ ∈ [0 , 1], it is true that f (λx + (1 -λ)y) ≤ λf (x) + (1 -λ)f (y). Equivalently, f is convex if and only if its epigraph is convex.
Remark 1. The epigraph (or supergraph) of a function f ∶ R n → R is defined as the set of point lying on or above its graph. This is:

epi(f ) = {(x, y) ∶ x ∈ R n , y ∈ R f (x) ≤ y} (2.1)
From this, we can define the concept of a Linear Matrix Inequality.

Definition 2.2. An LMI constraint on a vector x ∈ R m is defined as

F (x), for F (x) = F 0 + ∑ m i=1 F i .x i ⪰ 0 (≻ 0), where F 0 = F T 0 and F i = F T i ∈ R n×m .
There are two kinds of problems to be handled by the use of LMI s:

• The feasibility problem: the answer (feasible or not) to the question whether or not there exists elements x ∈ X so that F (x) < 0.

• The optimization problem: given an objective function J ∶ S → R where S = {x F (x) < 0}, this problem is to determine V opt = inf x∈S J(x).

Dynamical Systems

The study (literature review) of dynamical system is important for this work. The books [START_REF] Chen | Linear system theory and design[END_REF] and [START_REF] Khalil | Nonlinear systems[END_REF] should certainly be remarked, for they present the key topics on dynamical (linear and nonlinear) systems, including observability, controllability, linear and nonlinear control, flatness and others. [START_REF] Isidori | Nonlinear control systems[END_REF] is also a good and strong reference.

LTI System Control

It is important to present some key concepts for LTI systems, as well as for general dynamical systems.

Given the generical LTI system put in (2.2), we can deduce characteristics. Note that, as usual, x(t) represents a vector of system states, u(t) represents a vector of system inputs and y(t) represents a vector of outputs. ẋ(t) represents dx(t) dt . The system (2.2) has n states, m inputs and p outputs.

ẋ(t) = A.x(t) + B.u(t) (2.2) 
y(t) = C.x(t) + D.u(t)
From this, we can define:

Definition 2.3. A system is said controllable when, given inicial condition x 0 ∈ R n and each final state x T ∈ R n , there exists an input u ∶ [0, T ] → R m so that the solution to (2.2),

x ∶ [0, T ] → R n , for the initial condition x(0) = x 0 satisfies x(T ) = x T , for a generic T > 0. This means that that system (2.2) can be driven from a inicial state to an arbitrary final state in a finite time, given the adequate input. A system is said to be uncontrollable when it is not controllable.

Definition 2.4. A system is said to be observable when, for every unknown inicial state

x(0) ∈ R n , there exists T > 0 so that the knowledge of the system input u(t) ∈ R n and the system output y(t) ∈ R p through the time intervale [0, T ] is sufficient to determine, by a single way, the inicial state x(0). A system is said to be unobservable when it is not observable.

Given, now, the following matrices:

• Controllability Matrix, C = [B AB A 2 B . . . A n-1 B] n×nm ; • Observability Matrix, O = ([C CA CA 2 . . . CA n-1 ] n×np ) T .
Theorem 2.5. Given the LTI system (2.2):

• The system is controllable if and only if rank(C) = n (complete line rank). In this case, we can say, simply, that the pair (A, B) is controllable, for the controllability matrix C depends on matrices A and B;

• The system is observable if and only if rank(O) = n (complete column rank). In this case, we can say, simply, that the pair (A, C) is observable, for the observability matrix O depends on matrices A and C;

• The pair (A, C) is observable if and only if the pair (A T , C T ) is controllable;

• When (2.2) is SISO (m = p = 1), the system is controllable if and only if det(C) ≠ 0. And, for p = 1 (one output), the system is observable if and only if det(O) ≠ 0.

Closed-Loop Pole Placement

It is important to depict, given the previous theorem and definitions, how to stabilize, in closed-loop, an unstable (or stable) open-loop system. For this, consider the system put in (2.3), without direct transfer between entrance u(t) and y(t).

ẋ(t) = A.x(t) + B.u(t) (2.3) 
y(t) = C.x(t)
Consider the following system input: u(t) = r(t)-K.x(t), given r(t) a new auxiliary entrance (r(t) ∈ R m ) and K = (k ij ) a constant gain matrix (K ∈ R m×n ). K is often described as a feedback matrix. In closed-loop, the system (2.3) results in the system (2.4).

ẋ(t) = (A -BK).x(t) + B.r(t) (2.4) y(t) = C.x(t) So, the closed-loop transfer function of (2.4) is G CL (s) = C(sI -(A -BK)) -1 B, for Y (s) = G CL (s)R(s)
. From this, it can be neatly seen that the poles (eigenvalues) of (A -BK) define the CL system's behaviour.

Definition 2.6. The Stabilization Problem by State Feedback with Pole Placement is so that a matrix K ∈ R m×n has to be found so that the CL poles of the system as arbitrarily placed on the complex plane, when u(t) = r(t) -K.x(t) is said a state feedback. Particularly, if all poles of (A -BK) are placed on the LHP, it is assured that x e = 0 is a globally asymptotically stable equilibrium point of the CL system and that the transfer matrix G CL (s) is BIBO stable.

Theorem 2.7. The pair (A, B) is controllable if and only if the pair (A -BK, B) is controllable, where K ∈ R m×n is a constant matrix.

Theorem 2.8. The poles (eigenvalues) of the CL matrix (A -BK) can be arbitrarily placed on the complex plane by and adequate choice of K ∈ R m×n if and only if the pair (A, B) is controllable.

System Observer

It is also important to put, due to this chapter's study, the concept of system observer. Let it be suposed that the (2.3) system states x(t) ∈ R n cannot be measured, but are of importance. The only available measurements are those of y(t) ∈ R p .

A system observer will be herein defined as:

ẋ(t) = A. x (t) + B.u(t) + L[y(t) -C. x (t)] (2.5) 
where x (t) represents the estimated system states.

For the sake of the argument, let us consider the dynamics of the error e(t) =

x(t) -x (t) :

ė(t) = ẋ(t) -ẋ(t) = (A -LC).e(t) (2.6) 
For this, given the analysis of (2.6), it can be easily seen that dynamics of the estimation error e(t) = x(t) -x (t), by the proposed system observer (2.5), depend on the placement of the eigenvalues of the matrix (A -LC). If these poles are placed on the LHP, it is assured by the proposed asymptotical state observer that, given any inicial condition e(0) = x(0) -x(0) ∈ R n , it is true that:

lim t→∞ e(t) = lim t→∞ [x(t) -x (t)] = 0 (2.7)
Theorem 2.9. All eigenvalues of the matrix (A -LC) can be arbitrarily placed on the complex plane by an adequate choice of L ∈ R p×n if and only if the pair (A, C) is observable.

Note: a state observer can be used, for example, for a stabilizing state feedback input, on the estimated states, as so: u(t) = r(t)-K. x (t). Practically, the poles of (A-L.C) are placed on the complex plane to be faster than the poles of (A -B.K).

The Linear Quadratic Regulator

Let it be remarked, also, the Linear Quadratic Regulator control approach. Let us, then, show the solution to the Stabilization Problem by State Feedback by finding a matrix K ∈ R m×n so that the quadratic cost function J(x(t), u(t)) is minimized.

Considering φ(x(t f ) as a terminal cost for the states x(t) at t = t f , we can write the cost function J(x(t), u(t)) as:

J(x(t), u(t)) = φ(x(t f ) + t f t 0 [ 1 2
x T (t).Q.x(t) + 1 2 u T (t).R.u(t) + x T (t).N.u(t)]dt (2.8) Considering t 0 the initial time and φ(x(t f ) = 0 we have a full LQR formulation.

The solution of the minimization problem is given by:

u(t) = -K.x(t)
(2.9)

K = R -1 .B T .P (2. 10 
)
where P is the solution of the continuous time algebraic Ricatti 1 equation seen below:

A T .P + P.A -(P.B + N ).R -1 (B T .P + N T ) + Q = 0 (2.

11)

.

In sum, we can weigh the matrices Q and R depending on the system CL response we expect. This is control design is further investigated on [START_REF] Lavretsky | Optimal control and the linear quadratic regulator[END_REF] and [START_REF] Bemporad | The explicit linear quadratic regulator for constrained systems[END_REF].

Linear Parameter Varying Systems

Let us present the basic concepts of a Linear Parameter Varying (LPV ) System. These can be revisited on the references [START_REF] Mohammadpour | Control of linear parameter varying systems with applications[END_REF], [START_REF] Wu | Induced l 2 -norm control for LPV systems with bounded parameter variation rates[END_REF] and [START_REF] Sename | Robust control and linear parameter varying approaches: application to vehicle dynamics[END_REF]. Definition 2.10. A LPV system can be defined as in equation (2.12), where, as usual, x(t) represents a vector of system states, u(t) represents a vector of system inputs, w(t) represents a vector of disturbances, y(t) represents a vector of measured outputs and z(t) represents a vector of controlled outputs. ẋ(t) represents dx(t) dt . The system (2.12) has n states, m inputs, d disturbances, p measured outputs and p z controlled outputs. ρ = (ρ 1 (t) , ρ 2 (t) , . . . , ρ N (t)) ∈ Ω is a vector of time-varying parameters, assumed to be known for all t, where Ω is a convex set. ρ(⋅) varies in the set of continuously differentiable parameter curves ρ ∶ [0, +∞) → R N . The scheduling parameters ρ are assumed to be bounded: ρ ∈ U ρ ⊂ R N and U ρ is compact, defined by the minimal ρ i and maximal ρ i values of ρ i (t):

ρ i (t) ∈ [ρ i , ρ i ], ∀i. The matrices A(⋅) to D 22 (⋅) are continuous on U ρ . (ρ) ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ẋ(t) z(t) y(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A(ρ) B 1 (ρ) B 2 (ρ) C 1 (ρ) D 11 (ρ) D 12 (ρ) C 2 (ρ) D 21 (ρ) D 22 (ρ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ x(t) w(t) u(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (2.12) 1 see [27]
The LPV system representation can be understood as something in between the classical duo of nonlinear and LTI systems. Theoretical analysis of the LPV system properties (stability, observability, controllability) often falls into the framework of linear time-varying systems or of nonlinear systems, which usually presents more difficulty compared to the classical LTI framework.

The scheduling parameters can be exogenous if they are external variables (non stationary systems), or endogenous if they are a function of the state variables (quasi-LPV system).

On Norms

First of all, two definitions are important: Definition 2.11. The inferior limit of a function can be defined as the inferior bound of a function f ∶ R → R. This is:

inf(f (x)) = {min(y) y = f (x)} (2.13) 
Definition 2.12. The superior limit of a function can be defined as the upper bound of a function f ∶ R → R. This is:

sup(f (x)) = {max(y) y = f (x)} (2.14)
The book [START_REF] Zhou | Essentials of robust control[END_REF] is essential to this study, where all the following definitions are given.

Definition 2.13. Let V be a finite dimension space, then ∀ρ ≥ 1, the application ⋅ ρ is a norm, defined formally as v ρ = (∑ i v i ρ ) 1 ρ . Let V be a vector space over C and let ⋅ be a norm define on V : then V is a normed space.

Signal Norms

The 1-Norm of a function is defined as:

x(t) 1 = +∞ 0 x(t) dt (2.15)
The 2-Norm of a function is defined as:

x(t) 2 = +∞ 0 x * (t).x(t)dt = 1 2π +∞ -∞ X * (jw).X(jw)dw (2.16)
The ∞-Norm of a function is defined as:

x(t) ∞ = sup t x(t) (2.17)

System Norms

Let us consider SISO system. Let g(t) be the impulse response of this system. Then, the H 2 norm of G(s) is defined as:

G 2 = g(t) 2 (2.18)
Let us consider MIMO systems with n u inputs and n y outputs. The H ∞ -norm of this system G(s) is defined as:

G ∞ = sup u(t)s.t. u(t) 2 ≠0 G(s).u(s) 2 u(t) 2 (2.19)
This quantity represents the largest possible 2-norm gain provided by the system.

On Stability

Let us remark briefly the concepts on system stability, as explored in details on [START_REF] Silveira Title | Notas de Aula em Sinais e Sistemas Lineares I[END_REF] and [START_REF] Lathi | Linear systems and signals[END_REF]. Can also be found on [START_REF] Chen | Linear system theory and design[END_REF] and [START_REF] Khalil | Nonlinear systems[END_REF].

BIBO Stability

An arbitrary system G is said to be BIBO stable for whichever limited system entry u(t) ( u(t) ∞ < ∞) there is a resulting (mapped) limited output y(t) ( y(t) ∞ < ∞). If this is not true, the system is said to be BIBO unstable. The system is BIBO stable if and only if the inequality 2.20 holds, where h(t) is the time impulse response of the system G.

M h = +∞ -∞ h(τ ) dτ < ∞ (2.

20)

Remark: BIBO Stability is often referred to as external stability.

Lyapunov Stability

Also referred to as internal (L 2 or asymptotical ) stability. In respect to this criterion, we can define: Definition 2.14.

• A system is said to be asymptotically stable when, for whichever initial condition x 0 ≠ 0, it is true that lim t→∞ y(t) = 0.

• A system is said to be asymptotically unstable when, for whichever initial condition x 0 ≠ 0, y(t) is unbounded.

• A system is said to be marginally stable if we desire to obtain y(t), t ∈ R, limited and arbitrarily close to the origin (0), it is only needed that the initial condition x 0 is sufficiently close to zero.

LTI Systems Stability Analysis

A system G is L 2 stable if u(t) 2 < ∞ implies y(t) 2 < ∞.
The quantification of the signal amplification (gain) is evaluated as γ = sup 0< u 2 <∞ y 2 u 2 .

LPV Systems Stability Analysis

The L 2 stability of LPV systems is seen on [START_REF] Wu | Control of linear parameter varying systems[END_REF]. Given a parametrically dependent stable LPV system as in equation (2.12), for zero initial conditions x 0 , the induced L 2 norm is defined as:

ρ i,2 = sup ρ(t)∈Ω sup w(t)≠0∈L 2 y 2 u 2 (2.21)
Theorem 2.15. A sufficient condition for the L 2 of the system ∑ ρ is the generalized bounded real lemma using parameter dependent Lyapunov functions, assuming ρi < ν i ∀i.

If there existis P (ρ) > 0 ∀ρ such that the LMI (2.22) holds, then it is true that ∑ ρ i,2 ≤ γ.

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ (A T (ρ)P (ρ) + P (ρ)A(ρ) + ∑ N i=1 ν i ∂P (ρ) ∂ρ i ) P (ρ)B(ρ) C T (ρ) ⋆ -γI D T (ρ) ⋆ ⋆ -γI ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ < 0 , ∀i (2.22) 

Fault Tolerant Control

A holistic and interesting approach on the concept behind Fault Tolerant Control (FTC ) is of uttermost importance to this work, and can be found on the article [START_REF] Blanke | Fault-tolerant control systems -a holistic view[END_REF]. A comparative study between active and passive FTC approaches is seen on [START_REF] Jiang | Fault-tolerant control systems: A comparative study between active and passive approaches[END_REF], where there se a debate of the use and application results of each of these two methods. Last but not least, on the article [START_REF] Lunze | Reconfigurable fault-tolerant control: a tutorial introduction[END_REF] we can find a tutorial introduction on reconfigurable FTC.

Let us remark the main idea of Active FTC, theme of this work: any controlled system is always subject to faults and failures -these can be upon components, signal processing or even a total system crash. A classical feedback control system usually comprises actuators and sensors coupled to the real plant (system). Let us admit, then, that there are faults (measurable or not) each of these three subsystems. An active FTC scheme is comprised of two parts: a Fault Detection and Diagnosis (FDD) structure and a reconfigurable controller. The FTC controller, thus, has an intrinsic reconfiguration mechanism for the faults upon the system that are well detected by the FDD scheme. This is clear on figure 10.

A notable article about an implementation of a FDD scheme using parity space is seen on [START_REF] Zhang | Fault detection and isolation in nonlinear dynamic systems: A combined input-output and local approach[END_REF]. The study of different linear reconfiguration mechanisms is studied by the author on [3]. 

Conclusions

This chapter presented some key literature review for what is presented on the following chapters of this work.

3 A Survey of LPV FDI Schemes: Loss of Effectiveness on Actuators

About Chapter

The previous chapters were introductory to this work. Now, this chapter presents approaches for Fault Estimation for Semi-Active Suspension Systems. The idea herein proposed is an extension of what was firstly studied at research course at EN SE 3 , exposed on [3].

The main problem herein exposed is how to identify faults on actuators by only measuring outputs of the system, considering vehicular semi-active suspension systems. This chapter is focused on comparing different methods for actuator fault identification considering the use of LPV approaches and a quarter-car model.

Abstract

This chapter presents and compares three different LPV methods for actuator fault detection and diagnosis (FDD) on automotive systems with semi-active suspensions, considering a Quarter of a Vehicle model. A first polytopic LPV approach is detailed, followed by a Mode-Dependent Dwell-Time Constrained Switched LPV approach, with stronger detectability guarantees, and a final LPV sliding-mode approach. The faults are considered as loss of effectiveness upon actuators and are, thus, identified. Through simulation, the efficiency of each presented method is discussed and results show the behaviour operation of each FDD method.

Introduction

Advanced technological processes present evermore an increase on complexity and become more vulnerable to faults on instrumentation. For this, highlights have been given to Fault Tolerant Control (FTC ) schemes, that offer increased process availability, avoiding process breakdowns from simple faults, as described in [START_REF] Blanke | Fault-tolerant control systems -a holistic view[END_REF]. Reconfiguration mechanisms of compensation represent a common way of how to accomodate faults, see [START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF].

Considering active Fault Tolerant Control, there is a need of an accurate online Fault Detection and Isolation (FDI ) strategy in order to compute an efficient reconfig-uration mechanism, as show [START_REF] Blanke | Concepts and methods in fault-tolerant control[END_REF] and [START_REF] Jiang | Fault-tolerant control systems: A comparative study between active and passive approaches[END_REF]. A solid Fault Detection and Diagnosis (FDD) structure is, thus, important for FTC as to provide timely information on the condition, location, type of failure that occurs on the controlled plant. This chapter shall compare and conclude on three LPV -based fault estimation schemes specially on their use as to estimate Loss of Effectiveness situation on actuators.

Although there exist nonlinear model-based approaches for FDI, as presented on [START_REF] Persis | A geometric approach to nonlinear fault detection and isolation[END_REF], [START_REF] Hammouri | Observer-based approach to fault detection and isolation for nonlinear systems[END_REF] and [START_REF] Zhang | Fault detection and isolation in nonlinear dynamic systems: A combined input-output and local approach[END_REF], most methods suppose linear time-invariance (LTI ) system characteristics and work with parity space approaches, as seen on [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF], [START_REF] Gertler | Fault detection and isolation using parity relations[END_REF] and [START_REF] Isermann | Supervision, fault-detection and fault-diagnosis methods-an introduction[END_REF]. These classical LTI FDD designs usually face problems when dealing with changes on the observed plant's operational point. Whenever these changes occur, there should not appear (false) fault alarms or the necessity for further observer reconfiguration, which is not always true with these design methods. Some approaches to overcome these problems reside on gain-scheduling to extend the scope of the linear FDI methods to nonlinear systems. A much more natural approach is to consider the extension of LTI to Linear Parameter Varying (LPV ) systems based methods, as it is exploited on [START_REF] Patton | LPV fault estimation and FTC of a two-link manipulator[END_REF], [START_REF] Oca | Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter[END_REF], [START_REF] Zhang | An improved adaptive fault estimation design for polytopic LPV systems with application to helicopter models[END_REF] and [START_REF] Armeni | Robust fault detection and isolation for LPV systems under a sensitivity constraint[END_REF].

LPV systems can be understood as a gamma of nonlinear systems to be well suited for the control of dynamical systems with parameter variations. These systems can be represented as an extension of LTI systems, assuming the classical state-space representation matrix are dependent on known bounded scheduling parameter ρ. Briefly, these scheduling parameters must abide to {ρ ∈ Ω ρ min ≤ ρ ≤ ρ max }. Sometimes, bounds are also needed on the scheduling parameters' variations, ρ.

An LPV -based fault estimation is able to autonomously adjust and schedule observer or detection filter gains. This is a suitable trade-off between full scaled nonlinear designs and LTI methods based on a fixed operating condition, since LPV -based FDI methods provides most of the conveniences of LTI design and still guarantees good performance and stability conditions over a wider operating set.

In recent years, literature is evermore rich on LPV control design (as seen in [START_REF] Lu | Switching LPV control of an f -16 aircraft via controller state reset[END_REF], [START_REF] Wu | A generalized LPV system analysis and control synthesis framework[END_REF] and [START_REF] Do | An LPV control approach for semi-active suspension control with actuator constraints[END_REF]), although the literature on LPV -based FDI is still limited, up to the author's knowledge. For this, this chapter shall discuss the use of some key LPV -based FDI methods to faults on actuators, considering the application to vehicle suspension systems.

Three LPV FDI techniques shall be herein presented and analyzed: a first polytopic LPV approach, similar to what is discussed in [START_REF] Zhang | An improved adaptive fault estimation design for polytopic LPV systems with application to helicopter models[END_REF]; a continuation to a switched approach, with stability guarantees under mode-dependent dwell-time constraints; and, finally, a sliding-mode approach extended to the LPV paradigma, extending what is presented in literature on [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF].

The Studied System

In this study, we shall consider the study case of a vehicle's suspension system that is subject to faults.

A good trade-off between a vehicle's road handling performance and ride confort is strictly related to the vehicle's suspension system. Evermore present in the automotive industry, the Semi-active suspension systems are to be highlighted, being efficient and, at the same time, less energy-consuming and less expensive than purely active suspensions. The use of semi-active suspension systems seems to provide a good balance between costs and performance requirements. This type of suspension is present on new state-of-the-art top-cars and a good deal of academic and industrial research is focused on this topic, as seen on [START_REF] Hrovat | Survey of advanced suspension developments and related optimal control applications[END_REF], [START_REF] Lu | Multiobjective optimal suspension control to achieve integrated ride and handling performance[END_REF] and others. Further details on semi-active suspension systems are throughly discussed on [START_REF] Patten | Suppression of vehicle induced bridge vibration via hydraulic semi-active vibration dampers[END_REF], [START_REF] Fischer | Mechatronic semi-active and active vehicle suspensions[END_REF] and [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF].

