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Abstract

Este Trabalho de Conclusão de Curso apresenta diversas técnicas de Modelagem, Identifi-
cação e Controle Avançado aplicadas ao estudo de Suspensões Semi-Ativas em Sistemas
Veiculares. Este trabalho é divido em três eixos principais: i) Desenvolvimento e aplicação
de técnicas LPV de Identificação de Falhas em amortecedores de sistemas de suspensão; ii)
Desenvolvimento e implementação de um sistema de Controle Preditivo baseado em modelo
aplicado em tempo-real para o controle de suspensões semi-ativas; iii) Desenvolvimento
e aplicação de técnicas de reconfiguração LPV para o Controle Tolerante a Falhas de
sistemas de suspensão. As técnicas e o desenvolvimento feito são analisados através de
simulação e validação em uma plataforma mecatrônica experimental e demonstram-se
satisfatórios.

Palavras-chave: Sistemas Automotivos; Sistemas Lineares a Parâmetros Variantes; Con-
trole Preditivo baseado em Modelo; Detecção e Diagnóstico de Falhas; Controle Tolerante
a Falhas



Abstract

This End-of-Studies Work presents a range of techniques of Modeling, Identification and
Advanced Control applied to the study of Semi-Active Suspensions in Vehicular Systems.
This work is divided into three main branches: i) development and application of LPV
fault identification techniques on actuators of suspension systems; ii) development and
implementation of a real-time model predictive control scheme applied the control of semi-
active suspensions; iii) development and application of LPV reconfiguration techniques for
fault tolerant control of suspension system. The developed control strategies are analysed
through simulation and validation on a mechatronic test-bench and prove themselves
satisfactory.

Keywords: Automotive Systems; Linear Parameter-Varying Systems; Model Predictive
Control; Fault Detection and Diagnosis; Fault Tolerant Control.



Résumé

Ce travail de Fin-d’études présente plusieurs techniques de modélisation, identification
et de la commande avancée appliqués a l’étude des systèmes de suspensions semi-actifs.
Ce travail est divisé en trois domaines principaux: développement et l’application des
techniques LPV pour l’identification des défauts sur les actionneurs dans les systèmes
de suspension; développement et mise-en-œuvre d’un système de contrôle prédictif basé
sur modèle appliqué en temps réel sur des suspensions semi-actifs; développement des
techniques LPV de reconfiguration pour la commande tolerant aux défauts des systèmes
de suspension. Les stratégies de commande développées sont analysées par simulation et
validation et se montrent satisfaisantes.

Mots-clés: Systèmes Automobiles; Systèmes Linéaires à Paramètres-Variants; Contrôle
Prédictif basé sur Modèle; Détection et Diagnostic de Défauts; Commande Tolérante aux
Défauts.
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0 Monograph’s Framework

This chapter introduces the author’s work during the internship period at gipsa-lab,
from February to end of June 2017. It is mostly important to remark that the work herein
exposed was advised by professor Olivier Sename, whereas the project’s responsables also
include professor Luc Dugard (co-advisor) and others.

0.1 Collaborations

During this period at gipsa-lab, I had the opportunity to collaborate with professors
Olivier Sename, Luc Dugard and Simone Formentin (Politecnico de Milano), with post-
graduate students Manh Quan Nguyen and Vu Tan Vu and master students Alfonso
Estrada Vela, Manh-Hung Do and Manuel Alejandro Molina Villa.

0.2 Monograph’s Objectives

This monograph’s main objectives are synthesized below:

• Present and compare Linear Parameter Varying approaches on Fault Estimation for
loss of efficiency on actuators ;

• Test and develop viable ways for a real-time high-complexity Model Predictive
Controller for the Soben-Car test-bench ;

• Present and justify new approaches for Fault Tolerant Control (of Multi-Input
Multi-Output systems) in the case of sensor and actuator faults;

• Present the results of experimental validation of the Soben-Car test-bench.