A semi-active suspension comprises, basically, a spring and a controlled damper. In terms of system modelling, we shall herein consider the suspension system of a Quarter of a Vehicle (QoV ) model as our study-case. A QoV model with a semi-active suspension is ruled by the dynamical equations (3.1) and can be represented as on figure 11, where the vehicle's tyre is modelled as a linear spring, with k t coefficient. In this representation, k s represents the suspensions spring coefficient, m s and m us the sprung and unsprung masses, respectively, z r the road profile disturbance, and z s and z us the displacements of the sprung and unsprung masses, respectively.

m s . zs (t) = -k s (z s (t) -z us (t)) + F ER (t) (3.1) 
m us . z us (t) = k s (z s (t) -z us (t)) -F ER (t) -k t (z us (t) -z r (t))
Considering an Electro-Rheological (ER) damper, the semi-active damper's force is given by equation (3.2), and can be re-written as (3.3) considering a nominal (uncontrolled, fixed) and controlled force, where u(t) represents the control input to the semi-active suspension system.

F ER (t) = c(⋅).( żs (t) -ż us (t)) (3.2) F ER (t) = c 0 ( żs (t) -ż us (t)) nominal + u(t) controlled (3.3)
Remark: c 0 stands herein for the minimal damping coefficient, even for faulty situations. This can be adjusted according to each simulation scenario. This chapter shall detail and compare different LPV FDI methods and their results on a QoV model with semi-active damper. This chapter is organized as follows: the modelling of actuator faults, for the studied suspension system is seen on section 3.3; the polytopic LPV fault identification scheme is presented on section 3.4; on section 3.5, the switched LPV fault identification scheme is detailed; on section 3.6, the Sliding-Mode FDD scheme is designed and discussed; on section 3.7, these approaches to actuator fault identification are compared and discussed; conclusions are drawn on section 3.8.

Problem Statement: Fault Representation and Modelling

This chapter is focused on the identification of faults on the Semi-Active Damper structure of the described vehicle suspension system. This can later on be used as information for a Fault Tolerant Control Strategy.

We shall assume that a fault occurs upon the controlled part of the actuation of the semi-active ER damper. This fault can represent anything that leads to a loss in the effectiveness of the damper, for instance, an oil leakage.

Thus, the fault will be represented by a loss of effectiveness factor α, such that:

F ER (t) = -c 0 .( żs (t) -żus (t)) + α.u(t) (3.4) 
In a faultless situation, we shall have α = 1 and, in the worst of scenarios (where the damper is no longer controlled, thus passive), we shall have α = 0. For this, α ∈ [0 , 1].

Let us now consider a state-space representation of this semi-active suspension of a QoV model with an ER damper subject to faults. By using equations (3.1) , we are cast into the following state-space representation of our studied system. These measurements are, in a certain way, common on vehicular suspension systems. They can be acquired using accelerometers (for zs (t)), relative displacement sensors (for the suspension deflection, z def (t) = z s (t) -z us (t)). The deflection velocity ( żdef (t)) and unsprung mass velocity ( ż us (t)) can be used with certain carefullness, as they arise from derivative filters; this will be further discussed on results section. Finally, this leads us to:

ẋ(t) = A ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 1 0 0 -ks ms -c ms ks ms c ms 0 0 0 1 ks mus c mus -(kt+ks) mus -c mus ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .x(t) + B 1 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 kt mus ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .w(t) + B 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 1 ms 0 -1 mus ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .α.u(t) (3.5) y(t) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 -1 0 0 1 0 -1 -ks ms -c ms ks ms c ms ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ C .x(t) + ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ D 1 .w(t) + ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 1 ms ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ D 2 .α.u(t)
The problem herein studied is, finally, to estimate, identify and diagnose the value of this fault factor α only through the measurements of the system outputs y(t).

To facilitate further development, let us re-write the faulty damper QoV system with an augmented space-state representation considering x a (t) = x T (t) α w(t) T . We also assume that the fault factor α is constant, so α = 0. As of this, we have:

Aug. Sys. ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ẋa(t) ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ẋ(t) α ẇ(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = Aa ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A B 2 .u(t) Bα B 1 0 0 0 0 0 A mw ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .x a (t) y(t) = C Dα D 2 .u(t) D 1 Ca .x a (t) ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭
where we assume to have information on the type of road profile disturbance. On this basis, we have a model of the disturbance: ẇ(t) = A mw .w(t). This information may come from an external adaptive road profile estimator, as proposed in [START_REF] Tudón-Martínez | Adaptive road profile estimation in semiactive car suspensions[END_REF]. Remark that different road profiles may have greater state-space models with more than one state (say n w states), which leads to the growth of matrices B 1 and D 1 with (n w -1) null columns -for example, a sinusoidal road profile has, at least, n w = 2 states.

Notice that the matrices A a and C a are affine on u(t), due to the terms (respectively)

B α and D α . This will be treated with the studied LPV representations, in next sections.

Finally, we can design an asymptotical state observer to estimate the value of the fault factor α given by:

Fault Obs. ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ẋa (t) = A a . xa (t) + L(⋅).[y(t) -C a .x a (t)] α = 0 size(x) I size(α) 0 size(w) M . xa (t) ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (3.6)
The dynamics of the estimation error are given in equation (3.7). Then, we shall compare three different approaches on how to compute the gain matrix L(⋅). This observer matrix gain will be computed so that

(A a -L(⋅).C a ) is Lyapunov-sense stable. ė(t) = ẋa (t) -ẋa (t) = [A a -L(⋅).C a ].e(t) (3.7)
A representation of the complete problem structure is given in figure 12. Notice that the controller is not a subject of this study, but it will be considered in further works on a complete FTC -FDI scheme. 

Polytopic LPV State Observer

Let us, firstly, consider a simpler LPV approach to compute the gain matrix L(⋅). Let us remark that the control signal u(t) is perfectly known, and bounded (due to saturation constraints of the semi-active damper) inside the convex set U sat , delimited by the minimal and maximal values of u(t), u and u, respectively. Thus, we can assume u(t) as the scheduling parameter ρ(t), as it satisfies 0 < ρ min ≤ ρ ≤ ρ max . From this, we arrive at B α = B 2 .ρ and A a = A a (ρ) and, similarly, D α = D 2 .ρ and C a = C a (ρ). Thus, the augmented system (3.6) becomes LPV.

A Polytopic representation of the extended state observer (3.6) is, then:

Fault Obs. (ρ) = 2 k=1 β k (ρ) ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ (A k a -L k .C k a ) L k M 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , with 2 k=1 β k (ρ) = 1 , β k (ρ) > 0 (3.8)
where each

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ (A k a -L k .C k a ) L k M 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦
is an individual LTI system frozen at the vertex k of a polytope P defined by the boundaries of U sat .

To compute the matrix gain L(⋅) of the proposed extended observer which guarantees the stability of (3.7), we can use a H 2 (noise filtering) criteria, as seen in [START_REF] Trofino | Multivariáveis: Uma abordagem via LM Is[END_REF], considering the measurement noise as an input to the estimation error system. This is an appropriate method to design the observer, for the H 2 norm of a system, from a stochastic point-of-view, is equal to the square root of the asymptotic variance of the output when the input is a white noise (see proof in [START_REF] Dettori | LMI techniques for control-with application to a compact disc player mechanism[END_REF]), which means that the measurement noise effect will be diminished when estimating the loss of effectiveness fault factor α.

H 2 Observer: Problem Definition

The H 2 observer problem definition resides, then, on minimizing the following objective function:

J = T eν (s) 2 under e(t) t=0 = 0 (3.9)
under the two following conditions (exponential stability of T eν (s) and closed-loop observation error dynamics):

lim t→∞ e(t) → 0 for ν ≡ → 0 (3.10) ė(t) = (A a (⋅) -L(⋅).C a (⋅)).e(t) -L(⋅).D ν ν(t) (3.11)
where T eν (s) represents the Laplace-domain transfer function between the estimation error e(t) and an additive measurement noise ν(t) on each component of y(t). Notice, also, that the matrix D ν represents the influence of the measurement noise on the system measured outputs.

Problem Solution

This problem's solution is, then, obtained by minimizing the scalar γ in:

Trace(N ) ≤ γ (3.12)
and solving the following LMI s, given in equations (3.13)-(3.15), taking Q = P.L(⋅), with P and N being two positive definite matrices.

Remark: the maximal variance of the estimation error, with this solution, is given by Trace(N ).

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ A T a (ρ).P + P.A a (ρ) -C T a (ρ).Q T -Q.C a (ρ) -Q ⋆ -I ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ < 0 (3.13) 2β.P + A T a (ρ).P + P.A a (ρ) -C T a (ρ).Q T -Q.C a (ρ) < 0 (3.14) ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ N -D T ν .Q T ⋆ P ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ > 0 (3.15)
Notice that β, in the LMI (3.14), is a root-locus condition imposed on the eigenvalues of (A a (ρ) -L(ρ).C a (ρ)): these must be greater, in module, than β (chosen due to settling time restrictions of each application), inside region R p of complex plane C, as described by figure 13.

It is also worth remarking that a weighting function can be introduced to specify the frequency range on which sensor noises should be attenuated. Besides, (obviously) sensor noise is considered as a high frequency signal. As we have only one scheduling parameter ρ, we shall solve (3.13)-(3.15) at ρ = u, finding L, and at ρ = u, finding L. Finally, the gain matrix L(⋅) is given by:

L(ρ) = ρ max -ρ ρ max -ρ min .L + ρ -ρ min ρ max -ρ min .L (3.16)
Simulation and validation results with this Polytopic LPV approach can be found on section 3.7.

Switched LPV State Observer

This previous Polytopic approach might present some Structural Observability (understood as in the sense presented on [START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF]) problems whenever u(t) = 0, for the rank conditions of the structural observability matrix O(ρ) = C a (ρ) C a (ρ).A a (ρ) . . . T might not be guaranteed. This is easier to grasp if one takes a look at A a (ρ) ρ=0 , which presents an empty column. Let us now, thus, consider a more robust approach to overcome this possible problems; this topic is discussed on [START_REF] Nguyen | A switched LPV observer for actuator fault estimation[END_REF] and [START_REF] Briat | Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time[END_REF].

We shall suppose, now, that our systems switched between two types of subsystems: one of fully observable modes (or, at least, detectable) and one that is not structurally observable.

From this, we can designed a switched LPV extended observer in order to guarantee closed-loop continuous observability under dwell-time constraints; dwell-time being, herein, the time period for which the systems is set to its structurally undetectable mode.

Switched Systems

Before presenting this second LPV FDI approach, let us touch some topics on switched systems. As presented on [START_REF] Daafouz | Stability analysis and control synthesis for switched systems: a switched lyapunov function approach[END_REF] and [START_REF] Branicky | Multiple lyapunov functions and other analysis tools for switched and hybrid systems[END_REF], switched systems represent a class of hybrid dynamical systems consisting on a family of subsystems and a rule that implies a commutation between them. This systems can be represented, for instance in discrete-time, as in equation (3.17). Herein, x[k] ∈ R n represents the state vector, u[k] ∈ R m the control input vector and y[k] ∈ R p the system output vector. σ[k] ∶ N → J represents the discrete switching rule, with J = {1, . . . , N }, which means the triplet of matrices

(A σ[k] , B σ[k] , C σ[k] ) are defined, at each arbitrary step k, within the finite set {(A 1 , B 1 , C 1 ), . . . , (A N , B N , C N )}. x[k + 1] = A σ[k] .x[k] + B σ[k] .u[k]
(3.17)

y[k] = C σ[k] .x[k]
Some assumptions shall be considered for further analysis:

• The matrix C σ[k] is full (row) rank ;
• The switching rule σ[k] is assumed to be known (available) at each instant k.

Stability Condition for Switched LPV Systems

One has, still, to look closely at (Lyapunov-sense) stability conditions for switched LPV systems. It is important to notice that, for instant, the system (3.17) might be stable for every triplet

(A σ[k] , B σ[k] , C σ[k]
), but Lyapunov-sense unstable due to the switching phenomenon.

Let us consider a simple continuos system ẋ(t) = A σ (ρ).x(t), with x(0) = x 0 and A σ switching according to the switching rule σ(t) and, thus,

A σ ∈ {A 1 (ρ), . . . , A N (ρ)} for A i ∈ R n×n and i = 1, . . . , N .
The guarantees of (asymptotical) stability to this system reside on: if all subsystems A i are stable and the Lyapunov function V (x(t)) is non-increasing at the switching instants, the system is stable. This is:

A i (ρ) T .P σ + P σ .A i (ρ) + Ṗσ < 0, ∀i = 1, . . . , M (3.18) V (x(τ k )) ≤ V (x(τ - k )
), τ k is the switching instant

New LPV Representation

Herein, to facilitate a LPV representation of this system, we shall explicit the controlled force as u(t) = u(t) .sign(u(t)), settling a scheduling parameter ρ(t) = u(t) . Remark: once again, ρ is assumed to satisfy 0 < ρ min ≤ ρ ≤ ρ max , which is true for our studied system, for u(t) is bounded inside the convex set U sat .

From this, we arrive at B α = B 2 .ρ.sign(u(t)) and A a = A a (ρ), and, similarly,

D α = D 2 .ρ.sign(u(t)
) and C a = C a (ρ). Thus, once again, our augmented system (3.6) becomes LPV.

We shall, then, take our switching rule as the discontinuous function σ(t) = sign(u(t)), considering:

sign(u(t)) ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ +1 , if u(t) > 0 0 , if u(t) = 0 -1 , otherwise ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (3.19)
It is important to remark that the matrix B α (ρ) ∈ [-B 2 .ρ , B 2 .ρ] and, thus, A a (ρ) switches among the three subsystems put on equation (3.20). This similarly occurs to the matrix C a (ρ), that switches according to the same rule among the three subsystems seen on (3.21). On figure 14, we can see a representation of the system (∑ Fault Obs. ) switching between its modes due to the switching law σ(t), considering the discontinuous function sign(⋅) as explained on (3.19).

A a (ρ) = col ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A -B 2 .ρ B 1 0 0 0 0 0 A mw ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A 0 B 1 0 0 0 0 0 A mw ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A B 2 .ρ B 1 0 0 0 0 0 A mw ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (3.20) C a (ρ) = col C -D 2 .ρ D 1 , C 0 D 1 , C D 2 .ρ D 1 (3.21)
Figure 14 -Switched System and All Switching Modes Our problem, now, resides on finding L(⋅) for the switched system (3.6), considering the switching rule σ(t), under dwell-time conditions.

Theoretical Background on Minimal Dwell-Time

Let us recall what is presented on [START_REF] Briat | Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time[END_REF], on some theoretical background results that are welcome to this present study. Considering the generic (continuous-time) switched system

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ẋ(t) = A σ(t) .x(t) x(t 0 ) = x 0 σ(t 0 ) = σ 0 (3.22)
we can scrutinize:

Lemma 3.1. The following statements are equivalent and when one of them holds, the switched system (3. 22) is (Lyapunov-sense) asymptotically stable for any and all sequence of switching instants. These statements are:

(i) The quadratic map V (x(t), σ(t)) = x T (t).P σ(t) .x(t) with each P j being a positive definite matrix with j = 1 , . . . , N , is a Lyapunov function for system (3.22) with

V (x(t), j) ≤ -µ x(t) 2 2 , t ∈ (τ k , τ k+1 ), j = 1 , . . . , N (3.23) 
and

V (x(τ k+1 ), σ(τ k+1 )) -V (x(τ k ), σ(τ k )) ≤ -ξ x(τ k ) 2 2 (3.24)
hold for some µ, ξ > 0, all x(τ ), x(τ k ) ∈ R n and any sequence of switching instants {τ k } k∈N .

(ii) There exists a positive definite matrix P j with j = 1 , . . . , N , such that the LMI s (3.25) and (3.26) hold for all j, k = 1 , . . . , N , j ≠ k and all φ ≥ T .

A T j .P j + P j .A j ≺ 0 (3.25) e A T j .φ .P j .e A j .φ -P m ≺ 0 (3.

26)

(iii) There exists some positive definite matrix P j with j = 1 , . . . , N , such that the LMI s (3.27) and (3.28) hold for all j, k = 1 , . . . , N and j ≠ k.

A T j .P j + P j .A j ≺ 0 (3.27) e A T j . T .P j .e A j . T -P m ≺ 0 (3.28)
Proof. Proof of (i ) ⇔ (ii ). Assuming that (3.23) holds, this would imply that equation (3.29) is true for all x(t) ∈ R n , t ≠ τ k , k ∈ N. This is equivalent to stating that (3.25) holds. The proof that (3.24) implies (3.26) follows the same reasoning. With reverse argumentation, the proof that (ii ) ⇒ (i ) follows.

x T (t).[A j .P j + P

j .A j ].x(t) ≤ -µ x(t) 2 2 (3.29)
The proof of (ii ) ⇒ (iii ) is immediate. Let us consider that (3.27) and (3.28) hold. From this, one can consider a Taylor expansion of the term T (φ) = e A T j .φ .P j .e A j .φ around φ = φ 0 ≥ T . This yields:

T (φ 0 + δ) = e A T j .φ 0 .P j .e A j .φ 0 + σe A T j .φ 0 .[A T j .P j + P T j .A j ].e A j .φ 0 + o(σ) (3.30)
where o(⋅) represents a Landau small-o notation. Hence, we arrive at:

T (φ 0 + δ) -T (φ 0 ) = σe A T j .φ 0 .[A T j .P j + P T j .A j ].e A j .φ 0 + o(σ) (3.31)
Since (3.27) holds, the right-hand side is negative definite for all φ 0 ≥ T and, therefore, we have that:

e A T j ( T +δ) .P j .e A j ( T +δ) ⪯ e A T j .
T .P j .e A j . T (3.32) for all δ ≥ 0 and, thus:

e A T j .φ .P j .e A j .φ -P m ⪯ e A T j .

T .P j .e A j . T -P m ≺ 0 (3.33) hold for all δ ≥ T . The proof, then, is complete.

Finally, let us state:

Theorem 3.2. The following statements are equivalent and when one of them holds, the switched system (3. 22) is (Lyapunov-sense) asymptotically stable for any and all sequence of switching instants. These statements are:

(i) There exists some positive definite matrices P j with j = 1 , . . . , N such that the LMIs (3.34) to (3.35) hold for all j, k = 1 , . . . , N and j ≠ k.

A T j .P j + P j .A j ≺ 0 (3.34) e A T j . T .P j .e A j . T -P m ≺ 0 (3.

35)

(ii) There exists matrix maps R j ∶ [0, T ] → S n , being S n the set of symmetric matrices, with j = 1 , . . . , N , with R j (0) being positive definite, and a scalar ξ > 0 such that the LMIs (3.36) to (3.37) hold for all j, k = 1 , . . . , N , j ≠ k and τ ∈ [0, T ].

A T j .R j (0) + R j (0).A j ≺ 0A T j .R J (τ ) + R j (τ ).A j -Ṙj (τ ) ⪯ 0 (3.36) R j ( T ) -R m (0) ⪯ -ξ.I (3.

37)

(iii) There exists matrix maps S j ∶ [0, T ] → S n , being S n the set of symmetric matrices, with j = 1 , . . . , N , with S j ( T ) being positive definite, and a scalar ξ > 0 such that the LMIs (3.38) to (3.40) hold for all j, k = 1 , . . . , N , j ≠ k and τ ∈ [0, T ].

A T j .S j ( T ) + S j ( T ).A j ≺ 0 (3.38) A T j .S J (τ ) + S j (τ ).A j -Ṡj (τ ) ⪯ 0 (3.39) -S m (0) + S j ( T ) ⪯ -ξ.I (3.40)
Proof. Proof follows from Lemma 3.1 and what is presented as Stability with Periodic Switching Times theorem on [START_REF] Briat | Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time[END_REF].

Notice that the notion of maximal dwell-time was herein represented by T . The preliminary results brought by lemma 3.1 and theorem 3.2 can be extended considering a dwell-time condition for each of the systems modes, this is Tj .

Detectability of LPV Switched Systems Under Mode-Dependent Dwell-Time

Now, we can formally investigate the issue of guaranteed detectability of a LPV switched system, with mode-dependent dwell-time constraints. Let us highlight that the notion of mode-dependent dwell-time is understood in the sense of [START_REF] Briat | Affine characterizations of minimal and mode-dependent dwell-times for uncertain linear switched systems[END_REF].

From what is presented on Lemma 3.1 and Theorem 3.2, and considering the convex conditions Lemma presented on the following (as on [START_REF] Boyarski | Time-convexity and time-gain-scheduling in finite-horizon robust h ∞ -control[END_REF]), we can consider that our LPV system (3.6) has dwell-time conditions for each of its modes (refer to figure 14). Lemma 3.3. Consider the generic switched system ẋ(t) = A.x(t). Assume that for some interval t ∈ [t 0 , t f ] and δ t = t f -t 0 , there exists two positive definite symmetric matrices P 1 and P 2 of appropriate dimensions that satisfy the following conditions:

P 2 -P 1 δ t + P 1 .A + A T .P 1 < 0 (3.41) P 2 -P 1 δ t + P 2 .A + A T .P 2 < 0
Then, for this system, there is stability when considering Lyapunov function

V (t) = x T (t).P (t).x(t), with P (t) = P 1 + (P 2 -P 1 ).( t-t 0 δt ), which is strictly decreasing over the time interval t ∈ [t 0 , t f ].
Proof. Proof is detailed on [START_REF] Boyarski | Time-convexity and time-gain-scheduling in finite-horizon robust h ∞ -control[END_REF].

Assuming that upper and lower bounds for the dwell-time for each mode are those seen on (3.42), for j = 2 as the undetectable mode (taken into by the switching rule sign(u(t)) u(t)=0 = 0). Then, as explained, the dwell-time constraints are T j max ≥ (τ j s+1 -τ j s ) ≥ T j min for all s ∈ N, considering τ j s a switching instant onto (or from) mode j.

DT ∶= [T 1 min , T 1 max ] × ⋅ ⋅ ⋅ × [T N min , T N max ] = [T 1 min , +∞) × [T 2 min , T 2 max ] × [T 3 min , +∞) (3.

42)

Remark: When T j max = +∞, for some index j, it is then necessary that the respectful subsystem j is (Lyapunov sense) stable (likewise, detectable); in our study case, then, the pairs (A 1 a (ρ), C 1 a (ρ)) and (A 3 a (ρ), C 3 a (ρ)) should be detectable, which is true. From this, we can cast our analysis to the following theorem for the observability of switched systems under mode-dependent dwell-time constraints, considering the classical asymptotical observer design, as in (3.6) and its error dynamics. Remark that the controllability and observability are dual problems! Thus, let us now propose Theorem 3.4 so that there is guaranteed continuous detection of α, under the given constrained mode-dependent dwell-time conditions, for our studied LPV system. Firstly, let us remark that, herein, guaranteed continuity of detection is understood in the sense that a continuous-time asymptotical observer can be designed and a matrix gain L(⋅) can be found so that the observation error e(t) converges asymptotically to (0, 0) in finite time.

It is also, herein, assumed that T 1 min ≥ T 3 min > T 2 max . This might be to conservative, but its goal is to guarantee the time-wise stabilization of the tracking error e (after possible instabilities at mode j = 2).

Consider the switched LPV system (3.6) with bounded scheduling parameters ρ that abide to {ρ ∈ Ω ρ min ≤ ρ ≤ ρ max }. Consider τ s as the switching instants to (or from) mode 2 (structurally undetectable), with s ∈ N and T 2 min ≤ (τ s+1 -τ s ) ≤ T 2 max , in respect to the bound presented on (3.42).

If the following statements are true, then there is guaranteed detectability of (3.6) for any ρ ∈ Ω (and for any control input u(t)) and for all t if the dwell-time within each mode respect the proposed bounded conditions:

(i) There exists positive definite matrices K j with j = 1 , . . . , N so that the LMIs (3.43) hold for all T j ∈ [T j min , T j max ] and j, k = 1 , . . . , N for j ≠ k where it is implied that (3.44) is necessary, considering Ψ j (0) = I and s ≥ 0.

Ψ j (T j ).K j .Ψ j (T j ) T -K k ≺ 0 (3.43) Ψ j ds (s) = [A a (ρ) -L i (ρ).C a (ρ)](s).Ψ j (s) (3.

44)

(ii) There exists a collection of N positive definite matrices P j and Y j for all j = 0, . . . , N such that the LMIs (3.45) to (3.47) hold, where each P j (ρ) is polytopic within each bounded variations of ρ within each of the systems modes. It is important to remark that: i 0 represents the initial mode for the initial switching rule, this is σ(t) t=0it most importantly assumed that i 0 ≠ 2; τ δ is a prescribed time period to guarantee the piecewise continuity of P σ (ρ, t) and Y σ (ρ, t) . The notation on these equations is simplified:

A represents A a (ρ) and C represents C a (ρ), whereas P j and Y j are P j (ρ) and Y j (ρ).

Remark: the matrices P j→2 and Y j→2 represents the matices whiting witch the continuous P σ (ρ, t) and Y σ (ρ, t) were, respectively, when occurred the switching transition

τ 2→m s+1 , inside the time interval t ∈ [τ s , τ s + T 2 max ) [τ s , τ s + T 2 min ). (P j+1 -P j ) T 2 max + A T j .P j -C T j .Y T j + P j .A j -Y j .C j < 0, (3.45) 
A T j P j -C T j .Y T j + P j .A j -Y j .C j < 0 (3.46) P j+1 -P j ≥ 0 ∀j = 1, . . . , (N -1) (3.47) P σ (ρ, t) ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ P i 0 (ρ) if t ∈ [0 , τ 1 ) P j (ρ) + (P 2 (ρ) -P j (ρ)). t-τs T 2 max if t ∈ [τ s , τ s + T 2 max ) [τ s , τ s + T 2 min ) P j→2 (ρ) + (P m (ρ) -P j→2 (ρ)). t-τ s+1 τ δ if t ∈ [τ 2→m s+1 , τ 2→m s+1 + τ δ ) P m (ρ) if t ∈ [τ s+1 + τ δ , τ s+2 ) (3.48) Y σ (ρ, t) ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Y i 0 (ρ) if t ∈ [0 , τ 1 ) Y j (ρ) + (Y 2 (ρ) -Y j (ρ)). t-τs T 2 max if t ∈ [τ s , τ s + T 2 max ) [τ s , τ s + T 2 min ) Y j→2 (ρ) + (Y m (ρ) -Y j→2 (ρ)). t-τ s+1 τ δ if t ∈ [τ 2→m s+1 , τ 2→m s+1 + τ δ ) Y m (ρ) if t ∈ [τ s+1 + τ δ , τ s+2 ) (3.49) 
(iii) Moreover, if one takes in consideration the observer error dynamics, as on (3.7), these will be (Lyapunov-sense) asymptotically stable for all switching instants in I τ and the states of the system (3.6) are continuously reconstructable only if one takes the proper choice of matrix function L σ (⋅) as on (3.51).

I τ = col{τ 1 , τ 2 , . . . } (3.50) L σ (ρ, t) = P -1 σ (ρ, t).Y σ (ρ, t) (3.51) Proof. Proof of (i):
The goal is to show that this statement is a necessary and sufficient condition for the existence of a feedback gain L σ (⋅) for the system (3.52) where m(t) = -C a .e(t).

ė(t) = A a .e(t) + L σ (⋅).m(t) (3.52)
Then, the idea is to use Lemma 3.1 and Theorem 3.2 to prove stability (equivalent problem to observability) of a closed-loop system subject to a minimum dwell-time, as presented on [START_REF] Briat | Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time[END_REF]. Noting that for all φ ≥ T and L σ (⋅) t=φ = L σ (⋅) t= T and following the same argumentation as on the proof of Lemma 3.1, we find that condition (3.27) exactly becomes a classical algebraic Ricatti stabilization condition for our system and condition (3.28) is cast into (3.43), which proves the exactness of (i).

Proof of (ii): Let us reduce our analysis to the generic switched system (3.22). Let us recall that this system is (Lyapunov-sense) asymptotically stable if:

V (x(t)) = x T (t).(A j (ρ).P σ (ρ, t) + P σ (ρ, t).A j (ρ) + Ṗσ (ρ, t)).x(t) < 0 (3.53) V (x(τ k )) ≤ V (x(τ - k )) , τ k as switching instant
It is assumed, then, that at the switching instant τ k , the system switched from A j (ρ) to A m (ρ). Thus, we can write the Lyapunov function at instant τ k as:

V (x(τ - k )) = x T (τ k ).P m .x(τ k ) , V (x(τ k )) = x T (τ k ).P j .x(τ k ) (3.54)
Then the non-increasing Lyapunov function condition (3.46), given the polytopic approach for the LPV system.

V (x(τ k )) ≤ V (x(τ - k )) holds if P m -P j ≥ 0,
Proof of (iii) follows from (i) using a change of variables Y j = -M j .K j .L j and continuing with the solution of the LMI s on (ii). Notice that the condition implied by (i) is solved by the proposition on (ii).

Method Synthesis

The main idea with this method is to guarantee the observer's asymptotical stability (considering error dynamics) for all t, considering there is a restriction on the system's maximal dwell-time on each of its modes. With the first polytopic approach, for this study, there was no guarantees of continuous detection of α (or stability on ė(t)) if the system passed through its undetectable mode (for u(t) = 0).

Simulation and validation results with this Switched LPV approach can be found on section 3.7.

Sliding Mode LPV State Observer

Let us now consider the use of a Sliding Mode LPV State Observer to determine the value of the loss of effectiveness on actuator α. This method is adapted from what is throughly discussed on [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF], where both actuator and sensor faults are considered, to a feasible application to our studied system (QoV model).

For this method, we shall consider that the system states can be separated into two main parts: those state that are unsensible to faults (x 1 (t)) and those which suffer influence of faults (x 2 (t)). For the QoV system, we shall consider a new state-space representation for this kind of separation. This is:

ẋ1 (t) = A 11 .x 1 (t) + A 12 .x 2 (t) (3.55) ẋ2 (t) = A 11 .x 1 (t) + A 12 .x 2 (t) + B 1 2 .w(t) + B 2 2 .u(t) + D 2 (ρ).f i (t) (3.56) y new (t) = x 2 (t) (3.57) (3.58)
where A ∈ R n×n is a linear transformation on states x new (t) = T x .x(t), this is

A = T x .A.T -1 x , B 1 ∈ R n×w comes from T x .B 1 , likewise for B 2 = T x .B 2 ∈ R n×m ; finally, D(ρ) ∈ R n×q
represents the fault distribution matrix. Notice that, with this formulation, the road disturbance w(t) and control signal u(t) only influences x 2 (t).

Notice that, for this FDI approach, other measured outputs are considered. These are the deflection velocity, the unsprung mass velocity; the suspension deflection is also considered as an auxiliary output. This is

y(t) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ żdef (t) y 1 new (t) ż us (t) y 2 new (t) z def (t) yaux(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦
, where

y new (t) = x 2 (t) and x 1 (t) = z s (t) z us (t)
. The use of the auxiliary output shall be described soon.

It is assumed that D(ρ) can always be decomposed into fixed and a varying component, D(ρ) = D.E(ρ), for D ∈ R n×q and E(ρ) ∈ R q×q . It is important to remark that r 1 (ρ) and ψ ∶ R + × R p × R d → R + are known well-defined functions. Taking our scheduling parameter as ρ = u(t), with known bounded conditions (explained in the two previous approaches), we shall arrive, with this formulation, at the point where detected faults f i (t) will, numerically, represent (α -1). From this, we can write D = B 2 and E(ρ) = ρ.I q . Then, let us consider a function f v (t, ρ) ∶ R + × R d → R q to represent "virtual faults" upon the actuators, in order to incorporate the LPV variations. Then, it is assumed that (3.59) is always guaranteed.

f v (t, ρ) < r 1 (ρ). u(t) + ψ(t, y, ρ) (3.59)
The determinant det(E(ρ)) will be considered as det(E(ρ)) ≠ 0 and, for this, the actual fault factor α will be able to be retrieved from the estimative f v (t, ρ). The functions r 1 (ρ) and ψ(t, y, ρ) are defined so to constitute the upper bound on the worst of a loss of effectiveness fault on the system dynamics (this is, for α = 0), as shows equation (3.59). The scenario for which det(E(ρ)) = 0 will be treated as an exception and discussed afterwards.

Then, the fault observer for this approach will little modify what is presented on (3.6) to a different structure for observing the fault-free states x 1 and the fault-prone states x 2 . This is presented on the following structure:

ẋ1 (t) = A 11 . x1 (t) + A 12 . x2 (t) -G L 1 .e y (t) -G N 1 .ν 1 (t) (3.60) ẋ2 (t) = A 21 . x1 (t) + A 22 . x2 (t) -G L 2 .e y (t) -G N 2 .ν 2 (t) + B 1 2 . ŵ(t) + B 2 2 .u(t) (3.61) e y (t) = y new (t) -ŷnew (t) (3.62) ŷnew (t) = x2 (t) = 0 x 1 I x 2 Cnew . ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x1 (t) x2 (t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (3.63)
where, instead of defining the gain matrix L(⋅), one has to define the gain matrices G L and G N and the auxiliary input ν(t). These are so that a sliding motion is induced and the output estimation error e y (t) (see equation (3.62)) goes to zero in finite time. Once this is true, a first order sliding mode is said to have been obtained on the surface S (see book [START_REF] Edwards | Sliding mode control: theory and applications[END_REF]), for:

S = {e ∈ R n ∶ C new .e = 0} (3.64) 
Remark that the observer on equations (3.60)-(3.61) is purely a state observer and does not consider the augmented states as in the previous approaches. The information on the disturbance ŵ(t) shall be generated by a parallel estimator, detailed further on this section. The state estimation error (e j = x j (t) -xj (t)) dynamics will be, thus, given by what is presented on equations (3.65)-(3.66), considering ŵ(t) = w(t), for simplicity.

ė1 (t) = A 11 .e 1 (t) + A 12 .e 2 (t) + G L 1 .e y (t) + G N 1 .ν 1 (t) (3.65) ė2 (t) = A 21 .e 1 (t) + A 22 .e 2 (t) + G L 2 .e y (t) + G N 2 .ν 2 (t) + D 2 .f v (t, ρ) (3.66)
As once proposed on [START_REF] Drakunov | Sliding mode observers[END_REF], we can, from this point, start with design tools so that the sliding mode is attained on the surface S, given by (3.64).

It is important to remark that, with this representation we have A 11 = 0 2×2 . From this, considering an adequate fast stabilization of (3.65), we can take, for instance:

G L 1 = -A 12 (3.67) G N 1 = L = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ -λ 1 0 0 -λ 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (3.68) λ 1 ≥ λ 2 > 0 (3.69) ν 1 (t) = ȇ1 (t) (3.70)
which means L is chosen with fast-enough eigenvalues λ j and ȇ1 (t) represents an (open-loop) estimative of the prediction error e 1 . Taking, for simplicity, ȇ1 (t) = e 1 (t), we arrive at:

ė1 (t) = L.e 1 (t) (3.71)
which is (Lyapunov sense) stable and converges to zero in finite time. The estimation ȇ1 (t) is retrieved with the used of the measured (and auxiliary) outputs. This is:

ȇ1 (t) = x1 (t) ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ zs (t) z us (t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ -x1 (t) (3.72) z us (t) = t -∞ y 2 new (τ )dτ (3.73) zs (t) = y aux (t) + z us (t) (3.74)
Notice that, as our system (QoV model) has physical bounded limits, every state has bounded conditions: for example z s ≤ z s (t) ≤ z s . This means that there are (known) bounds on the maximal estimation of e 1 (t). The error between the estimation ( ȇ1 (t)) and the real error e 1 (t) are given by the initial conditions of the integral on (3.73). Notice that, then:

e 1 (t) -ȇ1 (t) ≤ (3.75)
which means that, on the worst case scenario, we shall have:

ė1 (t) = L.e 1 (t) + L (3.76) e 1 (t) → e
Now, let us analyse how to choose the degrees-of-freedom on the other error dynamics ( ė2 (t)). This is, let us expand (3.66), considering that:

w(t) -ŵ(t) → w (3.77) e 1 (t) → e (3.78) G L 2 = (A stab 22 -A 22 ) (3.79) ν 2 (t) = µ. D 2 .sign(e y (t)) (3.80)
wherein ν 2 (t) is a sliding-mode injection term, that µ is an appropriate scalar so that

B 1 2 w + A 12 . e + f v (t, ρ) < µ and that G N 2 is a Lyapunov matrix for A stab 22 ,
we shall arrive at:

G N 2 .A stab 22 + (A stab 22 ) T .G N 2 = I 2 (3.81) ė2 (t) = A stab 22 .e 2 (t) + G N 2 .ν 2 (t) Sliding-Mode Term +D 2 .f v (t, ρ) + (A 12 . e + B 1 2 . w ) ideally=0 (3.82)

The Sliding-Mode Injection Term

A complete analysis on the Sliding-Mode injection term ν 2 (t) is exposed on [START_REF] Moreno | A lyapunov approach to second-order sliding mode controllers and observers[END_REF], with results on stability and proofs that the output error will converge to zero in finite time, considering the suitable choice of G N 2 .

Retrieving Fault Information

Let it be assumed that the sliding-mode observer has been well designed and that the sliding motion on the surface S has been established. Then, during the sliding motion, we know it is true that e y (t) = 0 and dey(t) dt = 0, considering the assumptions presented beforehand. From this, we know:

ė2 (t) = [A 21 .e 1 (t) + B 1 2 ( ŵ(t) -w(t))] stable convergence +A stab 22 .e 2 (t) + G N 2 .ν 2 (t) + D 2 .f v (t, ρ) (3.83) G N 2 .ν sliding 2 (t) → -D 2 .f v (t, ρ) (3.84) 
The function ν 2 (t) is discontinuous, but can replaced by a continuous approximation, considering a suitable (small enough) choice of σ. This is, for every component k of ν 2 (t), we can take:

(ν sliding 2 ) k (t) ≈ µ. D 2 . e y k (t) e y k (t) + σ (3.85)
Finally, one can retrieve the fault information and the fault factor α by following the steps:

• Computing the approximate ν sliding 2 (t) = col{(ν sliding 2 ) k (t)} ; • Retrieving fv (t, ρ) = -D2 ⋆ .(G N 2 .ν sliding 2 ), for D2 ⋆ being the pseudo-inverse of D2 ; • Reconstructing f i (t) as of fi (t) = E -1 (ρ). fv (t, ρ) ;
• Computing the loss of effectiveness factor α as α = 1 + fi .

Let us consider, for this method, that the changes upon α are extremely lowfrequency. This is, we are not interested in transitory behaviour of α, but mostly on steady-state information on the loss of effectiveness of the actuator. Then, after the procedure detailed above, one should consider the use of (small band) low-pass a filter with a time constant sufficiently small to pass the slow component of the fault, but large enough to eliminate the high frequency components (noise and other nonlinearities).

Zero-Determinant: Problem Solution

Let us emphasize the solution added to this method to overcome the problems when reconstruction faults fi (t) for ρ(t) = 0. Notice that, when this is true, det(E(ρ)) = 0 and, thus, there is no inverse E -1 (ρ). In this situation, a feedback of past values of the loss of effectiveness is used to maintain the signal α(t) continuous. This is, on a discrete-time sense, when ρ = 0, α[k] is taken as z -1 α[k].

Disturbance Estimation

As, for this study, it is assumed that there is a known model on the type of road profile disturbance, a reduced-order state observer can be designed as on:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ẋ(t) = A.x(t) + B 1 . ŵ(t) + B 2 .u(t).α + M x ẇ(t) = A mw . ŵ(t) + M w ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (3.86) ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ M x M w ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = L w .y(t) -L w . C 0 nw .x(t)
where α comes from the output of the sliding-mode FDI scheme and L w is an appropriate gain matrix.

Finally, we can see on figure 15 a full representation of this LPV Sliding-Mode Fault Estimation Observer, with details to every sub-block. 

Simulation and Final Discussion

In this section, we will present some simulation results considering the problem of estimating actuator (loss of effectiveness) faults on a semi-active suspension system of a Quarter of a Vehicle, with ER dampers. This simulation scenario (given road profile and control signal) is show in figure 16.

The system is initially considered at the origin x(0) = x 0 = 0 0 0 0 T .

Figure 16 -Simulation Scenario

Notice that u(t) is set to zero inside the time interval t ∈ [37 , 42] s, meaning that the ER damper is uncontrolled inside this interval. This allows us to analyse the switching behaviour of the studied system and observability conditions of the augmented LPV system (3.6).

As explained, the information used on the dynamics of the road profile disturbance w(t) is considered to be provided by a road identification scheme, prior to the FDI structure.

In figures 17 and 18 we can find, respectively, the obtained simulation results considering each of the following fault estimation approaches: Polytopic and Sliding-Mode.

The considered loss of effectiveness factor α varies from 1 to 0.753 at t = 13 s and, then, to 0.357 at t = 25 s -which means that the effectiveness of actuator is successively lost. At t = 37 s, the fault factor α returns to 1, which is, obviously, hypothetical. Figure 17 shows that the proposed polytopic approach accurately estimates the faults (loss of effectiveness) on the semi-active suspension actuators (dampers) for whenever u(t) ≠ 0. Likewise, in figure 18, we see that the sliding-mode approach gives an estimated α that follows the main trend of α(t), but its estimation error (α -α) is much bigger than with the polytopic approach.

Second Simulation Scenario

For goals of illustrations, we shall consider a second simulation scenario as well. For this scenario, we will use small sinusoidal road profile w(t), that could represent a series of bumps for a vehicle running on a dry road at constant speed.

In terms of the expected damper force, which is computed with the use of equation (3.87), where d c (t) represents a manipulated PWM signal, which is taken as a series of steps to simulate changes upon the damping coefficient c(⋅). In these following simulations, the control signal (damper force) never stays at u(t) = 0 for any t.

F ER (t) = controlled f c .d c (t).tanh(a 1 . żdef (t) + a 2 .z def (t)) (3.87) + b 1 . żdef (t) + b 2 .z def (t)
passive It important, also, to show the values used for the damper's parameters, as of equation (3.87), seen in table 1. The simulated vehicular suspension system is initially considered close to its origin (this is, x(0) ≠ 0), and the initial conditions on w(t) are also non-null. The suspension damper is initially fault-less (α = 1). An additive (high-frequency) measurement noise is added on each measured output y(t), in order to better represent a real situation.

As explained, the information used on the dynamics of each road profile disturbance w(t) is considered to be provided by a road identification scheme, prior to the proposed Fault Detection and Identification structure. For the following simulation results, the disturbance model A mw is different than the disturbance's dynamic behaviour, to induce a modelling error and to check if this error is overlapped by the robustness of the H 2 extended observer approach. This modelling error is detailed on equation (3.88).

A real mw = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 -2.4674 4 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (3.88) A used mw = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 -2.5 3 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦
For the these simulation results, we consider a sequence of steps as the loss of effectiveness fault. This can represent, for instance, a successive oil leakage scenario. At t = 13 s, α decreases to 0.735. This is done once again at t = 25 s, when the loss of effectiveness fault α decreases to 0.375. Finally, at t = 37 s, α decreases to 0.275. The estimation α is seen in figure 19, in comparison with the actual value of α. Finally, we shall herein compare the proposed polytopic LPV FDD scheme to a Sliding-Mode fault reconstruction approach, as proposed by [START_REF] Alwi | Fault reconstruction using a LPV sliding mode observer for a class of LPV systems[END_REF].

For this, we shall take a simple single-step scenario, wherein the loss of effectiveness fault α decreases at t = 25 s to 0.85. The estimation of α by both approaches is seen in figure 22, in comparison with the actual value of α.

Remark 2. In real applications, a fault would not be so harsh (step), but actually a decreasing exponential curve. Nonetheless, simulations with step-like faults are sufficient to prove accuracy of estimation. As seen in the presented simulation results, the proposed Polytopic LPV approach presents some accurate and smooth results on estimating damper loss of effectiveness faults.

In comparison with the discussed sliding-mode fault reconstruction approach, which is very common in literature, as seen in [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF], [START_REF] Xiao | Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[END_REF] and [START_REF] Hamayun | Design and analysis of an integral sliding mode fault tolerant control scheme[END_REF], the proposed Polytopic LPV scheme presented more efficient and accurate results.

In terms of simulation, this is very satisfactory, for the accurateness of the approach proposed by this article is very strong and it is, also, much simpler and less complex than a sliding-mode approach (or even a parity-space residue analysis approach).

Experimental Validation

Now, in order to throughly validate the proposed approach for damper fault identification, we shall present some experimental testing. This is of most importance as it is a proof of the efficiency, reliability and feasibility of the proposed fault detection method.

For this, a real test-bench is used for the application of this method. This testbed is the INOVE Soben-Car experimental platform that allows dealing with several configurations and use cases (see full details on [START_REF] Vivas-Lopez | Inove: a testbench for the analysis and control of automotive vertical dynamics[END_REF]). Figure 23 shows the outline of this test-bench. On this plant, the Semi-Active suspension system involves four Electro-Rheological (ER) dampers which have a force range of ± 50 N. These dampers are adjusted using a controlled voltage inside the range of [0 , 5] kV, generated by amplifier modules. The control input for these modules are PWM signals at 25 kHz. On terms of capturing the vehicle's behaviour, this testbed is equipped with a wide variety of sensors, like the available measured outputs (y). Once again, remark that the deflection velocity measurement is computed thanks to the use of a derivative-filter, as explained beforehand.

On table 2, we see the numerical values for each of the parameters of this vehicle testbed, where the indexes ij represent the vehicle's front/rear -left/right corners (i = (f, r) and j = (l, r)).

Let us, then, describe the considered experimental validation scenario:

The used road profile (considering a full vehicle plant and its four suspension systems) is the scenario of a vehicle running at 120 km h in a straight line on a dry road, when it encounters a sequence of 10 mm sinusoidal bumps. This road profile, considering the front-left corner, is seen on figure 24. The information on this disturbance model A mw is considered accurate, although there exists some modelling error because, at this testbed, the actual road profile is slightly different than the desired road due to an internal motor control system.