0.3 Author’s Activities

The author’s activities during the internship period are summarized below:

• Preliminary literature review on dynamical systems, LPV systems, FTC, vehicle
dynamics, vehicle suspensions and others ;

• Preliminary research on Fault Observers for Linear Systems and Closed-Loop Stabi-
lizing Control for Faulty Systems ;
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• Getting started with existing system models and Automative Control toolbox of
GIPSA-lab tools ;

• Training on MATLAB Robust Control Toolbox and on Linear Matrix Inequalities ;

• Training on the Soben-Car test-bench ;

• Proposition, comparison and study of different approaches for Fault Estimation ;

• Study and developpement of viable high-complexity Model Predictive Controllers to
be applied on real-time test-bench ;

• Proposition of Fault-Scheduling and Fault Tolerant Control structures ;

• Experimental validation on test-bench ;

• Result analysis and conclusions ;

• Documentation.

0.4 About this Document

The work done by the author is centered on the study and developpement of
Linear Parameter Varying Approaches as Advanced Control Techniques, with application
to Vehicle Dynamics. The rest of this document is organized in separate chapters, in the
following sequence:

• Chapter 1 introduzes the this monograph’s scope, preliminary concepts and the
LPV4FTC project;

• Chapter 2 presents the literature review and key concepts to this work;

• Chapter 3 shows the study of different Linear Parameter Varying-based approaches
for Fault Diagnosis and Identification for the case of actuator loss of effectiveness
faults;

• Chapter 4 presents the results on the proposed implementation of a high-complexity
Model Predictive Controller for the Soben test-bench;

• Chapter 5 presents the author’s proposition of new approaches of LPV as FTC
reconfiguration techniques, considering the control of a full vehicle model with
actuator faults on each of its suspension systems;

• Finally, chapter 6 presents the conclusions to this work and themes for future studies;
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• It is also important to enlighten that a prior report of a full semester period with a
research course (Parcours Recherche) at ENSE3 brought some background results
used for this monograph; it is seen on [3].
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1 Introduction

In the last decade, the SLR (Linear Systems and Robustness) Team of Gipsa-lab
has developed several strategies for observation and control for vehicle dynamics [4], [5] in
particular using the Linear Parameter Varying (LPV ) approach.

The work herein presented is an end-of-studies monograph (Projeto de Final de
Curso, Projet de Fin d’Études) supported by the project PERSYVAL LPV4FTC – A
Linear Parameter Varying approach for Fault Tolerant Control design, in collaboration
with CRAN Nancy and the Academy of sciences of Budapest (MTA SZTAKI ). This
document is required by Universidade Federal de Santa Catarina for approval on the
course DAS5511: Projeto de Final de Curso and for the title of Automation and Control
Engineer. This monograph also expresses the meaning of the exchange period, by the
author, at Grenoble, funded by CAPES, on the means of the BRAFITEC project.

Theoretical background and literature review are found on chapter 2, please refer
to this chapter whenever doubts appear on terms and technical knowledge. Each other
chapter tries to express its goals and topics individually, in order to be able to be read
detached from the whole document.

1.1 Project Scope

It is very important to, first of all, explicit the studied project’s main goals and
scope. The author’s research and studies were set in the context of the LPV4FTC
PERSYVAL project.

The LPV4FTC project’s objective is to propose Linear Parameter Varying (LPV )
approaches to develop an integrated Fault Detection and Diagnosis (FDD)/ Fault Tolerant
Control (FTC ) scheme for dynamical systems, topic for which very few studies and results
have been obtained.

The control of LPV systems has attracted a great deal of attention in the last
decade, since they have shown to be an interesting extension of the Robust Control theory
applied to nonlinear system.

The LPV approach is today known and well-suited to handle system non-linearities
by modelling them as varying parameters (or to settled the controller’s performances as
varying through gain-scheduling). This is further investigated and discussed on section 2.5
of this document.

Active FTC systems are today crucial for real applications, in order to always
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maintain a controlled system operational whenever malfunctions and/or failures occur.
The main issue of FTC, today, is an efficient integration of reconfiguration techniques to a
FDD scheme. The background FTC systems and FDD schemes is seen on section 2.8 of
this document.