The measured system outputs for this validation scenario are seen in figure 25. Real measurements are z def (t) and zs (t), whereas żdef (t) was computed numerically. Obviously, measurement noises are already present, due to (physical) instrumentation constraints of the used test-bench.

For the detailed validation purposes, the loss of effectiveness faults were virtually set upon the actuators. To mimic a loss of effectiveness fault on the dampers of this Finally and most importantly, in figure 27, we see the detection of the loss of effectiveness fault factor α and its respectively (virtually set) real value. This proofs the worthiness of the FDI approach proposed in this paper and how it can be efficiently used for the identification of faults on real dampers of automotive suspension systems. The accurateness on experimental validation is, obviously, not as strong as on simulation, due to physical instrumentation constraints, nonlinearities and noise. On the other hand, the approach is sufficient and strong to detect faults on dampers, which is the goal of this article. 

Analysis and Discussion

As we could see all these two approaches were able to partially detect the loss of effectiveness on the damper actuator (α), although a discussion should be made on when each approach is more appropriate.

Uncontrolled Damper Situation

Both sliding-mode and polytopic LPV FDI approaches give an inaccurate estimation of α whenever u = 0. The switched LPV approach, on the other hand, might prove itself to better compute α for this kind of situation. This is no necessarily a problem on detection the loss of effectiveness, for it is not logical to detect the loss of effectiveness of an actuator when there is no actuation. This means that the Electro-Rheological damper of the suspension system is uncontrolled (thus, passive). In a purely mathematical sense, not taking into account the actual system (QoV ), the switched LPV should be considered.

The switched approach is not yet shown herein, for its goals is mostly to provide tools to guarantee an overall continuity of detection. This approach will be dealt with in future works, depicting the proposed theorem and its application to a range of numerical examples.

Complexity of Observers

In terms of implementation complexity, it is important to remark that the slidingmode approach is far more complex than the other two: it consists of several steps of filtering and relies on the use of the sliding-mode term, which is highly nonlinear and must be implemented with a certain amount of precision so that the results converge to what is expected. In terms of simulation, this approach need an overly small relative tolerance error on integrating solvers.

It is also important to remark that this approach need information żdef (t) and ż us (t). This signals are not usually measured on vehicle systems and have to be retrieved through the use of filtered derivatives upon z def (t) and z us (t), which might increase noisy behaviour and worsten results on the estimation of α.

Regarding the polytopic approach, it only needs the offline computation of the L(⋅) matrix and, so, requires small implementation complexity.

On the use of Derivative-Filters

Not of least importance, one has still to remark that this studied consider the use of two measurements ( żdef (t) and ż us (t)). These signals are acquired through the use of derivative-filters, in order to estimate the derivative and reject high-frequency noise. As the average bandwidth of these signals are known, these derivative filter could be designed as exposes the (Laplace-domain) equation (3.89), for each variable z j with bandwidth w z j . 3 (3.89)

F z j (s) = s ( 3 1.3wz j .s + 1)

Overall Analysis

Finally, after a carefull inspection of the results presented on figures 17 to 18, we can claim that, for the studied problem and purpose (considering the QoV model, the sliding-mode observer approach, as proposed in [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF], is not as efficient as purely LPV approaches.

The extended version of polytopic LPV observer design proved itself a much more natural and straightforward extension of almost-LTI control tools to the nonlinear observation problem, as in [START_REF] Patton | LPV fault estimation and FTC of a two-link manipulator[END_REF] and [START_REF] Zhang | An improved adaptive fault estimation design for polytopic LPV systems with application to helicopter models[END_REF]. The proposed switched LPV approach presented tools of analysis to guarantee detectability of α, assuming that the control signal stays null for a given maximal period.

The choice between these two approaches should be made considering each studied application. For this study, for instance, the simpler polytopic LPV FDI is already sufficient, given the discussion uncontrolled damper situation, for u(t) = 0.

Conclusions

This chapter presented the issue of detecting and identifying actuator faults with three different LPV strategies. As showed by some simulation results, these strategies are able to collect information on actuator faults, considering the problem of a Quarter of Vehicle model with a semi-active suspension system and a faulty ER damper. A discussion is made on which approach should be taken for different situations.

Design of a Real-Time Model Predictive

Control Scheme for Semi-Active Suspension Control of a Full Vehicle

About Chapter

The previous chapter dealt with Fault Detection problems on actuators. Now, in this chapter, let us consider the problem of controlling the semi-active dampers.

The main problem here is to handle the dissipativity constraints of this semi-active dampers. These constraints can be cast as actuator saturation conditions. From this, our control design problem is resumed by handling actuator and state contraints with fast computation.

This chapter is focused on solving the Real-Time application of an MPC controller scheme for the control of a full car model with semi-active suspension system, with possibility of implementation on the Soben testbed. This is a continuation of the theoretical formulation presented in [5] and referenced as future works in [START_REF] Nguyen | A model predictive control approach for semi-active suspension control problem of a full car[END_REF].

Abstract

This chapter presents a control structure, based on Model Predictive Control, for the Real-Time control of a semi-active suspension system of a full vehicle, equipped with four Electro-Rheological dampers. This control scheme considers a full linear vehicle model of 14 states and a state-plus-disturbance estimator based on a H 2 filtering approach. The proposed control algorithm should provide a suitable trade-off between comfort and handling performances of the vehicle in a very short sampling period (T s = 5 ms), for the implementation in a real vehicle test-bench. The control structure is tested and compared to other standard fast control approaches. Results show the overall good behaviour of this control scheme. 

Introduction

In order to enhance a vehicle's driving performance in terms of road handling and ride comfort, one should take special care with the vehicle's suspension system. Evermore present in the automotive industry, Semi-Active suspension systems are to be highlighted, being efficient and, at the same time, less energy-consuming and less expensive than purely active suspensions.

The use of semi-active suspension systems seems to provide a good trade-off between costs and performance requirements. This type of suspension is present on new state-ofthe-art top-cars and a good deal of academic and industrial research is focused on this topic, as seen in [START_REF] Hrovat | Survey of advanced suspension developments and related optimal control applications[END_REF], [START_REF] Lu | Multiobjective optimal suspension control to achieve integrated ride and handling performance[END_REF] and others. Further details on semi-active suspension systems are throughly discussed in [START_REF] Patten | Suppression of vehicle induced bridge vibration via hydraulic semi-active vibration dampers[END_REF], [START_REF] Fischer | Mechatronic semi-active and active vehicle suspensions[END_REF] and [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF].

The main challenge faced by semi-active suspension control problems is how to handle the dissipativity constraints of these dampers. Several control design problems have been worked on with a range of different approaches. In [START_REF] Rubel | Semi-active suspension control[END_REF], and more recently in [START_REF] Poussot-Vassal | Survey and performance evaluation on some automotive semi-active suspension control methods: A comparative study on a single-corner model[END_REF] and [START_REF] Tseng | State of the art survey: active and semi-active suspension control. Vehicle system dynamics[END_REF], we can find an extensive review of semi-active suspension control approaches. Some of the most recent and modern control techniques have been applied for this kind of problem. In [START_REF] Unger | Application of LQ-based semi-active suspension control in a vehicle[END_REF], it is proposed an LQ-based clipped optimal control; a H 2 control approach is presented in [START_REF] Du | Semi-active h ∞ control of vehicle suspension with magneto-rheological dampers[END_REF]; LPV control approaches, dealing with the dissipativity constraints of these suspension systems, are given in [START_REF] Do | An LPV control approach for semi-active suspension control with actuator constraints[END_REF], [START_REF] Poussot-Vassal | A new semi-active suspension control strategy through LPV technique[END_REF] and [START_REF] Nguyen | A state feedback input constrained control design for a 4-semi-active damper suspension system: a quasi-LPV approach[END_REF].

Nevertheless, the most natural approach towards optimal control of processes subject to constraints is Model Predictive Control (MPC ), as throughly detailed in [START_REF] Camacho | Model predictive control[END_REF]. MPC allows to explicitly consider the effect of input and state constraints in the control design process. As the studied system does have an actuator saturation problem, MPC presents itself as a plausible and elegant control solution.

Some works have employed a MPC approach for semi-active suspension systems, although most of these studies only consider a simpler quarter-car vehicle model. In [START_REF] Canale | Semi-active suspension control using "fast" model-predictive techniques[END_REF], a fast MPC scheme is designed for a half-car vehicle, where the controller is tuned based on a quarter-car suspension model and does not take into account the effect of future disturbances. In [START_REF] Poussot-Vassal | A methodology for optimal semi-active suspension systems performance evaluation[END_REF], a methodology is proposed for optimal semi-active suspension control, based on MPC, considering a quarter-car vehicle model and previously-measured road disturbances. However, the quarter-car model is not sufficient to describe the dynamics of a full vehicle with four semi-active dampers. The idea of solving the control problem at each corner of the car (four separate controllers) might seem persuading and simple enough, but the effects of coupling and load transfer distribution between corners may not be handled, which should lead to degraded performance, as seen on [START_REF] Nguyen | A model predictive control approach for semi-active suspension control problem of a full car[END_REF].

Throughout literature, only a few studies have considered multivariable MPC semi-active control techniques considering the full car dynamics. On [START_REF] Gohrle | Model predictive control of semi-active and active suspension systems with available road preview[END_REF], a nonlinear programming solution approach to this problem is proposed, considering an approximate description of constraints. A practical implementation of this approach might be not be suitable.

On the other hand, in [START_REF] Nguyen | A model predictive control approach for semi-active suspension control problem of a full car[END_REF], a full vehicle semi-active suspension MPC control is formulated and solved using Mixed Integer constraints and optimization, where simulation results show the interest of this control approach. The same author presents a more detailed version on [5], where we can see that practical implementation on a vehicle testbed is not yet satisfied, since the computational time of the MPC is greater than the nominal sampling periods. It is a known fact that the computation requirements of predictive controllers (MPC ) is usually high, due to an optimization problem which has to be solved online, at every sampling period. Thus, in this work, a practical implementation of a semi-active suspension MPC controller for a full vehicle testbed with 4 semi-active dampers is proposed. The designed control scheme includes a feedback LPV Fast MPC controller with an H 2 extended state observer for system states and future road disturbances. This chapter contains several contributions:

• A H 2 noise-attenuation extended state observer solution is presented as to estimate system states and predict future road disturbances. Notice that the performance of MPC controllers are improved with the use of accurate future disturbance information (as seen in a class of applications, in [START_REF] Pawlowski | Predictive control with disturbance forecasting for greenhouse diurnal temperature control[END_REF] and [START_REF] Morato | Advanced control for energy management of grid-connected hybrid power systems in the sugar cane industry[END_REF]);

• A Clipped Analytical MPC suspension controller is presented, obtained by the analytical solution of quadratic function;

• A Feedback LPV MPC suspension control is presented by solving a quadratic minimization problem with polyhedral constraints, with explicit mathematical methods, in a sufficient computational time (for a possible real-time application);

• Theoretical formulation, simulation results and observer validation are presented with details, showing the interest of the proposed control approach. Comparisons are made with other simpler control approaches.

The structure of this chapter is given as follows: section 4.3 describes the full vertical vehicle model with 4 semi-active suspensions and the problem to be solved; section 4.4 shows the first theoretical results with the computation of an extended H 2 state observer to estimate future disturbances and system states; section 4.5 presents the MPC controller for the semi-active suspension problem; in section 4.6, the practical implementation, on a vehicle testbed, of this LPV MPC approach is described; finally, results are presented and discussed in section 4.7 and conclusions are drawn in section 4.8. Let us, firstly, present the dynamical model of a vehicle's vertical behaviour. This is a classic 7 degrees of freedom suspension model, as seen in figure 28 and referred to in [START_REF] Poussot-Vassal | Attitude and handling improvements through gain-scheduled suspensions and brakes control[END_REF], and will be used for analysis and control purposes. This model involves the chassis dynamics (vertical displacement (z s ), roll angle (θ) and pitch angle (φ)) and the vertical displacements of the wheels (z us ij ) at the front/rear -left/right corners (i = (f, r) and j = (l, r)). This described 7 -DOF model is governed by the following equations:

m s .z s = -F sf l -F sf r -F srl -F srr (4.1) 
I x . θ = (-F sf r + F sf l ).t f + (F srl -F srr ).t r I y . φ = (F srr + F srl ).l r -(F sf r + F sf l ).l f m us ij .z us ij = F s ij -F tz ij
where I x and I y represent the moments of inertia of the sprung mass around the longitudinal and lateral axis, respectively, h represents the height of the center of gravity (COG). l f ,l r ,t f and t r are the COG-front, rear, left and right distances, respectively.

In terms of the forces, F tz ij depicts the vertical tire forces, given by:

F tz ij = k t ij .(z us ij -z r ij ) (4.2)
where k t ij represent the stiffness coefficients of the tires and z r ij are the road profile disturbances that the vehicle is subject to.

Each vertical suspension forces (for each of the 4 corners of the vehicle) is represented by F s ij and, in this study, will be modeled by a spring and a damper with linear and nonlinear characteristics, respectively. This is:

F s ij = k ij .(z s ij -z us ij ) + F d ij (4.3)
where k ij representes the nominal spring stiffness coefficient and F d ij the semi-active controlled damper force. This damper force is given by (4.4), where c ij (⋅) represents controlled damping coefficient. The dissipativity constraints of each semi-active damper are given in (4.5). To facilitate our control purposes (in order to exclude nonlinearities), we shall consider the damper forces as given by (4.6), where u ij is an incremental force (used as control input) and

c nom ij = (cmax ij +c min ij ) 2
is the nominal damping coefficient. Then, the suspension force given in equation ( 4.3) can be finally re-written as (4.7).

F d ij = c ij (⋅).( żs ij -żus ij ) (4.4) 0 ≤ c min ij ≤ c ij (⋅) ≤ c max ij (4.5) F d ij = c nom ij .( żs ij -żus ij ) + u ij (4.6) F s ij = k ij .(z s ij -z us ij ) + c nom ij .( żs ij -żus ij ) + u ij (4.7) 
The position (and, thus velocities) of each sprung mass at each corner of the vehicle (z s ij ) is derived from the vehicle equations of motion, and considering the roll and pitch angles as small enough, they become linearized as in:

z s f l = z s -l f .(φ) + t f .(θ) (4.8) z s f r = z s -l f .(φ) -t f .(θ) z s rl = z s + l r .(φ) + t r .(θ) z srr = z s + l r .(φ) -t r .(θ)

State-Space Representation

One obtains the following state-space representation of this Full Car model, when injecting (4.2) and (4.7) into (4.1), this is:

F ull V eh. ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ẋ(t) = A.x(t) + B 1 .w(t) + B 2 .u(t) y(t) = C.x(t) + D 1 .w(t) + D 2 .u(t) ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (4.9)
where the system states are given by (4.10), the control inputs are given by (4.11), the unmeasured (disturbances) are given by (4.12) and, finally, the measured outputs are given As this work considers a model predictive control approach, an optimization problem must be solved at each sampling period (T s ). For this, the continuous-time model (4.9) will be treated as discrete-time, as in (4.14), considering a discretization at the sampling frequency of f s = 200 Hz (which is the testbed's fixed rate, further explained in section 4.6 of this chapter). Note that the matrices A d , . . . , D 2d are constant.

Ts F ull V eh. ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ x[k + 1] = A d .x[k] + B 1d .w[k] + B 2d .u[k] y[k] = C d .x[k] + D 1d .w[k] + D 2d .u[k] ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (4.14)

Input Constraints

Let us, now, depict with more details the dissipativity conditions of the semi-active suspension systems, as given in equation (4.5) -the damper force constraints. As we shall consider an MPC approach, these conditions have to be put as state, input or output constraints (upon x, u or y). From (4.5-4.6), considering z def ij = z s ij -z us ij and multiplying each (4.5) by z def ij , we have that:

c min ij . żdef ij ≤ c nom ij żdef ij + u ij ≤ c max ij żdef ij if żdef ij ≥ 0 c max ij . żdef ij ≤ c nom ij żdef ij + u ij ≤ c min ij żdef ij if żdef ij < 0 (4.15)
From this, since

c nom ij = (cmax ij +c min ij ) 2 
, we must guarantee that:

u ij ≤ (cmax ij -c min ij ) 2 
. żdef ij . Equivalently, we can express the dissipativity constraints as linear inequalities between the control inputs u ij and the state variables x, this is:

if C in .x[k] ≥ 0 , then ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ u ij [k] ≥ (c min ij -cmax ij ) 2 .C in .x[k] u ij [k] < (cmax ij -c min ij ) 2 .C in .x[k] ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ if C in .x[k] < 0 , then ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ u ij [k] ≥ (cmax ij -c min ij ) 2 .C in .x[k] u ij [k] < (c min ij -cmax ij ) 2 .C in .x[k] ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (4.16)
where żdef ij = żs ij -żus ij = C in .x, taking C in as the appropriate matrix for this linear combination of states. This representation of the damper force constraints is given in [START_REF] Nguyen | A model predictive control approach for semi-active suspension control problem of a full car[END_REF], where a Mixed Integer approach is taken. 

Extended H 2 State Observer

To ensure the feasibility and accuracy of the control objectives, it is of great importance to present the used observer design methodology. The observer design has to take two goals into account: estimate the system's states x[k] and disturbances w[k] and predict the future disturbances w[k + n] and states x[k + n]. Future disturbance estimation is well known to improve MPC performances.

In order to satisfy these design goals, we must firstly consider a disturbance model. As exploited and discussed thoroughly in [START_REF] Muske | Model predictive control with linear models[END_REF] and [START_REF] Qin | A survey of industrial model predictive control technology[END_REF], and as the system model (4.14) has no integrating modes (considering input/output dynamics), we can improve the control perfomances by taking a simple constant model. This is, we consider:

w[k + n] = w[k] for n = 1 . . . N p (4.17)
where N p stands for the prediction horizon.

Remark: Differently from [START_REF] Gohrle | Model predictive control of semi-active and active suspension systems with available road preview[END_REF], this method does not add any complexity in terms of sensors (no need for cameras or added structures to our plant).If some prior knowledge of the road profile is available, a more accurate model can be computed, as seen in [START_REF] Unger | Application of LQ-based semi-active suspension control in a vehicle[END_REF], but, for this study, it will be considered that there is no information on the type of road profile. So, we can consider an augmented state-space representation of the system, as follows:

Ts Aug.Sys. ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x[k + 1] w[k + 1] ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = A obs ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ A d B 1d 0 I ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x[k] w[k] ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + B obs ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ B 2d 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ .u[k] y[k] = C d D 1d C obs . ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x[k] w[k] ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + D 2d .u[k] ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (4.18)
Let us also consider the presence of a measurement noise (ν) upon the measured outputs y. This is:

y[k] = C d D 1d . ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x[k] w[k] ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + D 2d .u[k] + F u ν[k] (4.19)
This being defined, we can, then, design an observer to estimate the extended states with the following structure: where L ∈ R 18×8 is the observer matrix gain to be defined.

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x[k + 1] ŵ[k + 1] ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = A obs . ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x[k] ŵ[k] ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + B obs .u[k] + L(y[k] -ŷ[k]) ŷ[k] = C obs . ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x[k] ŵ[k] ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + D 2d .u[k] ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (4.20)
To compute this gain, we will consider an H 2 observer with pole placement definition, as seen in [START_REF] Trofino | Multivariáveis: Uma abordagem via LM Is[END_REF]. This is an appropriate method to design the observer, for the H 2 norm of a system, from a stochastic point-of-view, is equal to the square root of the asymptotic variance of the output when the input is a white noise, see proof in [START_REF] Dettori | LMI techniques for control-with application to a compact disc player mechanism[END_REF].

Problem Definition:

The (discrete-time) H 2 observer problem (detailed in [START_REF] Trofino | Multivariáveis: Uma abordagem via LM Is[END_REF]), is, then, to minimize γ in (4.21), taking into account that (4.22) and (4.23) are true, where T eν (z) being the transfer function that represents the effects of ν(z) upon e(z)

= ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x(z) w(z) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ - ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ẑ(s) ŵ(z) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ .
Therefore, the observer design consists in computing the gain L so that the transfer function (z-domain) from the measurement noise ν[k] to the estimation error e[k] meets the H 2 -norm upper bond constraints.

In order to improve the convergence performances of the observer, we shall consider that the poles of the computed observer are placed inside a parameterized region C(µ, ) (circle centered at µ with radius ), smaller than the unit circle (being fast enough for the problem). 

Problem Solution

Following [START_REF] Trofino | Multivariáveis: Uma abordagem via LM Is[END_REF], the problem is rewritten in terms of Linear Matrix Inequalities. Considering that there is one measurement noise for every measured output (F u = I 8 and ν ∈ R 8 ), the solution to this problem consists in minimizing γ, if and only if there exists two positive definite symmetric matrices P and R and a matrix Y so that the following inequalities hold: From this, L is computed as L = P -1 .Y .

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ P P ( A obs -µ.I ) -Y. C obs -Y ⋆ P 0 ⋆ ⋆ I ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ > 0, ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ R I 0 ⋆ P 0 ⋆ ⋆ I ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ > 0, Trace(R) < γ (4.
Numerical application of the H 2 filtering observer design: for the studied control application, the numerical computation of these LMI s yields γ = 0.6602, which leads to a good observer, considering = 0.03 and µ = 0.0067. This poles are chosen so that the observer's errors converge very fast to zero, there is no fixed relationship between these poles and the system's CL poles. This problem's solution was obtained with the use of Matlab [START_REF] Matlab R | a[END_REF] and of solver SeDuMi [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF].

Let us remark that the variance of e[k] due to variations on ν[k] (white noise) can be given by ∆e 2 = T eν (z) H 2 . ∆ν 2 ; as we know that the measurement noise has small norm, the variance caused upon the estimation error e[k] is small enough for the study, as seen in the following simulation results.

Let us also remark that there is a trade-off between the convergence velocity of this H 2 observer (given by the pole placement region C(µ, )) and the noise-attenuation goals. To better handle this trade-off, an extra output filter is added to the estimation, in order to guarantee high-frequency noise rejection. The continuous-time transfer function of this filter is given by W e (s) = 1 0.001s+1 .I 18 .

Experimental Validation Results

Firstly, let us present a (continuous-time) frequency analysis of T eν (s) and W e (s).T eν (s), so we can analyse the effect of measurement noise ν upon the estimated states. Herein, the transfer function W e (s) represents the high-frequency noise filter for every state. On figure 29, we see the maximal and minimal singular values (σ decomposition) of T eν (s) and W e (s).T eν (s). As we can see, the effect of measurement noise (in higher frequencies, over 10 4 Hz) on the (augmented states) estimation will be throughly attenuated. These following results herein presented are a validation of the described H 2 observer, for they use real measurement data (y) retrieved from the INOVE Soben-Car mechatronic testbed (details on section 4.6), considering a sequence of bumps road profile scenario z r . The measurement noise, naturally, is present upon each measured output (y).

On figure 30, we also see an accurate estimation of the road profile at each corner of the vehicle. The road profile estimation of the front-left corner is showed in details on figure 31. As it can be seen, the effect of the measurement noise is still present, but the main trend is followed by the estimated augmented states, which is enough from the MPC controller's point-of-view. On figure 32, we see the (sufficiently) somewhat accurate estimation of the system states (only some important states are shown). Once again, the effect of ν(t) is still present (but diminished) and the main trend is followed closely by the estimated states.

The proposed H 2 extended observer approach can serve well as to provide an MPC controller information on states and disturbances, as it could be seen with the presented results. 

A Model Predictive Controller Solution for Semi-Active Suspension Control

The main control objective of this work on semi-active automotive suspensions is to isolate the body from the road disturbances, without deteriorating road handling. These two objectives can be referred to as comfort performance and handling performance, respectively, and can be described through the vehicle's COG acceleration (given by zs ) and roll angle (given by θ), as seen in [START_REF] Kiencke | Automotive control systems: for engine, driveline, and vehicle[END_REF].

For control design purposes, let us consider two perfomance indexes, with respect to each control objective: J comf ort = ∫ τ 0 z2 s (t)dt and J handling = ∫ τ 0 θ 2 (t)dt, where τ represents a given time interval. Let us remark that it is well-known that (physically) these two objectives are conflicting. For this reason, the control method must take into account a suitable trade-off between these performance indexes, coupled with the input constraints, given by equation (4.16). We may, also, consider a possible minimization of the displacement of chassis (z s (t)), for other control purposes (can help on comfort perfomance for given road profiles).

Thus, the control problem can be solved by a well-posed constrained optimization problem, formulated in a Model Predictive Control framework. The MPC control approach to the semi-active suspension problem consists in solving the minimization of the following cost function at every discrete-time step k in a computational time smaller than the sampling period T s : where N p is the given prediction horizon, N c is the control horizon, u[k

J(U, x[k], w, N p , N c ) = Np j=1 [ξ 1 ( zs [k + j k] zmax s ) 2 + ξ 2 ( θ[k + j k] θ max ) 2 ] (4.25) + Np j=1 [ξ 3 .( z s [k + j k] z max s ) 2 ] + Nc-1 j=0 u T [k + j k].Q u .u[k + j k]
+ j k], zs [k + j k],
z s [k + j k] and θ[k + j k] denote, respectively, the control efforts, the chassis displacement, the chassis acceleration and roll angle predicted for instant k + j at instant k, using the prediction model (4.14) and considering the initial states x[k] and disturbance information w, and

U = u[k k] u[k + 1 k] . . . u[k + N p -1 k]
T represents the vector of control efforts inside the prediction horizon (to be optimized). Q u is a weighting matrix, ξ 3 is a weighting scalar and ξ 1 and ξ 2 are adequately tuned weighting coefficients that influence the trade-off between handling and comfort performances.

Remarks: for this application to be scale-wise correct, the control inputs u, z s , zs and θ are normalized with the use of z max s , zmax s and θ max -this values were retrieved from experimentation on a real vehicle test-bench. For this study, we shall take N c = N p .

In regard to what is presented on section 4.4, let us remark that the information about system states used for the solution of the MPC problem (4.26) relies on the states estimated by the designed H 2 extended observer (x[k]) and the information of future road profile disturbances ( ŵ) that is considered constant throughout the prediction horizon. The computation of the estimated states and disturbances by the H 2 extended observer has to be done before the MPC computation in a fast-enough response time.

Finally, the MPC design can be defined as:

min U J(U, x[k], ŵ, N p , N c ) s.t. ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ x[k + 1] = A d .x[k] + B 1d .w + B 2d .u[k]
dissipativity constraints on (4.16)

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (4.26)
As the usual MPC control approach, the problem (4.26) is solved at every iteration k and the control effort to be applied to the real system corresponds to the first entry of the minimized control effort vector U (solution to (4.26)).

In figure 33, the proposed control approach is summarized, considering the MPC and the H 2 observer blocs. Remark: ν(t) is the unknown measurement noise and the plant is subject to an external w(t) road profile. 

On Constraints

The computation of the MPC optimization problem depends heavily on the contraints. The solution to this problem as put in (4.26) must be U ∈ U, where U is the set that represents the constrained region within which the control law is applicable to the real plant.

For the present problem, the set U is given by every u[k] so that the dissipativity constraints on (4.16) are respected. These constraints switch according to the sign of

C in .x[k].
To solve this issue, the optimization problem can be formulated as a quadratic problem with logical constraints -Mixed Integer Quadratic Programming problem, for details see [START_REF] Nguyen | A model predictive control approach for semi-active suspension control problem of a full car[END_REF], [5]. A practical application is given in [START_REF] Mendes | Economic energy management of a microgrid including electric vehicles[END_REF] and in others throughout literature.

Practical Implementation

The main goal of this chapter's work is the Real-Time implementation of a modelbased predictive controller for semi-active suspension systems, as described in the previous sections.

For this, a real testbed is considered for the application of the control scheme proposed in figure 33. This testbed is the INOVE Soben-Car experimental platform that allows dealing with several configurations and use-cases (see full details on [START_REF] Vivas-Lopez | Inove: a testbench for the analysis and control of automotive vertical dynamics[END_REF]). Figure 34 shows a picture of this testbed. On this plant, the semi-active suspension system involves four Electro-Rheological (ER) dampers which have a force range of ± 50 N. These dampers are adjusted using a controlled voltage inside the range of [0 , 5] kV, generated by amplifier modules. The control input for these modules are PWM signals at 25 kHz. The characteristic set that represents the real nonlinear behaviour of the used semi-active dampers are seen on figure 35, where a force vs. deflection speed graph is seen, for different PWM signals, as presented on [5]. These characteristics imply on the input constraints presented on equation (4.16).

In terms of capturing the vehicle's behaviour, this test-bench is equipped with a wide variety of sensors. For our study, these sensors correspond to the available measured outputs (y) as seen on equation (4.13). 

Computational Time Constraints

On figure 36, we can see a representation of the closed-loop system of this testbed, that is able to interpret Matlab and SimuLink control laws, operating with a fixed sampling frequency of f s = 200 Hz. This condition implies that the available working time within which the proposed control scheme (MPC and H 2 observer) has to compute the control law is fixed (has to be smaller than 0.005 s). Through simulation, the online computation of the proposed constrained MPC problem was tested, with the use of Matlab [START_REF] Matlab R | a[END_REF] with Yalmip toolbox tools [START_REF] Lofberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF] and Gurobi solver [START_REF] Optimization | Gurobi optimizer reference manual[END_REF]. The computational time, considering these softwares, is seen compared to the maximal sampling period T s of the testbed in figure 37 and to the computational time of only the H 2 observer. An efficient discrete controller has to be able to compute the control law in a period always smaller than the sampling time T s . The mean computational time is around 0.0295 s and the maximal computational time is around 10 times bigger than T s . These results come from simulation on a 2.4 GHz, 8 GB RAM Macintosh computer. Obviously, faster approaches have to be considered for this real-time MPC application. The first faster MPC approach to be tested is to consider the problem's input constraints only after the computation of the control law and clip each computed control (compare and saturate in respect to figure 35) before applying to the plant. This is an unconstrained MPC approach, as seen in [START_REF] Camacho | Model predictive control[END_REF], and the minimization of J( U,x[k],w,N p ,N c ) can be computed analytically.

Considering an auxiliary output vector z[k] as in equation ( 4.27), we can write:

z[k] = zs [k] z s [k] θ[k] T (4.27) z[k] = C z .x[k] + D zu .u[k] + D zw .w[k] (4.28)
where C z and D z are constant matrices. From this, our cost function to be minimized (4.25) can be re-stated as:

J(U, x[k], w, N p , N c ) = Np j=1 z[k + j k] 2 Qz + Nc-1 j=0 u[k + j k] 2 Qu (4.29)
where ⋅ M represents the M -weighted 2-Norm and From equation (4.28), we can evolve onto the future behaviour, considering the disturbances to remain constant during the prediction horizon:

Q z = diag{ξ 1 , ξ 2 , ξ 3 }.
Z(k k) = z[k k] z[k + 1 k] . . . z[k + N p -1 k] T (4.30) Z(k k) = A ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ C z C z .A d ⋮ C z .A (Np-1) d ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .x 0 + Bw ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ D zw (C z .B 1d + D zw ) ⋮ (C z .(A (Np-2 d ).B 1d + ⋅ ⋅ ⋅ + C z .B 1d + D zw ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .w 0 (4.31) + ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ D zu 0 . . . . . . 0 C z .B 2d D zu 0 . . . 0 ⋮ ⋮ ⋮ ⋮ ⋮ C z .(A (Np-2) d ).B 2d C z .(A (Np-3) d ).B 2d . . . C z .B 2d D zu ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ Bu .U
where x 0 represents the states at given instant k, w 0 the disturbance vector at given instant k (assumed to remain constant) and U represents the future control inputs vector, as previously stated.

This formulation leads us to re-write our cost function (4.29) as quadratic in U as:

J(U, x 0 , w 0 , N p , N c ) = 1 2 U T .H.U + x T 0 .F x .U + w T 0 .F w .U + Ĵct (4.32)
where Ĵct is a constant matrix and H is defined positive, posing

H = 2.(B T u Q z B u + Q u ), F x = 2.A.Q z .B u and F w = 2.B w .Q z .B u .
In the absence of constraints, as we shall consider for the moment, the minimal value of J(U, x 0 , w 0 , N p , N c ) is given by U min = -H -1 .[F T

x .x 0 + F T w .w 0 ], which corresponds to a static LTI feedback control law. Given a suitable choice of Q z and Q u , there are guarantees of asymptotic stability of the closed-loop system. This simplified faster MPC approach consists, then, on computing the feedback control at every instant k, given x0 and ŵ0 as estimated by the H 2 observer, saturating (clipping) the control law inside the feasible region (as in figure 35) and applying to the plant. This is clear on the equivalent controller scheme put on figure 38. A small remark has to be done: in most pratical applications, an Anti-Windup structure is coupled to saturation (clipping) blocks, in order to unload excessive integral action. This means that the computed unconstrained law is summed to an anti-windup term u AW so that the control law "gets out" of the saturated mode. The Anti-Windup structure commonly considers the use of a matrix gain multiplied by the difference between the clipped law (u) and the unclipped law (u unc ); this is, if there was clipping action:

u AW = K AW .(u -u unc ) (4.33)

Fast MPC Approach

Now, let us consider a stronger fast control approach to be implemented in real-time to the full vehicle testbed. This method has been introduced in [START_REF] Wang | Fast model predictive control using online optimization[END_REF].

Firstly, let us use the original non linear damper force formulation, as given in equation (4.4), instead of using the approximated linear version (4.6). This will imply that the dissipativity constraints of the semi-active suspension system will be linear inequalities on u, as in (4.5), and the use of Mixed Integer Quadratic Programming will not be needed.

The goal here in to use an LPV model of the system to handle the nonlinearities of the damper force (4.4). Doing so, the use of Mixed Integer Quadratic Programming is no longer needed.

Then, let us assume that u is no longer what is given in (4.11), but the actual incremental damping coefficients ∆c ij [k], over the nominal values, as given by equation (4.34). The actual damping coefficients will be regulated by the PWM signal, given that

c ij [k] = c nom ij [k] + ∆c ij [k]. u = ∆c f l ∆c f r ∆c rl ∆c rr T (4.34) ρ = ( żs f l -żus f l ) ( żs f r -żus f r ) ( ż s rl -żus rl ) ( żsrr -żusrr ) T (4.35)
Then, the (discrete-time) system representation will change from what was presented in equation (4.14) to

Ts LP V F ull V eh. ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ x[k + 1] = A d .x[k] + B 1d .w[k] + B 2d (ρ).u[k] y[k] = C d .x[k] + D 1d .w[k] + D 2d (ρ).u[k] ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (4.36)
The matrices of (4.36) are not equivalent to those of (4.14), since the matrices B 2d (ρ) and D 2d (ρ) are, now, LPV. Let us remark that the difference between these two system representation models are those explained through equations (4.37)-(4.39).

B LPV 2d = B 2d .diag{ żdef ij [k]} (4.37) D LPV 2d = D 2d .diag{ żdef ij [k]} (4.38) ρ ij [k] = żdef ij [k] (4.39)
LPV systems can be understood as a range of systems well suited for the control of dynamical systems with parameter variations. These systems can be represented as an extension of LTI systems, assuming that the classical state-space representation matrix are dependent on bounded scheduling parameters ρ.

For this representation, the scheduling parameters taken are those presented on (4.35). Remark: this implicitly assumed that ( żs ij -żus ij ) is bounded.

Given this representation, the dissipativity constraints, combined with the LPV parameter assumption, imply the following (linear) problem constraints:

u min ≤ u[k] ≤ u max (4.40) x min ≤ x[k] ≤ x max
Then, the MPC problem consists on minimizing (4.25), subject to (4.40) in avid time. For this, the Fast Model Predictive Control approach, using online optimization, first proposed in [START_REF] Wang | Fast model predictive control using online optimization[END_REF], can be considered. This method can evaluate a MPC control rule, at every sampling instant k, even for time-varying input disturbances and space-state representation matrices, which is our case (for B 2d (ρ) and D 2d (ρ) are time-varying, as well as w(t)). This method is also interesting since it has been proved to work with a system with 12 states, 3 control inputs and a horizon of 30 samples, computing the control actions in around 5 ms -the problem herein studied is of similar size. This method (FMPC ) greatly speeds up the computational time of the control action. It consists on exploiting the special structure of the MPC quadratic problem and solving the problem approximately with the use of an early terminated primal barrier interior-point method combined with warm-start techniques. The quality of the achieved control is very high, as demonstrated in [START_REF] Wang | Fast model predictive control using online optimization[END_REF]. Notice that this method only considers linear inequality constraints on control inputs and states, which, for the present control problem (using the LPV formulation) is sufficient.

Note also that the FMPC control law that will be obtained at each sampled instant k depends on the matrices B 2d (ρ) and D 2d (ρ) fixed at instant k for ρ[k] (considered constant throughout the prediction horizon N p ). This is, after all, a gain-scheduling approach. See [START_REF] Besselmann | Explicit MPC for LPV systems: Stability and optimality[END_REF] for further reading on the stability and optimality issues of this kind of approach, and in particular on the procedure to determine bounds on the suboptimality of this FMPC solution.

Let us, now, detail the FMPC method applied to the LPV system (4.36); this follows [START_REF] Wang | Fast model predictive control using online optimization[END_REF]: in section 4.6.2.2.1, the primal barrier interior-point method is presented and its application to the quadratic problem is shown; in section 4.6.2.2.2, the infeasible start Newton method is shown, in order to deal with the quadratic problem's constraints; in section 4.6.2.2.3, the used warm start techniques are presented and, finally, in section 4.6.2.2.4, some other possible adjustments are briefly described.

Primal Barrier Interior-Point Method

From here on, let us consider the quadratic program as expressed in equation (4.41), where z represents an overall optimization variable given by (4.42). It is important to depict that the matrices H, P , . . . , b have a special considerable structure, as exposed in [START_REF] Wang | Fast model predictive control using online optimization[END_REF]. Herein, N p stands for the prediction horizon, n represents the number of states, whereas m depicts the number of control inputs.

minimize z T Hz + g T z subject to P z ≤ h, Cz = b (4.41) z = (u[k], x[k + 1], . . . , u[k + N p -1], x[k + N p ]) ∈ R Np(m+n) (4.42)
The primal barrier method resides, roughly speaking, on replacing the inequality constraints of (4.41) by a barrier term, finding, then, an approximate problem. This is put on equations (4.43)-(4.44), considering p T i as the rows of P . This problem is, after all, a convex optimization problem with linear equality constraints. 

φ(z) = l.Np+κ i=1 -log(h i -p T i .z) (4.44)
A complete discussion of this approximate optimization method is discussed on [START_REF] Jansen | Primal-dual algorithms for linear programming based on the logarithmic barrier method[END_REF].

Infeasible Start Newton Method and Fast Computation of the Newton Step

The presented FMPC approach resides on the primal barrier method, but as well on the infeasible start Newton method (see the book [START_REF] Boyd | Convex optimization[END_REF], Sect. 11.2.2 for a complete discussion) and fast computations of the Newton step.

Let us associate the equality constraints on z with a dual variable µ ∈ R Np.n . The conditions of optimality for our modified problem (4.43) become those seen on equation (4.45), where κP T d is the gradient of κφ(z) and d i = 1 h i -p T i z . The residual vector r, composed by the primal residual r p and the dual residual r d , is to be stacked by the solver.

r d = 2Hz + g + κP T d + C T µ = 0 (4.45) r p = Cz -b = 0
The infeasible start Newton method consists, then, on initializing the optimization algorithm at point z 0 (given by any µ 0 such that the inequality constraints are strictly satisfied). From this point, the solution (z sol , µ sol ) is maintained if the residuals (r) are small enough; else, the estimative solution is refined by linearizing the optimality conditions (4.45) and computing the dual and primal increments ∆z and ∆µ, to be summed upon z and µ. The search for these increments is done by solving the following linear equations:

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 2H + κP T diag(d) 2 P C T C 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ∆z ∆µ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = - ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ r d r p ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (4.46)
The fast computation of the Newton step, then, resides on the following steps, considering Σ = 2H + κP T diag(d) 2 P :

• Computing the Schur complement (see [START_REF] Zhang | The Schur complement and its applications[END_REF]), Y = CΣ -1 C T and β = -r p + CΣ -1 r dthis is done using the Cholesky factorization of each sub-block of Σ and forming Y by backward and forward substitution ;

• Determining ∆µ by solving Y ∆µ = -β -using, once again, the Cholesky factorization of Y and backward and forward substitution ;

• Finally, computing ∆z by solving Σ∆z = -r d -C T .µ -this requires only matrices already computed in previous steps.

Warm Start Techniques

Let us remark that the studied FMPC method also uses some warm start techniques for the described approximate optimization method. The used warm start method is, simply, to use the previously computed z as the initial z 0 for the next optimization (Newton) step. Using this technique, it can be proved with self-concordance, that the total number of steps will be bounded by a polynomial function of (4.43)'s dimension.

The application of the warm start to the MPC algorithm is, basically, using the previous plan of control actions (u[k] to u[k + N p -1]), shifted in time (z +1 ) as the starting point for the next Newton loop.

Other Adjustments and Comments

Some other adjustments can be used upon the Infeasible Start Newton Method coupled with Warm Start techniques and the Approximate Primal Barrier Method applied to MPC. These are discussed on [START_REF] Wang | Fast model predictive control using online optimization[END_REF] and, herein, shall be only enumerated:

• Use of a fixed parameter κ in (4.46);

• Use of a maximal iteration limit, for the Newton algorithm.

Also on [START_REF] Wang | Fast model predictive control using online optimization[END_REF], we can see a number of problems tested using the FMPC method and a SDPT3 -based (see [START_REF] Toh | SDPT3-a MATLAB software package for semidefinite programming, version 1.3. Optimization methods and software[END_REF]) MPC solution. The FMPC method far outperforms the SDPT3 solver, in terms of computational time.

Results and Analysis

Given the presented problem and the respective control approaches, in this section we shall analyze the effectiveness of these controllers with respect to the control goals, in simulation, considering the fixed sampling period of 5 ms. The used prediction horizon for all the controllers is fixed at N p = N c = 10 samples. The tuning parameters of the fast MPC method are given in table 5. The use of different prediction horizons was tested, whereas these values were found to be a sufficiently good trade-off between computational time and accuracy of computed control law. On the following results, AMPC represents the analytical unconstrained clipped predictive controller as seen in section 4.6.2.1, whereas FMPC represents the stronger fast LPV MPC approach presented in section 4.6.2.2.

Let us, before presenting practical results, show that the computational time constraints of the problem (as exposed in section 4.6.1) are strictly satisfied with both analytical and fast MPC approaches. Through simulation, the online computation of the two proposed MPC approaches were tested, with the aid of software tools Matlab [START_REF] Matlab R | a[END_REF] and Yalmip toolbox [START_REF] Lofberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF]. Both mean computational times are seen compared to the maximal sampling period T s of the testbed on figure 39, considering that the computational time of the H 2 observer is embedded into the controller's computational time. As it can be seen, the computational time for the control law with the analytical MPC and with the fast MPC approach are smaller than 5 ms (testbed's sampling period).

Figure 39 -Sampling Time vs. Computational Time: AMPC and FMPC Let us consider, now, the scenario of a vehicle running at 120 km h in a straight line on a dry road, when a first 5 cm bump occurs simultaneously on all wheels, to excite the bounce motion and chassis vibration, a second 5 cm bump occurs afterwards, but only on the left wheels, to cause a roll motion and, finally, a third bump occurs at both front wheels, causing a pitch motion. This road profile and its estimation by the H 2 observer is shown in figure 40; a white measurement noise was added to each measured output (y), in order to mimic real conditions, as shows figure 41.

The used weighting coefficients for the predictive controller are given in table 4. These are settled so that the minimization of the chassis' acceleration is prioritized, while the minimization of the roll angle is not neglected -a suitable trade-off, leading mainly to comfort performances of the vehicle. 

Q u ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0.975 0 0 0 0 0.975 0 0 0 0 0.975 0 0 0 0 0.975 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ Chapter 4.

Simulation Results

Let us, firstly, analyse the efficiency and the performance of the two proposed Real-Time MPC controllers, applied to the semi-active suspension control of a full vehicle.

The chassis' displacement due to the road profile is seen in figure 42, for both proposed control approaches and the nominal damper case. The minimization of z s (t) is not of great importance for this study, as explained beforehand. Of uttermost importance, in figure 43, we can see the behaviour of the chassis' acceleration (z s (t), key for comfort performances of a vehicle) due to the road profile, with a comparison between the AMPC, FMPC and nominal case. As expected, in most situations the response with a controlled damper is more efficient than with a passive nominal suspension system. In table 6, we see the RMS values (root mean square over simulation time) for these three cases. It is, thus, clear that the FMPC method is the most efficient (specially considering what happens to roll angle behaviour with the AMPC approach). The behaviour of the vehicle's roll angle is, as expected, enhanced due to the sideways bump from the road profile around t = 2 s. Figure 44 shows the behaviour of the roll angle (θ(t)) considering the nominal passive damper (uncontrolled, taking ∆c ij = 0), and a controlled semi-active damper with the AMPC and LPV FMPC approaches. In terms of handling performances, the LPV FMPC controlled response is, at least, equal to the nominal damper, whereas the AMPC controlled response is much worse, because closed-loop system might present internal instabilities (marginal stability) due to the saturation effects (clipping constraints) not taken into account during the design step. Finally, on figure 45 we see that the dissipativity constraints of all the four dampers are respected by both Real-Time MPC approaches, although, for the AMPC method, the controlled damping coefficient stays most of the time forced at c max ij . For the FMPC method, a wider gamma of values of c ij (⋅) is used. On figure 46, we see the respective PWM signals to be applied to plant, for both control approaches. 

Second Scenario

Let us also show the results of the proposed control scheme to a different simulation scenario, aiming handling performance (prioritize minimization of θ 2 (t)). The same road profile (see figure 40) and measurement noise are considered.

On table 7, we see the chosen tuning parameters for the MPC scheme. 

Q u ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
0.9 0 0 0 0 0.9 0 0 0 0 0.9 0 0 0 0 0.9

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
The chassis' displacement behaviour is seen on figure 47 and its acceleration is seen on figure 48. As it can be seen, once again, the FMPC still outperforms the uncontrolled damper and the AMPC method in terms of comfort performances, given the RMS values for this simulation, as put on table 8. 

RMS

Finally, as this scenario considers mostly handling performances, we can analyse the roll angle behaviour, with each approach and with the uncontrolled damper, on figure 49. Once again, analyzing the RMS values for θ(t), on table 9, we can see the efficiency of the FMPC method, compared to the uncontrolled damper situation. 

Discussion

After detailing the behaviour of the closed-loop system (presented in figure 33), we can deepen a discussion on the efficiency of the proposed control approaches, given that they aim to be implemented on a real vehicle system.

The trade-off between handling and comfort performances is the main goal of this work. For the first simulation scenario, the tuning parameters ξ have been set so that the comfort performance is better than with an uncontrolled damper and so that the handling performance is, at least, equal. For the second simulation scenario, the tuning parameters were set so that handling performance is prioritized.

Firstly, let us say that there is no guarantee that the closed-loop system would remain stable with the AMPC approach, since the saturation (clipping) blocks, see figure 38, might affect the internal stability. This is seen on the handling performances sense, as the AMPC presents a much worse behaviour than that of the uncontrolled damper. In figure 46, we can also see that the PWM signal, with this approach continues to vary after the road profile stabilizes, trying to stabilize internal modes. On the other hand, the proposed FMPC control approach presents extremely efficient results, abiding to constraints, guaranteeing internal stability (as expected) and being able to enhance comfort performances (z s is well minimized, compared to the uncontrolled damper behaviour) and to maintain good handling performances ( θ is, at least, as small as when the damper is uncontrolled). The tuning parameters can be adjusted so that an adequate trade-off is achieved, as it was shown through the two different simulation scenarios.

Conclusions

This chapter presented the issue of controlling a semi-active suspension system, considering a full vertical vehicle model and using a fast model-based predictive control framework. A H 2 observer is designed to estimate the system states and future road disturbances, considering the attenuation of measurement noise. A fast Linear Parameter Varying MPC control scheme is designed for a real-time application with a sampling frequency of 200 Hz and tested through realistic simulation scenarios, considering nonlinearities and measurement noise. Thanks to the MPC -based strategy, a multi-objective problem is considered, implementing a trade-off between road handling and passenger comfort, while ensuring dissipativity constraints, with the adequate choice of tuning parameters. As showed by the simulation results, the proposed control structure behaves very well. A comparison is done to a simplified analytical unconstrained MPC.

The proposed control scheme has not yet been implemented on a full vehicle system due to practical instrumentation issues, but this shall be done in the near future. On the other hand, some validation was already done using the experimental platform INOVE Soben-Car, as presented herein. The fixed sampling time constraints of 5 ms are set in order to respect a plausible implementation on a real vehicle, with the use of a fast microcontroller.

For further works, an interesting theme is to study different kinds of implementations of this MPC proposition, considering the use of Mixed Integer Quadratic Programming in Real-Time MPC controllers.

A Robust LPV -H ∞ Approach as a Fault-

Tolerant Control Framework: Application to Full Vehicle Semi-Active Suspension Systems

About Chapter

The previous two chapters presented background results that shall be used herein. This chapter presents a Robust LPV -H ∞ approach for the goal of Fault-Tolerant Reconfiguration Technique. Previous work on FT reconfiguration techniques, by the author, is seen in [3]. This chapter considers a full vehicle model, as presented on the previous chapter and loss of effectiveness faults on each actuator.

The main problem herein exposed is how to maintain system performance whenever there is a faulty situation.

Remark 3. Not all the development proposed herein was finished until the end of the internship period by the author at gipsa-lab. Anyhow, this chapter represents a sketch for future works in terms of FTC applied to vehicle systems. All the theoretical background, contextualization, motivations and justification have already been developed. The last part focused on controller synthesis, result analysis and robustness analysis has been sketched but shall be finished post-July 2017 (end of internship).

Abstract

In this chapter, the problem of designing a Robust Fault Tolerant dynamic outputfeedback controller for Semi-Active Suspension Systems is considered. The suspension system is considered as subject to Loss of Effectiveness (time-varying) faults on each of the four actuators (suspension's dampers). An active reconfiguration fault tolerant scheme is proposed, considering a Polytopic LPV -H ∞ approach. The proposed solution aims to maintain the plant's driving performances (considering handling and comfort indexes) whenever there are sudden actuator faults. These faults are identified through a parallel LPV -based FDI scheme, which is also thoroughly detailed. A robustness analysis is presented for the case sensor faults and of different estimation errors on actuator faults. The validity and performance of the proposed control structure are demonstrated through

Contextualization

For several years, the automotive engineering sector rapidly has come to know the use of passive safety features, such as modern seat belts and state-of-the-art airbags, evermore present on vehicles. On the other hand, active safety and comfort features are still arising. There is an incipient trade-off when dealing with comfort and road handling performances, for these characteristics are naturally conflicting [START_REF] Hrovat | Survey of advanced suspension developments and related optimal control applications[END_REF]. In order to enhance a vehicle's driving performance aiming road handling and ride comfort, a trade-off can be achieved if the vehicle's suspension system is carefully controlled.

Evermore present in the automotive industry, Semi-Active suspension systems have to be given attention: these systems are efficient and altogether less expensive and energy-consuming than purely active suspensions. This type of suspension is present on new state-of-the-art top-cars and a good deal of academic and industrial research is focused on this topic, as seen on [START_REF] Lu | Multiobjective optimal suspension control to achieve integrated ride and handling performance[END_REF], [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF] and others. Further details on semi-active suspension systems are throughly discussed on [START_REF] Patten | Suppression of vehicle induced bridge vibration via hydraulic semi-active vibration dampers[END_REF], and [START_REF] Fischer | Mechatronic semi-active and active vehicle suspensions[END_REF].

This study shall consider, thus, this type of suspension system, where the controlled input is the suspension's damper's damping coefficient c(⋅). Numerous approaches have been studied for semi-active suspension control, on [START_REF] Rubel | Semi-active suspension control[END_REF], and more recently on [START_REF] Poussot-Vassal | Survey and performance evaluation on some automotive semi-active suspension control methods: A comparative study on a single-corner model[END_REF] and [START_REF] Tseng | State of the art survey: active and semi-active suspension control. Vehicle system dynamics[END_REF], we can find an extensive review of semi-active suspension control. Some of the most recent and modern control techniques have been applied for this kind of problem, as presented by the author on [START_REF] Morato | An Implementation of a Real-Time MPC Scheme for Semi-Active Suspension Control of a Full Vehicle[END_REF], where a fast model-based predictive controller is designed.

Why Fault Tolerant Control?

Most of the practical control systems are subject to possible faults, failures, component malfunctions and others. These might imply on significant performance degradation or even loss of control and instability.

Accordingly, in recent years attention has been considerably been given to fault tolerant control (FTC ) schemes. A FTC system has the goal to allow a system to recover performances when faults occur (or, at least, guarantee continuous stability). FTC systems are categorized into two types: passive and active approaches, as seen in [START_REF] Lunze | Reconfigurable fault-tolerant control: a tutorial introduction[END_REF] and (firstly) [START_REF] Blanke | Fault-tolerant control systems -a holistic view[END_REF]. Passive approaches usually reside on more conservative control schemes, as details [START_REF] Jiang | Fault-tolerant control systems: A comparative study between active and passive approaches[END_REF], whereas active approaches reside on continuous reconfiguration of the controller, due to identified faults.

The accurate behaviour of active FTC schemes, then, dependes on a solid Fault Detection and Isolation (FDI ) system. Adaptive control techniques have been designed to integrate FDI and FTC, as seen in [100] and [101]. It is recognised that the combined FDI /FTC design could be profitable, but, yet, very challenging, [102].

On the other hand, the modulated design (FDI and FTC designed separately) also presents its benefits, being more flexible for practical applications and easier to test and implement. This is the approach used herein.

It is important to remark that, for this modulated design approach, scientific breakthrough has been achieved with gain-scheduling and LPV approaches for active FTC, as seen in [103] and [104]. Notice that, therein, the FTC framework considers the imperfect estimation of fault effect by the FDI structure, aiming robustness.

Linear Parameter Varying Systems

Synthesis and investigation techniques for Linear Parameter Varying (LPV ) Systems have gathered evermore attention from the Control Systems community, see [START_REF] Mohammadpour | Control of linear parameter varying systems with applications[END_REF] and [START_REF] Sename | Robust control and linear parameter varying approaches: application to vehicle dynamics[END_REF].

Firstly introduced in [105], the LPV system paradigm has become an established formalism in systems and control, in terms of analysis, controller synthesis and system identification. This kind of system can be understood as a representation methodology to be well suited for the control of dynamical systems with parameter variations, as it is exploited in [START_REF] Patton | LPV fault estimation and FTC of a two-link manipulator[END_REF], [START_REF] Oca | Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter[END_REF], [START_REF] Zhang | An improved adaptive fault estimation design for polytopic LPV systems with application to helicopter models[END_REF] and [START_REF] Armeni | Robust fault detection and isolation for LPV systems under a sensitivity constraint[END_REF]. These (LPV ) structures can be represented as an extension of LTI systems, assuming the classical state-space representation matrices are dependent on known bounded scheduling parameter ρ. Briefly, these scheduling parameters must abide to:

{ρ ∈ Ω ρ min ≤ ρ ≤ ρ max } (5.1) 
Sometimes, bounds are also needed on the scheduling parameters' variations, ρ.

Within the LPV framework, developments regarding the architecture of observers [106], [START_REF] Nguyen | A switched LPV observer for actuator fault estimation[END_REF], state-feedback controllers [START_REF] Nguyen | A state feedback input constrained control design for a 4-semi-active damper suspension system: a quasi-LPV approach[END_REF], H ∞ controllers [107], [108] and model reference controllers [109] have been obtained. This work shall be preoccupied with the use of the LPV methodology on extended-state observers for the case of fault estimation and dynamic output-feedback controllers for the case of Fault Tolerant reconfiguration (explained further on).

An LPV -based fault estimation is able to autonomously adjust and schedule observer or detection filter gains. This is suitable trade-off between full scaled nonlinear designs and LTI methods based on a fixed operating condition, for LPV -based FDI Chapter 5. A Robust LPV-H ∞ Approach as a Fault-Tolerant Control Framework: Application to Full Vehicle Semi-Active Suspension Systems 115 methods provides most of the conveniencies of LTI design and still guarantees good performance and stability conditions over a wider operating set.

H ∞ Control

H ∞ Control Theory has been used for suspension control in some works throughout literature, as in [110] and [107]. This technique shall be used herein for it presents some efficient tools for our performance control goal: provide a trade-off between handling and comfort performances, which shall be done with the use of adequate weighting functions. LPV control design for suspension control, on the other hand, is evermore present in literature, as seen in [START_REF] Lu | Switching LPV control of an f -16 aircraft via controller state reset[END_REF], [START_REF] Wu | A generalized LPV system analysis and control synthesis framework[END_REF] and [START_REF] Do | An LPV control approach for semi-active suspension control with actuator constraints[END_REF].

Problem Statement

Considering the given contextualization, the problem dealt within this chapter is the following: how to design an efficient (and robust) Fault Tolerant Control scheme, considering actuator faults, for the control of a full vehicle model with four semi-active suspension systems, maintaining (sufficient) comfort and handling performances whenever occurs a faulty scenario ?

This shall be treated by a threefold:

• Firstly, a LPV -based Fault Detection and Isolation structure shall be presented, in order to detect Loss of Effectiveness faults on each of the suspensions' dampers (actuation);

• Secondly, an internal Force Control System scheme is designed to deal with reference tracking and disturbance rejection for each damper;

• Lastly, a LPV -H ∞ FTC scheme shall be detail, in order to guarantee closed-loop stability and performances, based on controller reconfiguration in the case of faulty scenarios.

It is also important to state that very few works have dealt with robustness analysis (performance and stability) due to parameter uncertainties, in the automotive industry and research. This issue is essentially due to the mass production and nonlinearities of vehicle components, that become more and more susceptible to faults. As of this, this work shall also present a robustness analysis for the case sensor faults and estimation errors (from the FDI scheme) on actuator faults.

About Chapter

This chapter is outlined as follows:

• The considered full vehicle model with 4 semi-active suspension systems is presented in section 5.3, as well as a reduced quarter-of-vehicle model, used for fault identification goals;

• In section 5.4, the proposed LPV Fault Diagnosis and Isolation structure is described and some validation results are already presented;

• In section 5.5, an internal control scheme is designed to rapidly track force references to each of the semi-active dampers;

• In section 5.6, performance and robustness specifications for our control goals are presented and the proposed Robust LPV -H ∞ Fault Tolerant controller is designed;

• A complete robustness analysis is done in section 5.7;

• Simulation results and a thorough discussion are seen in 5.8 and, finally, conclusions are drawn in section 5.9.

Vehicle Modelling

An automative suspension system comprises, basically, two components: a spring and a damping (shock absorbing) structure, as it can be seen on figure 50. These components have to work together to maintain the tire's contact with the ground. The goal of the damping structure is to reduce the effect of travelling upon a rough road by absorbing shock and helping with driving performance, ensuring a smoother and safer drive. An automative suspension without an efficient damping system might be able to absorb damps, but continues to bounce, and this might lead the tires to leave the road. Throughout literature there are some established dynamical models of vehicles and automotive suspension systems. Herein, two models shall be considered: a full vertical vehicle model (FVV ) for the vehicle's suspension control and a reduced quarter-of-vehicle model (QoV ), used for fault detection and identification goals. Further details on each of this models are seen on [5]. Let us first present the dynamical model that represents a vehicle's vertical dynamical behaviour, considering the suspension system comprised by four Electro-Rheological (ER) dampers (which have a force range of ± 50 N). This is a classic 7 degrees of freedom suspension model, as seen in figure 51 and referred to in [START_REF] Poussot-Vassal | Attitude and handling improvements through gain-scheduled suspensions and brakes control[END_REF], and shall be used for analysis and control purposes. This model comprises the chassis dynamics (vertical displacement (z s ), roll angle (θ) and pitch angle (φ)) and the vertical displacements of the wheels (z us ij ) at the front/rear -left/right corners (i = (f, r) and j = (l, r)). This described 7 -DOF model is governed by the following equations:

Full Vertical Vehicle Model

m s .z s = -F sf l -F sf r -F srl -F srr (5.
2)

I x . θ = (-F sf r + F sf l ).t f + (F srl -F srr ).t r I y . φ = (F srr + F srl ).l r -(F sf r + F sf l ).l f m us ij .z us ij = F s ij -F tz ij
where I x and I y represent the moments of inertia of the sprung mass around the longitudinal and lateral axis, respectively, h represents the height of the center of gravity (COG). l f ,l r ,t f and t r are the COG-front, rear, left and right distances, respectively.

The position (and, thus velocities) of each sprung mass at each corner of the vehicle (z s ij ) is derived from the vehicle equations of motion, and considering the roll and pitch angles as small enough, they become linearized as in:

z s f l = z s -l f .(φ) + t f .(θ)
(5.3)

z s f r = z s -l f .(φ) -t f .(θ) z s rl = z s + l r .(φ) + t r .(θ) z srr = z s + l r .(φ) -t r .(θ)
In terms of the forces, F tz ij depicts the vertical tire forces, given by:

F tz ij = k t ij .(z us ij -z r ij ) (5.4)
where k t ij represent the stiffness coefficients of the tires and z r ij are the road profile disturbances that the vehicle is subject to.

Each vertical suspension forces (for each of the 4 corners of the vehicle) is represented by F s ij and, in this study, will be modeled by a spring and a damper with linear and nonlinear characteristics, respectively. This is:

F s ij = k ij .(z s ij -z us ij ) + F d ij (5.5) 
where k ij representes the nominal spring stiffness coefficient and F d ij the semi-active damper force. Herein, we shall consider a two-level control scheme, where the damper force is treated by an internal lever control structure.

Anyhow, the damper force is given by equation (5.6), divided into passive and controlled parts, where d c ij (t) represents a controlled PWM signal inside [0 , 100] %. The dissipativity constraints of each of these semi-active dampers will be treated by the lower level controllers; this will be dealt with in later sections.

F d ij (t) = passive c 0 ij .( żs ij -żus ij ) + controlled f c ij .d c ij (t).tanh(a 1 ij . żdef ij (t) + a 2 ij .z def ij (t)) (5.6) 
Remark: herein we shall use the notation z def ij = z s ij -z us ij as the suspension deflection.

To facilitate our control purposes, the full vehicle's control inputs are, thus, given by: This studied (FVV ) system model can be represented, thus, by a state-space representation, when injecting (5.4) and (5.7) into (5.2). This is:

u = F d f l F d f
F V V ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ẋ(t) = A.x(t) + B 1 .w(t) + B 2 .u(t) y(t) = C.x(t) + D 1 .w(t) + D 2 .u(t) ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (5.8)
where the system states are given by (5.9), the controlled inputs are given by (5.7), the disturbances (unmeasured) are given by (5.10) and, finally, the measured outputs are seen on equation (5.11). Remark: A, B 

y = z def f l z def f r z def rl z defrr żdef f l żdef f r żdef rl żdefrr . . . (5.11) 
z us f l z us f r z us rl z usrr T

Quarter-of-Vehicle Model

Let us, also, present a reduced-order model that can be used to analyse the behaviour of an automotive system on a single of its corner. Considering the same type of ER damper, a representation of a Quarter-of-Vehicle model (QoV ) is seen in figure 52. 

m s ij .z s ij (t) = -k ij .z def ij + F d ij (t) (5.12) m us ij .z us ij (t) = k ij .z def ij -F d ij (t) -k t ij .(z us ij (t) -z r ij (t))
where F d ij represents the semi-active ER damper's force (controlled and passive) at the given corner. As of the proposed FVV model, herein F d ij (t) is also the controlled damper force.

QoV State-Space Representation

A state-space representation can be found if considering system states as of equation (5.13), a disturbance input as of equation (5.14) and finally, the measured outputs as of equation (5.15).

x ij qov (t) = z s ij (t) żs ij (t) z us ij (t) żus ij (t) T (5.13) w ij qov (t) = z r ij (t) (5.14) 
y ij qov (t) = z def ij (t) żdef ij (t) z us ij (t) T (5.15) 
This measurements are, in a certain way, common on vehicular suspension systems. They can be acquired using relative displacement sensors. The deflection velocity ( żdef ij (t)) can be used with certain carefullness, as they arise from derivative filters. Finally, this leads us to the following LTI model:

ij QoV ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ẋij qov (t) = A ij qov .x ij qov (t) + B ij 1qov .w ij qov (t) + B ij 2 ij .F d ij (t) y ij qov (t) = C ij qov .x ij qov (t) + D ij 1qov .w ij qov (t) + D ij 2qov .F d ij (t) ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (5.16)
where the matrices A ij qov to D ij 2qov are all constant. Notice that this representation repeats itself for every corner of the full vehicle.

Fault Detection and Isolation Scheme

Now that the used vehicle models have been detailed, let us introduce the proposed Fault Detection and Isolation (FDI ) scheme.

As explained beforehand, this work shall consider actuator faults on each of the ER dampers of the full vehicular suspension system. Considering the studied suspension system, a fault can occur due to oil leakage, physical deformation or even the presence of air on the ER fluid. The study of faults on Electro-Rheological Dampers is thoroughly discussed in [111].
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Loss of Effectiveness Faults

Faults on each of the actuators, in a practical sense, result on a loss of effectiveness of these components. For this, in this study, the actuator faults shall be represented by a multiplicative factor α ij upon each damper force F d ij .

Remark 4. In a faultless situation, we shall have α ij = 1 and, in the worst of scenarios (where the damper is completely broken), we shall have α ij = 0. For this, α ij ∈ [0 , 1]. In figure 53, we see a representation of the studied loss of effectiveness fault scenario.

It is also worth noting that even if α is assumed to be constant, the corresponding additive fault magnitude on nth semi-active damper is given by f (t) = (1 -α)u(t) is a time varying signal and depends on the value of the control input u(t). Thanks to the multiplicative representation, the information about the actuator fault α is considered as constant or slow-varying and α = 0. This multiplicative fault representation has been firstly presented in [112], and introduces a solid framework for the identification of damper faults. Then, these loss of effectiveness faults on the dampers on each corner of a full vehicle results on nonlinear system model representation. By using the QoV model, we are cast into the following representation of each corner of the studied suspension system:

ij QoV ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ẋij qov (t) = A ij qov .x ij qov (t) + B ij 1qov .w ij qov (t) + B ij 2 ij .diag{α ij }.F d ij (t) y ij qov (t) = C ij qov .x ij qov (t) + D ij 1qov .w ij qov (t) + D ij 2qov .diag{α ij }.F d ij (t) ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (5.17)
In terms of the FVV model, we arrive at:

F ull V eh. ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ẋ(t) = A.x(t) + B 1 .w(t) + B 2 (diag{α ij }).u(t) y(t) = C.x(t) + D 1 .w(t) + D 2 (diag{α ij }).u(t) ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (5.18)
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LPV -based FDI Design

Considering an automotive suspension system subject to actuator loss of effectiveness faults, we can design a reduced-order FDI structure for each of the full vehicle's suspensions systems, considering the use of the QoV model.

For this goal, we can re-write our faulty damper QoV system with an augmented space-state representation considering x ij a (t) = (x ij qov ) T (t) α ij w ij qov (t)

T . We also assume that each fault factor α ij is statical, so αij = 0. As of this, we have:

ẋ ij a (t) ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ẋij qov (t) αij ẇij qov (t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = A ij a ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A ij qov B ij 2qov .F d ij (t) B ij α B ij 1qov 0 0 0 0 0 A ij mw ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
.x a (t)

y ij qov (t) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ C ij qov D ij α D ij 2 ij .F d ij (t) D ij 1qov ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ C ij a .x ij a (t)
where we assume to have information on the type of road profile disturbance. This is, we have a model of the disturbance: ẇij qov (t) = A mw .w(t). This information may come from an external adaptive road profile estimator, as proposed on [START_REF] Tudón-Martínez | Adaptive road profile estimation in semiactive car suspensions[END_REF]. Remark that different road profiles may have greater state-space models with more than one state (say n w states), which leads to the augmentation of matrices B ij 1qov and D ij 1qov with (n w -1) null columnsfor example, a sinusoidal road profile has, at least, n w = 2 states.

It is important to notice that the matrices A ij a and C ij a are affine on F d ij (t), due to the terms (respectively) B ij α and D ij α . Let us remark, then, that damper force signal F d ij (t) is perfectly know (use of compression force sensors), and bounded (due to saturation constraints of each semi-active damper) inside the convex set U sat , delimited by the minimal and maximal values of F d ij , F d ij and F d ij , respectively. Thus, we can assume F d ij (t) as a scheduling parameter ρ ij (t), as it satisfies 0 <

ρ ij min ≤ ρ ij ≤ ρ ij max .
From this, we arrive at

B ij α = B ij 2qov .ρ ij and A ij a = A ij a (ρ ij ) and, similarly, D ij α = D ij 2qov .ρ ij and C ij a = C ij a (ρ)
. Thus, the augmented system (5.19) becomes LPV.

Finally, we can design an asymptotical state observer to estimate the value of each fault factor α ij . This is:

FDI ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ẋij a (t) = A ij a . xij a (t) + L ij (⋅).[y ij qov (t) -C ij a .x ij a (t)] αij = 0 size(x ij qov ) I size(α ij ) 0 size(w ij qov ) Cα . xij a (t) ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (5.19)
Finally, let us consider the dynamics of the estimation error. These dynamics are presented in equation (3.7). Then, the LPV FDI design resided on computing the gain matrix L(⋅) as dependent of the scheduling parameter ρ ij so that

(A ij a -L ij (ρ ij ).C ij a ) is Lyapunov-sense stable. ėij (t) = ẋa ij (t) -ẋij a (t) = [A ij a -L ij (ρ ij ).C ij a ].e ij (t) (5.20) 
From here, we shall consider a Polytopic LPV -based solution. Notice, once again, that what is subsequently presented has to be solved for each of the four (i -j) corners of the automotive suspension system.

To compute the matrix gain L ij (⋅) of the proposed extended observer and guarantee the stability of each (5.20), we shall follow a H 2 (noise filtering) criterion, as seen in [START_REF] Trofino | Multivariáveis: Uma abordagem via LM Is[END_REF]. The H 2 norm of a system, through a stochastic point-of-view, is equal to the square root of the asymptotic variance of the output when the input is a white noise (proof is seen on [START_REF] Dettori | LMI techniques for control-with application to a compact disc player mechanism[END_REF]), which means that the measurement noise effect will be diminished when estimating the loss of effectiveness fault factor α (impulse to energy gain minimization), taking the measurement noise as the input to the estimation error system (5.20); Definition 5.1. The H 2 observer problem definition resides, then, on minimizing the following objective function:

J = T ij eν (s) 2
2 under e ij (t) t=0 = 0 (5.21)

under the two following conditions (exponential stability of T ij eν (s) and closed-loop observation error dynamics):

lim t→∞ e ij (t) → 0 for ν ij ≡ → 0 (5.22) ėij (t) = (A ij a (⋅) -L ij (⋅).C ij a (⋅)).e(t) + B ij ν ν ij (t) (5.23) 
where T ij eν (s) represents the Laplace-domain transfer function between the estimation error e ij (t) and an additive measurement noise ν ij (t) on each component of x ij (t). Notice, also, that the matrix B ij ν represents the influence of the measurement noise on the system states.

Lemma 5.2. This problem's solution, then, is obtained by minimizing the scalar γ ij on:

Trace(N ) ≤ γ ij (5.24)
and solving the following LMI s, exposed in equations (5.25)-(5.27), taking Q ij = P ij .L ij (⋅), with P and N being two positive define matrices. 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ (A ij a ) T (ρ ij ).P ij + P ij .A ij a (ρ ij ) -(C ij a ) T (ρ ij ).(Q ij ) T -Q ij .C ij a (ρ ij ) -Q ij ⋆ -I ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ < 0 (5.25)
2β ij .P ij + (A ij a ) T (ρ ij ).P ij + P ij .A ij a (ρ ij ) -(C ij a ) T (ρ).(Q ij ) T -Q ij .C ij a (ρ) < 0 (5.26) ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ N ij (B ij ν ) T .P ij ⋆ P ij ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ > 0 (5.27)
Proof of Lemma 5.2 1. Is immediate from what is seen in [START_REF] Trofino | Multivariáveis: Uma abordagem via LM Is[END_REF].

Remark 5. The gain matrix L ij (⋅) is taken, thus, as

L ij = (P ij ) -1 .Q ij .
Remark 6. The maximal variance of the estimation error, with this solution, is given by Trace

(N ij ) = γ ij H 2 .
Remark 7. The maximal amplification of the estimation error, with this solution, due to the presence of the uncertain disturbance δw(t) is given by γ ij H∞ .

Remark 8. The scalar β ij in the LMI (5.26) is a root-locus condition imposed on the eigenvalues of (A ij a (ρ ij ) -L ij (ρ ij ).C ij a (ρ ij )): these must be greater, in module, than β ij .

Remark 9. A weighting function can be appropriately introduced to specify the frequency range on which sensor noises should be attenuated. Besides, (obviously) sensor noise is considered as a high frequency signal.

As, to our problem, we have only one scheduling parameter ρ ij for each corner of the vehicle, we shall solve the observer synthesis problem (5.24) at ρ ij = F d ij , finding L ij , and at ρ ij = F d ij , finding L ij . Finally, our gain matrix L ij (⋅) is given by:

L ij (ρ ij ) = ρ ij max -ρ ij ρ ij max -ρ ij min .L ij + ρ ij -ρ ij min ρ ij max -ρ ij min .L ij (5.28)

Validation of Proposed FDI Scheme

To finalize this section of this work, we shall present some simulation results to prove the proposed fault identification and diagnosis scheme is accurate. The validation simulation is detailed from here on, considering a single corner of a vehicle (front-right). The indexes i -j are omitted for simpler notation purposes.

For goals of simulation, we shall use small sinusoidal road profile w(t), that could represent a series of bumps for a vehicle running on a dry road at constant speed. In terms of the expected damper force, which is computed with the use of equation (5.6), the manipulated PWM signal d c (t) is taken as a series of steps, to simulate changes upon the damping coefficient c(⋅). This is shown in figure 54. The simulated vehicular suspension system is initially considered close to its origin (this is, x(0) ≠ 0), and the initial conditions on w(t) are also non-null. The suspension damper is initially fault-less (α = 1). An additive (high-frequency) measurement noise is added on each measured output y(t), in order to better represent a real situation.

As explained, the information used on the dynamics of each road profile disturbance w(t) is considered to be provided by a road identification scheme, prior to the proposed Fault Detection and Identification structure. For the following simulation results, the disturbance model A mw is different than the disturbance's dynamic behaviour, to induce a modelling error and to check if this error is overlapped by the robustness of the H 2 extended observer approach. This modelling error is detailed on equation (5.29).

A real mw = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 -2.4674 4 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦
(5.29)

A used mw = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 -2.5 3 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ Figure 54 -Simulation Scenario
For these simulation results, we consider a sequence of steps as the loss of effectiveness fault. This can represent, for instance, a successive oil leakage scenario. At t = 13 s, α decreases to 0.735. This is done once again at t = 25 s, when the loss of effectiveness fault α decreases to 0.375. Finally, at t = 37 s, α decreases to 0.275. The estimation α is seen in figure 55, in comparison with the actual value of α. This is a satisfactory simulation result, for the accurateness of the approach proposed herein is very strong. In table 10, we see the used parameters for the computation of the damper force F d . As it can be seen, the fault factor α ij is well detected and, thus, the proposed polytopic LPV FDI scheme can be used to gather information on actuator faults for a posterior Fault Tolerant Control scheme. This kind of FDI scheme has already been discussed and validated in a real test-bench, as details chapter 3.

Internal Controller: Damper Control

Let us, now, present a proposition for a internal level controller, to track references of desired damper forces. Herein, we shall consider that there is an availability of the following measurements: suspension deflections (z def ), suspension deflection velocities ( żdef ) and damper forces (F d ). Once again, we shall suppress the i -j notation for simplicity, but the following proposition is repeated for each corner of the vehicle. The use of force control system to handle fast force reference tracking for semi-active dampers is discussed on [2] and other previous works. This is not the main goal of this chapter, but a necessary paradigm.

As we know, the damper force is given by the nonlinear characteristic presented on equation (5.6), considering the controlled portion of the damper force (passive part is already included in the dynamical equation (5.5) given the nominal damping coefficient c 0 ij ). Because of this nonlinear condition, it is possible to attain same force levels at different conditions. This is seen in figure 56, where points We shall also consider that the controlled and passive parts of the damper force are given, respectively, by:

F SA (t) = F(d c (t), z def (t), żdef (t))
(5.30)

F P ass (t) = H( żdef (t)) (5.31) 
Then, let us consider the compensation nonlinear function G, used to compute a PWM signal d c (t) so that F SA tracks a desired reference u g (t). For simplicity, up to now, no saturation constraints or disturbances are considered. Thus, we can take:

G(u g (t), z def (t), żdef (t)) = u g (t) -F P ass (t) f c .tanh(a 1 . żdef (t) + a 2 .z def (t)) (5.32)
Then, let us take the function sat(u ⋆ (t)) as the saturation of u ⋆ (t) inside the bounded PWM percentage region [0 , 100] %.

Let us remark that a dynamical behaviour shall be considered upon the damper's actuation. This means the damper force is not purely statical as described by equation (5.6), but also depends on a second-order (Laplace) transfer function, as proposes [113]. This transfer function shall be given by: From this, our proposed internal damper force control scheme is detailed on figure 57. Therein, ν(t) represents an additive measurement noise, q(t) represents an output (unknown) disturbance, FF(t) represents the actual full (dynamical) damper force that should track a reference signal Ref F d (t). Notice that the transfer function from u g (s) to FF(s) is, ideally, equal to D(s).

As of this, a double PID controller is added considering the tracking error e F d (t) and its output u g (t). This PID is used to ensure the rejection of q(t) and high-frequency ν(t), tuned with classical control techniques, guaranteeing some robustness in terms of phase and gain margins. This PID's transfer-function shall be considered as:

u g (s) e F d (s) ≡ PID(s) (5.34) PID(s) = k c 1 . (τ z 1 s + 1) s.(τ p 1 .s + 1) . k c 2 . (τ z 2 s + 1) (τ p 2 .s + 1)
The parameters k c 1 , k c 2 , τ z 1 , τ z 2 , τ p 1 and τ p 2 are set in order to determine the closed-loop response of this scheme. From the point-of-view of the outer loop, ideally, the closed-loop force control system can be approximated by:

FF(s) Ref F d (s) ≈ 1 (τ s + 1) (5.35)
Remark 10. The gain K AW represents an anti-windup action in order to discharge the integral action whenever there is a saturation of u ⋆ (t).

This proposed internal control framework is simple enough to be implemented quickly, so that, from the point-of-view of an exterior-layer controller, the response to a damper force references u ij (t) is immediate (considering τ is relatively small enough). In figure 58, we see the outline of the force control system, from the point-of-view of the outer loop. 

Semi-Active Dissipativity Constraints

It is very important to state that some adaptations on the presented Force Control System have to be done in order to strictly guarantee the dissipativity constraints of the semi-active dampers.

A Semi-Active damper must always dissipate energy, which implies that the direction and sense of the force must be the same as the connected mass's velocity. As of this, in a Force vs. Velocity graph, only the second and fourth quadrants can be used as of desired forces. This is clearer to be understood as of figure 59. Let us also state that each semi-active damper has its maximal and minimal damping constraints. If the damper force equation (5.6) is approximated by the following equation (5.36) these constraints are converted to:

F d ij (t) = c ij (⋅). żdef ij
c min ij ≤ c ij (⋅) ≤ c max ij (5.37)
Then, the force references Ref F d (t) that are actually passed onto the Force Control System have to be previously treated in order to abide to the dissipativity contraints. This is done by the use of a Force Clipping block, as presents [2].

If the desired damper force (chosen by the controller, given by F des (t)) is inside the admissible force region R F (so to abide to the constraints), this is the reference to be tracked by the Force Control System. Else, the reference is taken as the orthogonal projection of the desired force over the region R F , given by F ⊥ . Synthetically, this means that the damper force reference is given by:

Ref F d = Clip(F des (t), żdef ) (5.38) Clip(F des (t), żdef ) ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ F des (t) if F des (t) ∈ R F F ⊥ des (t) if F des (t) ∉ R F
Before showing some simulation results, let us depict the chosen values for the double PID's parameters and the closed-loop gain and phase margins. These values and margins are seen in tables 12 and 13, respectively. 

Simulation Results

In order to asses the effectiveness of the proposed control approach, let us present some simple simulation results of this scheme. A simulation scenario using data (z def (t), żdef (t)) from a real mechatronic testbed (see [START_REF] Vivas-Lopez | Inove: a testbench for the analysis and control of automotive vertical dynamics[END_REF]) is presented below, in figure 60. In figure 61, we can see this proposed internal Force Control System (FCS ) tracking a reference of 20 N of force and the rejection of an additive output load disturbance of -3 N, at t = 2.5 s. Notice that q(t) is a step signal and a high-frequency noise ν(t) was added to the loop (and is well rejected). The response time of this internal loop, as it can be seen, is approximately 0.05 s, which means this FCS can be approximate by the transfer function in equation (5.35), with τ = 0.015 s. Remark 11. Notice that, as the system's response shall be approximate by a first order dynamic, a filter can be added in order to reduze the overshoot due to reference changes.

Finally, the respective control signals u g (t) (LTI control signal), u ⋆ (t) (nonlinear compensation signal) and d c (t) (final control law) are seen on figure 62, compared with the tracking error e F d (t). Remark that u g (t) stabilizes as the tracking error e F d (t) converges to zero. The saturation law implied on u ⋆ (t) is sometimes attained and the anti-windup gain K AW unloads the integral action so that u ⋆ (t) leaves the saturated mode.

Proposed Robust LPV -H ∞ Fault Tolerant Controller

This section presents the main interest of this chapter's study: the design of an efficient (and robust) Fault Tolerant Control scheme considering actuator loss of effectiveness fault for the control of a full vehicle suspension system. Herein, for obvious reasons, the considered model is the fault-prone FVV model, presented beforehand on (5.18), considering the depicted states (5.9), measured outputs (5.11), disturbances (5.10) and control inputs (5.7).

Firstly, let us remember that, in order to enhance a vehicle's driving performance aiming road handling and ride comfort, one should take special care with the vehicle's suspension system. The main goal of a vehicle suspension control is to isolate the body from the road disturbances, without deteriorating road handling. These two objectives can be referred to as comfort performance and handling performance, respectively, and can be For control design purposes, let us consider two perfomance indexes, with respect to each control objective: J comf ort = ∫ τ 0 z2 s (t)dt and J handling = ∫ τ 0 θ 2 (t)dt, where τ represents a given time interval. Let us remark that it is well-known that (physically) these two objectives are conflicting. For this reason, our control method must take into account a suitable trade-off between these performance indexes.

As of this, our control approach will be based on the H ∞ control framework. This means this work aims to solve the following problem: Definition 5.3. Find a controller C(⋅), which, based on the information of some measured output y (as of equation (5.11)), generates a control signal u (as of equation (5.7)) that counteracts the influence of the disturbances w (as of equation (5.10)) on some controlled outputs z, thereby minimizing the closed-loop H ∞ norm from w to z.

As the control objectives depend on the vehicle's chassis acceleration and roll angle, we shall consider our controlled outputs as: From this point forward, let us remark that the control signal u actually determines set-points to the internal force control system, described on the previous section. As the transfer function seen on (5.35) is adequately fast, we shall assume that, at this control level, the reference tracking is perfect and instantaneous (for τ << 1 s). The faults occur a posteriori to the Force Control System, although the measured force F F (t) is faulty but the reference shall be corrected by the fault tolerant controller scheme.

z(t) = z zs (t) z θ (t) z u (t) T (5.39) z(t) = E.x(t) + F 1 .w(t) + F 2 (diag{α ij }).u(t) (5 
Considering the paradigm of actuator loss of effectiveness faults, that imply on each α ij , as explained on section 5.4, we need to solve the described H ∞ control problem for fault-less and fault-prone situations (at any value of each α ij , inside their respective bounded sets). As of this, the achieved controller C(⋅) has to be autonomously reconfigured with the information form the prior FDI scheme.

In figure 63, we see the outline of the studied Fault Tolerant Control problem, where, once again, the notation ν is used to represent measurement noise. Notice that the velocity of the FDI scheme might influence the closed-loop dynamics. As of this, for the controller synthesis, this is ignored, supposing that each fault is perfectly detected. Further on, in the results analysis, this is taken into account. Note, nonetheless, that the convergence speed of the proposed FDI scheme, as seen in figure 55, is relatively small (around 1 s).
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LPV Problem Solution

To treat this H ∞ , problem, we should remark that the studied faulty system seen in equation (5.18) can be represented in a polytopic form, as this systems has an affine dependence on the fault factors α ij and these are assumed to be bounded within the following set:

{K α ⊂ R 4 K α = [0 , 1] × [0 , 1] × [0 , 1] × [0 , 1]} (5.44)
So, the faulty full vertical vehicle system, augmented with controlled outputs z, can be re-written as:

LP V Full Veh. (α) ∶= Z k=1 β k (α). ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A B 1 B k 2 C D 1 D k 2 E F 1 F k 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (5.45) with Z k=1 β k (α) = 1 (5.46) β k (α) > 0 (5.47)
where the vector of faults α (as of equation (5.49)) evolves inside a polytope L p defined by Z = 2 4 vertices. Notice that the LTI system (5.48) corresponds to the LPV system frozen at vertex k ∈ Z.

k Full Veh. ∶= ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A B 1 B k 2 C D 1 D k 2 E F 1 F k 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (5.48) α = α f r α f l α rl α rr T (5.49)
Finally, the H ∞ Fault Tolerant controller C(⋅) can be designed considering a convex sum of Z controllers, solved at each vertex k of the described polytope L p . This is:

C(α, s) = Z k=1 β k (α).C k (s) (5.50) 
Notice that this controller shall reconfigure itself autonomously, as desired, due to variations on each loss of effectiveness factor α ij .
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H ∞ Problem Solution

Then, to finalize the LPV -FTC framework design, one has to solve the described H ∞ control problem at each vertex k of the polytope defined by α, finding each C k (s).

Let us, now, present the Generalized H ∞ Control Problem Formulation, commonly named as the P -K form. This is depicted in figure 64, where P k is the generalized plant, containing the actual plant and the chosen weights, see equation (5.51). Notice that, therein, w(t) contains the road profile disturbances and, also, the measurement noise ν(t). Therein, W w (s) is a weighting function considered upon the road profile disturbances in order to inform the controller, at least, the amplitude of this disturbance (normally given in mm). 

⎢ ⎢ ⎢ ⎢ ⎣ z(t) y(t) + ν(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = P k . ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ col{z r ij (t)} ν(t) u(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (5.51)
Now, the controller C k (s) is to be found for the system P k such that, given γ ∞ ,

F l (P k , C k ) ∞ < γ ∞ (5.52)
where the operator F l represents the lower Linear Fractional Transformation, see [START_REF] Zhou | Essentials of robust control[END_REF].

The solution to this problem can be found by the use of Linear Matrix Inequalities, as presents the following lemma. Lemma 5.4. A dynamical LPV output feedback controller of the following form:

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ẋc (t) u(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ A c (α) B c (α) C c (α) D c (α) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x c (t) y(t) + ν(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (5.53)
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C k (s) ∶= ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ A k c B k c C k c D k c ⎤ ⎥ ⎥ ⎥ ⎥ ⎦
(5.54) has x c (t) as internal controller states and can solve the LPV /H ∞ control problem defined on 5.3 and given explicitly by equation (5.52). Remark that herein the general case is solved, with linear parameter variations upon all matrices A to F 2 .

The resulting closed-loop system, also denoted through the use of the Linear Fractional Transformation (LFT ) is given, thus, by: On this plant, the Semi-Active suspension system involves four Electro-Rheological (ER) dampers which have a force range of ± 50 N. These dampers are adjusted using a controlled voltage inside the range of [0 , 5] kV, generated by amplifier modules. The control input for these modules are PWM signals at 25 kHz. On terms of capturing the vehicle's behaviour, this testbed is equipped with a wide variety of sensors and can accurately measure the chassis' acceleration, given by zs (t), and the vehicle's roll angle, given by θ(t).

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ξ(t) z(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ A(α) B(α) C(α) D(α) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ξ(t) w(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (5.
Finally, in figure 66 we see the singular values decomposition frequency response for the chassis' acceleration, and in figure 67, the sigma-plot for the roll angle. Now, as we want to choose weighting functions W zs (s) and W θ (s) in order to minimize, respectively, zs (s) and θ(s), we shall define them in order to reduce the peaks present on the open-loop response (uncontrolled damper), as seen in the figures above.

As of this, we should remind that our H ∞ control problem resides on guaranteeing that: by the minimization of the H ∞ norm from the disturbances (w(t)) to the controlled outputs (z(t)), as explained beforehand.

Weighting Function W u (s)

This weighting function shall be used, mainly, to limit the amplitude of the response of u(t), as it shall be treated as a reference to be tracked by an internal Force Control System, as detailed beforehand.

As of this, we shall define W u (s) as simple first order transfer function in order to guarantee some low-frequency performances, due to the damper actuation constraints and specifications. This is: where the parameters u , w u and M u are defined so that:

1 W u ( 
• there is a better limitation of measurement noises and possible high-frequency modelling errors, with the use of u ;

• and there is an upper bound on the control signal u(t), with the use of M u .

This template is detailed on figure 68. The used parameters are seen in table 14. Firstly lets us remark that the range on frequencies wherein the chassis' acceleration response has the greatest peaks (in terms of the H ∞ norm) is r zs = [1 , 10 4 ] rad s . As of this, we shall define W zs (s) as simple first order transfer function in order to guarantee some robustness and bandwidth specifications. This is:

1 W zs (s) ≡ zs s + w zs s + w zs M zs (5.77) where the parameters zs , w zs and M zs are defined so that: • there is a rejection of measurement noises and possible high-frequency modelling errors, with the use of zs ;

• there is a fast enough bandwidth, given by w zs , hence the transient behaviour of the minimization of the effect of the disturbances (road profile);

• and there is a limit on the overshoot of the response, with the use of M zs .

This template is detailed on figure 69. The used parameters are seen in table 15. Firstly lets us remark that the range on frequencies wherein the roll motion response has the greatest peaks (in terms of the H ∞ norm) is r θ = [1 , 400] rad s . As of this, we shall define W θ (s) as simple first order transfer function in order to guarantee some robustness and bandwidth specifications. This is:

1 W θ (s) ≡ θ s + w θ s + w θ M θ (5.78)
where the parameters θ , w θ and M θ are defined so that:
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• there is a rejection of measurement noises and possible high-frequency modelling errors, with the use of θ ;

• there is a fast enough bandwidth, given by w θ , hence the transient behaviour of the minimization of the effect of the disturbances (road profile);

• and there is a limit on the overshoot of the response, with the use of M θ .

This template is detailed on figure 70. The used parameters are seen in table 16. Finally, in figures 71 and 72 we see, respectively, the comparisons between the real frequency-domain response and the templates. 

Controller Synthesis

The proposed H ∞ controller synthesis has to be solved at each vertex of the polytope L p using a single Lyapunov matrix function, as seen in lemma 5.4, specifically in the LMI (5.60)- (5.61). This can be done with the use of MATLAB [START_REF] Matlab R | a[END_REF] and Yalmpi [START_REF] Lofberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF], as proposed by [START_REF] Poussot-Vassal | Robust multivariable linear parameter varying automotive global chassis control. Tese (Doutorado)[END_REF].

This synthesis leads us to the solution of the H ∞ Control Problem, as shows equation (5.52), finding a minimal scalar γ ∞ of 0.1.

Let us, then, show the H ∞ frequency plots for the controlled outputs z(t), presented in equation (5.39), compared to their respective Weighting Functions.

Firstly, in figure 73 we see the σ-plot for u(t). As it can be seen, the controller synthesis is able to guarantee that the H ∞ norm of the control signal u(s) is always bounded by the chosen template W u (s). Then, in figures 74 and 75 we see, respectively, the σ-for zs (t) (chassis's acceleration) and θ(t) (roll angle). As it can be seen, the controller synthesis is able to guarantee that the H ∞ norm of these controlled output signals are always bounded by their respectful chosen templates W zs (s) and W θ (s). 

Robustness Analysis

The part on robustness analysis has been already partially developed by author. Anyhow, it shall be herein only mentioned as a perspective to be finished in the near future. Nonetheless, avid readers can find theoretical development in Annex A.

Results and Discussion

Finally, in this section we shall present some simulation results to asses the overall behaviour of the proposed Fault Tolerant Control scheme, as seen in figure 63. Then, we shall discuss these results and conclude on the performance of the proposed control scheme.

On the following results, LPVFTC represents the proposed LPV H ∞ Fault Tolerant Controller, HINF represents a H ∞ Controller solved with the same weighting functions and controlled inputs, but not taking into account the effect of the faults (α ij fixed at 1), and Unc. represents the use of purely passive damper, uncontrolled, taking every d c ij (t) as 0. For these results, we should also mention that a high-frequency measurement noise was added to each measured output (y), in order to mimic realistic conditions. First of all, we have to show the chosen simulation scenario. Let us consider, thus, the scenario of a vehicle running at 120 km h in a straight line on a dry road, when a first 5 cm bump occurs simultaneously on all wheels, to excite the bounce motion and chassis vibration, a second 5 cm bump occurs afterwards, but only on the left wheels, to cause a roll motion and, finally, a third bump occurs at both front wheels, causing a pitch motion. This road profile is shown in figure 76. The final results considering the proposed controller as an FTC scheme shall be presented in future works.

Conclusions

This chapter presented the issue of controlling a full vehicle semi-active suspension system, during fault-less and fault-prone situations on the dampers' actuations.

A polytopic LPV -based Fault Detection and Diagnosis structure is designed to provide accurate informations on loss of effectiveness of each of the vehicle's suspension system's dampers.

An internal controller is designed to track damper force references quickly. Finally, a LPV -H ∞ Fault Tolerant Controller is presented, with some performance specifications as to provide a trade-off between the vehicle's comfort and handling performance indexes. An additional robustness analysis was also drawn, considering the structured singular value approach, in order to analyse the proposed controller in the case of parametric uncertainties and, also, sensor faults.

For further works, the author shall finish the simulation results. Also, an interesting theme is to consider the same presented (efficient) control strategies applied to other processes, like the control of energy Microgrids.

Conclusion

This chapter finally concludes on the work herein presented as an end-of-studies monograph (Projeto de Final de Curso, Projet de Fin d'Études) supported by the project PERSYVAL LPV4FTC -A Linear Parameter Varying approach for Fault Tolerant Control design, in collaboration with CRAN Nancy and the Academy of sciences of Budapest (MTA SZTAKI ).

What Was Done, Effectively

In sum, this work presented:

• As of chapter 2, a thorough literature review was done, providing a full theoretical background for further chapters;

• The issue of Fault Identification of actuator loss of effectiveness faults was considered on chapter 3, wherein three different LPV techniques were designed and analysed for FDI goals;

• An implementation of a Real-Time Model Predictive Control scheme for the Semi-Active suspension control of a Full Vehicle was presented on chapter 4;

• Finally, a full vehicle Fault Tolerant Control was presented and designed on chapter 5, considering an LPV approach to deal with actuator faults on each suspension system.

Comparison to Initial Schedule: PERSYVAL Project

Let us, also, compare the results achieved with the initial monograph's objectives, in the context of the PERSYVAL Project:

1) As of chapter 3, the author completed the first scheduled goal: Present and compare Linear Parameter Varying approaches on Fault Estimation for loss of efficiency on actuators 2) As of chapter 4, the author completed, then, the second scheduled goal: Test and develop viable ways for a real-time high-complexity Model Predictive Controller for the Soben-Car test-bench It is important to remark that the proposed fast (Real-Time) MPC was, for now, only tested in simulation. Application to the testbed is soon to be developed.

3) As of chapter 5, the author completed, then, the third scheduled goal: Present and justify new approaches for Fault Tolerant Control (of Multi-Input Multi-Output systems) in the case of sensor and actuator faults considering the case of several actuator faults, instead of actuator and sensor faults. 4) Finally, the last scheduled task was completed with validation and experimental results presented throughout all chapters:

Present the results of experimental validation of the Soben-Car test-bench.

Scientific Work

Let us point out that the work presented herein enabled the development of some scientific work (in terms of papers and proceedings). These are:

• Design of a Fast Real-Time LPV Model Predictive Control System for Semi-Active Suspension Control of a Full Vehicle, to be submitted to International Journal of Control, First Author;

• Damper Fault Estimation for Automotive Suspension Systems: An LPVbased Extended State Observer Approach, to be submitted to Control Engineering Practice, First Author;

• Complete Modelling of Electro-Rheological Dampers: A Thorough Analysis for Faultless and Faulty Scenarios, to be submitted to Mechanical Systems and Signal Processing, Co-Author;

• A Robust LPV /H ∞ Approach as Fault Tolerant Control Framework: Application to Full Vehicle Semi-Active Suspension System, to be submitted to the 9 th IFAC Symposion on Robust Control Design, Florianópolis, 2018, First Author.

Personal Analysis

Writing from the author's point of view: The work developed on Gipsa-lab was most pleasurable for me. I was really well received and guided by professors Olivier Sename and Luc Dugard. I hope to have presented some interesting results on LPV Control Approaches for further researches. My personal and academic development during this internship was enormous.

In this global P -K -∆ General Control Configuration, seen in figure 77, the transfer matrix (once again considering a fixed scheduling vector α) is given by: T zw = F u (N, ∆) = N 22 + N 21 .∆.(I -N 11 .∆) -1 .N 12 (A.6)

Remark 17. In this representation, N is known and ∆(s) collects all the uncertainties taken into account the two detailed faults for the stability analysis of the uncertain closed-loop system. As of this, ∆(s) has the following structure:

∆(s) = diag{ δ a .I nu δ s I nx } (A.7)
And, in this case, we shall have u ∆ (t) as a collection of f a (t) and f s (t) and, thus of equations (A.2)-(A.4), y ∆ (t) shall be the collection of u(t) and x(t). The constraints upon ∆(s) are assumed to be satisfied by the chosen representation: the uncertainties are normalized, such that:

• ∆(s) ∞ ≤ 1 • δ a < 1 • δ s < 1
Notice that, from this point, the robustness criteria are:

• Robust Stability (RS ): If F u (N, ∆) is stable for all ∆, ∆ ∞ < 1 and N is internally stable;

• Robust Performance (RP ) : If F u (N, ∆) ∞ < 1 for all ∆, ∆ ∞ < 1 and N is internally stable.

Remark 18. To relax our analysis conditions for RS and RP of LPV systems, we shall take α i = 1 4 × 1 . This means, for us to evaluate robustness towards given uncertainties u ∆ , we shall assume that the system's loss of effectiveness faults are none apart from the badly estimate ones f a (t). This is adequate, for there is guarantees of nominal stability and performance for all possible values of α, due to the H ∞ problem solution. For other tools and a complete scrutinization of Robustness Analysis for LPV Systems, see [115].

Then, for RS, our analysis resides on determining wether the system remains stable for all plants inside uncertainty set. According to the definition of the upper LFT, instability may only come from the term (I -N 11 .∆). This is equivalent to the study of the Small Gain Theorem, [116], applied to N 11 .
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  which is actually(3.47). Now, we can apply Lemma 3.3 for each switching instant τ s . Indeed, during dwell-time, considering the bounded time interval [τ n→j s , τ j→m s+1 ] the Lyapunov matrix P σ (ρ, t) changes linearly from P j to P m . Then, from Lemma 3.3 with δ t (bounded at the maximal time interval T 2 max ) the LMI (3.53) is true if (3.45) holds. After the dwell time and before the next switching instant the Lyapunov matrix P σ (ρ, t) becomes the time independent P m (ρ), then, once again (3.53) hold if A T

m (ρ).P m (ρ) + P m (ρ).A m (ρ) < 0, which is equivalent to

Table 1 -

 1 Semi-Active ER Damper Parameters

	Parameter	Value	Unit
	f c	6.5137	N
	a 1	27.7154	s m 2
	a 2	1.3297	1 m
	b 1	-19.8951 N.s m 2
	b 2	37.2670	N m

Table 2 -

 2 Vehicle Model Parameters: INOVE Soben-car

	Parameter	Value	Unit
	total m s	9.08	kg
	m us f l	0.32	kg
	m us f r	0.32	kg
	m us rl	0.485	kg
	m usrr	0.485	kg
	k t f l	18097.60 N m
	k t f r	18097.60 N m
	k t rl	20819.40 N m
	k trr	20819.40 N m
	k f l	1396	N m
	k f r	1396	N m
	k rl	1396	N m
	k rr	1396	N m
	c nom f l	71.3645 N.s m
	c nom f r	71.3645 N.s m
	c nom rl	71.3645 N.s m
	c nomrr	71.3645 N.s m

24 )
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Table 3 -

 3 Vehicle Model Parameters: INOVE Soben-car

	Parameter	Value	Unit
	m s	9.08	kg
	m us f l	0.32	kg
	m us f r	0.32	kg
	m us rl	0.485	kg
	m usrr	0.485	kg
	I x	5	kg.m 2
	I y	2.5	kg.m 2
	t f	0.23	m
	t r	0.23	m
	l f	0.2	m
	l r	0.37	m
	k t f l	12270	N m
	k t f r	12270	N m
	k t rl	12270	N m
	k trr	12270	N m
	k f l	1396	N m
	k f r	1396	N m
	k rl	1396	N m
	k rr	1396	N m
	c max f l	111.729 N.s m
	c min f l	31	N.s m
	c max f r	111.729 N.s m
	c min f r	31	N.s m
	c max rl	111.729 N.s m
	c min rl	31	N.s m
	c maxrr	111.729 N.s m
	c minrr	31	N.s m

Table 4 -

 4 MPC Synthesis Parameters

	Parameter	Value
	ξ 1	0.975
	ξ 2	0.025
	ξ 3	0.00001

Table 5 -

 5 Design of a Real-Time Model Predictive Control Scheme for Semi-Active Suspension Control of a Full Vehicle 104 FMPC Synthesis Parameters Chapter 4. Design of a Real-Time Model Predictive Control Scheme for Semi-Active Suspension Control of a Full Vehicle 105

	Parameter	Value
	κ	0.01
	Maximal number of Newton iteration steps	

Table 6 -

 6 RMS Values: Chassis' Acceleration

	Control Approach	Value	Unit
	Uncontrolled Damper 2.22066 m s 2 RMS AMPC 2.11640 m s 2 RMS FMPC 2.10061 m s 2

RMS Chapter 4. Design of a Real-Time Model Predictive Control Scheme for Semi-Active Suspension Control of a Full Vehicle 106

Table 7 -

 7 MPC Synthesis Parameters: Second Scenario

	Parameter	Value
	ξ 1	0.1
	ξ 2	0.9
	ξ 3	0

Table 8 -

 8 RMS Values: Chassis' Acceleration -Scenario 2

	Control Approach	Value	Unit
	Uncontrolled Damper 2.2206 m s 2 RMS AMPC 2.1842 m s 2 RMS FMPC 2.1412 m s 2

Table 9 -

 9 RMS Values: Roll Angle -Scenario 2

	Control Approach	Value	Unit
	Uncontrolled Damper 25.7122 .10 -3 rad

RMS FMPC

25.7044 .10 -3 rad RMS

  r F d rl F drr Chapter 5. A Robust LPV-H ∞ Approach as a Fault-Tolerant Control Framework: Application to Full Vehicle Semi-Active Suspension Systems 119 5.3.1.1 FVV State-Space Representation

	T	(5.7)

  1 , B 2 , C, D 1 and D 2 are constant matrices. This model is continuous-time, obviously. x = z s θ φ z us f l z us f r z us rl z usrr żs . . . (5.9) θ φ żus f l żus f r żus rl żusrr

			T	
	w =	z r f l z r f r z r rl z rrr	T	(5.10)
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Table 10 -

 10 Semi-Active ER Damper Parameters

	Parameter	Value	Unit
	f c	6.5137	N
	a 1	27.7154 s m 2
	a 2	1.3297	1 m
	c 0	37.2670 N m

Table 11 -

 11 Chapter 5. A Robust LPV-H ∞ Approach as a Fault-Tolerant Control Framework: Application to Full Vehicle Semi-Active Suspension Systems 128 Damper Dynamical Parameters

	D(s) =	( 1 w 2 d	1 ).s 2 + ( 2.m d w d ).s + 1	(5.33)
	Table 11 details the values used for this transfer function's parameters.	
	Parameter Value	
		w d	20 rad s	
		m d	1	

Table 12 -

 12 Double PID: Parameters Chapter 5. A Robust LPV-H ∞ Approach as a Fault-Tolerant Control Framework: Application to Full Vehicle Semi-Active Suspension Systems 131

	Parameter	Value
	k c 1	3.1058167
	τ z 1	0.0107 s
	τ p 1	0.33 10 -3 s
	k c 2	1000
	τ z 2	0.0118 s
	τ p 2	0.33 10 -3 s

Table 13 -

 13 Closed-Loop Margins

	Margin	Value
	Gain Margin M K	34.78
	Phase Margin M φ 44.3568 o

  Chapter 5. A Robust LPV-H ∞ Approach as a Fault-Tolerant Control Framework: Application to Full Vehicle Semi-Active Suspension Systems 134where W u , W zs and W θ are adequate weighting functions, soon to be detailed, the matrices E and F 1 are constant and F 2 is dependent on collection of fault factors α ij , likewise to the matrix B 2 in (5.18). The controlled output z u (t) is to constrain the controlled damper force by the FTC controller.

.40) 

z zs (t) = W zs (s).z s (s)

(5.41)

z θ (t) = W θ (s).θ(s) (5.42) z u (t) = W u (s).u(s) (5.43)

  Chapter 5. A Robust LPV-H ∞ Approach as a Fault-Tolerant Control Framework: Application to Full Vehicle Semi-Active Suspension Systems 142

s) ≡ u s + w u s + wu Mu

(5.76) 

Table 14 -

 14 Weighting Function Parameters: W u (s)

	Parameter Value
	u	10 -3
	w u	100 rad s
	M u	2

Table 15 -

 15 Weighting Function Parameters: W zs (s)

	Parameter Value
	zs	10 -3
	w zs	100 rad s
	M zs	1.5

Table 16 -

 16 Weighting Function Parameters: W θ (s)

	Parameter Value
	θ	10 -7
	w θ	15 rad s
	M θ	1.39
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Then, the controller reconstruction is obtained by the following equivalent transformation, considering ∂X(α) ∂α . α = 0 and ∂Y (α) ∂α . α = 0:

where M (α) and N (α) are defined so that M (α).N T (α) = I -X(α).Y (α). This can be solved through a singular value decomposition and the use of a Cholesky factorization.

Proof. This lemma is an adaptation (addition of some relaxations) of the Bounded Real Lemma and proof is immediate from what is seen in [114].

Remark 13. The first requirement for the application of this lemma is that there exists no direct energy transfer between input and output. This is, that the generalized plant P must be strictly proper and implies that D 2 = 0, which is true for our system, given the measured outputs seen on equation (5.11).

Remark 14. The second and final requirement for the application of this lemma is that the input and output matrices ought to be paramater independent. This is: matrices Remark 15. This second requirement is not fulfilled for our studied system. A simple solution to overcome this problem, then, consists in filtering the input and/or output through strictly proper transfer functions. This is exemplified and detailed in [START_REF] Poussot-Vassal | Robust multivariable linear parameter varying automotive global chassis control. Tese (Doutorado)[END_REF].

Remark 16. Once again, as the LPV problem studied herein is polytopic, defined by the polytope L p , then the lemma above has to be applied at each of its vertex Z, with the scheduling parameter vector α frozen. Then, the full controller is given as of equation (5.50). In order to ensure the global stability, each of these controllers (at the frozen vertex) must share the same Lyapunov function (quadratic stability). This means that the controllers found are stabilizing the entire set formed by the system's polytope L p .

Choice of Weighting Functions

Let us now depict the methodology used to choose appropriate weighting functions

Firstly, let us present the frequency response plots for zs (j.w) and θ(j.w) in the case of purely passive suspension systems -taking the controlled part of the damper force as null and keeping only the nominal passive part (given by c 0 ij . żdef ij ), bare in mind that the suspension force is considered to be given by equation (5.5), neglecting dynamical behaviour described in section 5.5.

The following results consider the use of the FVV model, as presented in the first sections of this chapter, considering equation (5.8). These plots consider the maximal values for singular value decomposition of zs (j.w) and θ(j.w), considering only the effect of the road profile disturbance. Remark that the proposed controller has the goal to minimize the chassis' acceleration (z s ) and the vehicle's roll motion (angle, θ) in order to enhance comfort and handling performances, respectively. These performances are affected by the external road profile (disturbance to the system) and, with the use of the proposed controller, should be enhanced.

The parameters used for the computation of the FVV model consider those of INOVE Soben-Car experimental platform, present in the facilities of gipsa-lab, allows the user to deal with several configurations and use cases (see full details on [START_REF] Vivas-Lopez | Inove: a testbench for the analysis and control of automotive vertical dynamics[END_REF]). Figure 65 shows the outline of this test-bench.

On Future Works

As the author previously worked with renewable energy systems, some topic for further research are:

• LPV (H ∞ ) Control of the load/charge process of microgrids and its connection to the external power grid;

• Detection of faults on renewable microgrids;

• Robust Fault Tolerant Control of distributed microgrids.

ANNEX A -Robustness Analysis

Now, as the Fault Tolerant controller has been synthesized, this section shall be dedicated to a robustness analysis for the proposed control scheme, seen in figure 63.

For the goals of this robustness analysis we shall consider two situations: the case of sensor faults and the case of bad estimation on the loss of effectiveness actuator faults. These are, thus, detailed:

A.0.1 Badly Estimated Actuator Faults

In this work, we assume a reconfigurable fault tolerant control scheme, to be adjusted by the collected information on actuator loss of effectiveness faults. Then, for this scenario, we shall analyze the case of badly estimation of these faults.

This means, we shall analyze our control system with plausible actuator faults that are distributed as: correctly estimated multiplicative (loss of effectiveness) faults and additive (unknown to the controller) faults.

From this point, the system representation seen in (5.45) changes to:

where the α-dependent matrices are LPV due to the well-estimated loss of effectiveness faults (by the FDI scheme) and f a (t) represents an un-estimated percentage (δ a (t)) upon the multiplicative loss of effectiveness α factors, as details equation (A.2).

where nu represents the number of control inputs u(t) and δ a (t) is of dimension 1.

A.0.2 Sensor Faults

In the case of sensor faults, these shall be represented by an additive signal upon the measured outputs y(t). This means the LPV system representation in (5.45) changes to:

where the α-dependent matrices are LPV due to the actuator loss of effectiveness faults and the signal f s (t) represents sensor faults, distributed upon the measured outputs by matrix F y .

To simplify this analysis, we shall take f s (t) as dependent on the system states. This is:

where nx represents the number of system states x(t) and δ s (t) is of dimension 1.

A.0.3 Final Uncertain Representation

Then, considering the system representations presented in (A.1) and (A.3) can be coupled into a single feature. Towards an upper Linear Fractional Transformation (LFT ), see [START_REF] Zhou | Essentials of robust control[END_REF], we can re-represent this system (A.1)-(A.3) with the use of an P -K -∆ structure, where the closed-loop system (as defined by the H ∞ Control Problem, see equation (5.52)), is given by:

for a fixed scheduling parameter α = α i .

Figure 77 -P -K -∆ Representation Lemma A.1. Suppose N 11 ∈ RH ∞ . Then the closed-loop system, as presented in figure 77, for α = α i , is well-posed and internally stable for all ∆ ∈ RH ∞ so that:

if and only if

Proof 1. Refer to [START_REF] Zhou | Essentials of robust control[END_REF].

Towards RP, the analysis becomes more complex: it is necessary to apply the Small Gain Theorem to the H ∞ norm of the full upper LFT. Let us, then, consider a structured representation of ∆(s), as seen in the following equation:

where ∆ f represent fictive full block complex uncertainty and ∆ r represents the real block diagonal matrix uncertainties.

From this point, we are cast into the following lemma: Lemma A.2. Suppose N = F l (P, K) ∈ RH ∞ . Then the closed-loop system, as presented in figure 77, for α = α i , is well-posed and internally stable for all ∆ ∈ RH ∞ if and only if:

where the operator µ ∆ (⋅) stand for the structured singular value. Remark that the structured singular value cannot be determined explicitly. For this, numerical methods exist in order to compute upper and lower bounds of µ ∆ (⋅), as close as possible to µ ∆ . 

A.0.4 Analysis

Finally, after background to the analysis of RS and RP has been presented, let us analyse the robustness of the proposed control scheme, considering, for now, the scheduling parameter α fixed as 1 4 × 1 .

In terms of (badly estimated) actuator faults, we shall take a maximal percentage δ a (t) as 10 %. Notice that this is rather conservative for the estimation of the loss of effectiveness factors has an overall small estimation error (see section 5.4).

Then, is terms of sensor faults, we shall consider a maximal δ s (t) as 5 %, with F y = 1 ny × nx , being ny the number of measured outputs. This is an adequate choice for sensor faults, which usually are of small amplitude for our study case (vehicle systems with relative displacement sensors).