The dynamical systems that are considered are vehicle systems, with plausible
actuator/sensor faults. For this, the application of the proposed methodologies will be done
on the Grenoble INOVE test-bench, Soben-Car. This will include objective assessment
using direct measurement of achieved vehicle performance in case of faulty component
(compared to the nominal case). The idea behind this project’s goals is seen on figure 1,
where we can see the combination of and LPV FDD scheme with an active LPV FT
Controller.

Figure 1 – Project : Methodology

In a more straightforward insight, the project’s key goals are divided in three
packets:

• WP1: Specifications ;

• WP2: Design Methods ;

• WP3: Tests and Validation attained on Mechatronic testbed.
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1.1.1 WP1: Specifications

This packet, the backbone of the project, includes definition of functional require-
ments, study of potential use cases realizable on the considered testbed and the definition
of an internation benchmark (for the application of FTC methods on a mechatronic
testbed).

1.1.2 WP2: Design Methods

For the second packet, the methodological core of the project, theoretical develop-
ments will be carried out, following by the proposition of generic LPV tools able to ensure
stability and improve performances of FTC systems (under specification form WP1). In
terms of tasks, these can be put as:

i) Design LPV for FDD/FTC for single-actuator case;

ii) Design LPV automatic control reconfiguration approached for multiple compo-
nent failures/faults.

1.1.3 WP3: Tests and Validation on Mechatronic testbed

The final packet, comprises the campaign of tests and results analysis on the
Mechatronic testbed. This work is to be carried out into three main tasks:

i) Application and tests of LPV4FTC to a quarter-car system with a faulty damper;

ii) Application and tests of LPV4FTC to a full car case with four dampers;

iii) Implementation and tests for the proposed benchmark (WP1).

1.2 On the Mechatronic Testbed

The Test-Bench that was used for this work was the Soben-Car, an experimental
platform that allows dealing with several configurations and use cases (from single input
to multi input systems). Figure 2 shows a picture of this test-bench. This testbed has been
built in 2012, partially supported by the ANR funds of the ANR BLAN 0308 INOVE
project, that is focused on the observation and control of vehicle dynamics using methods
for estimation and observation, LPV approaches for observation and robust control and
Fault-Tolerant control techniques; see [6].
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Figure 2 – Soben-Car Test-Bench

This testbed is composed of three main parts, as it is put in figure 3. Let us remark
that:

• The Host PC represents the computer where the control interface is hosted. This
interface is developed using MATLAB and SimuLink, [7];

• The Target PC runs a RT operating system [8]. In this computer, the control
algorithm is compiled and executed at a sampling rate of fs = 200 Hz;

• The Process represents sensors, actuators and the scaled vehicle. The main com-
ponent here is the 1/5-scaled racing car, which represents a full vehicle, including
wheels, engine, steering, breaking system and a semi-active suspension system as a
key element. It is important to remark that this scaled vehicle is most importantly
dedicated to the study of vertical behaviour and, for this, neither the steering nor
the breaking system will be in use.

Figure 3 – Schematic of the INOVE Experimental Platform
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The Semi-Active suspension system involves four Electro-Rheological (ER) dampers
wich have a force range of ±50 N. These dampers are adjusted using a controlled voltage
inside the range of [0 , 5]kV, generated by amplifier modules. The control input for
these modules are PWM signals at 25 kHz. These amplifier proportionally transform the
duty-cycle of the received PWM signal into voltage.

Linear servomotors mimics the desired road profile below each wheel. These ser-
vomotors have a bandwidth of 0 − 20 Hz with a maximum velocity of 1.5 m

s . Each motor
has its own servo-driver and is operated from the Host PC, by sending the desired road
profile through a Data Acquisition Card.

On terms of capturing the vehicle’s behaviour, this test-bench is equipped with
a wide variety of sensors. To measure the vertical accelerations of the nsprung masses
(z̈us), four capacitive accelerometers are used. The deflection of the suspensions (zdef ) are
measured using four resistive linear displacement sensors and other four sensors are used
to measure the road profile (zr). Four draw-wire displacement sensors are also used to
measure the unsprung masses displacement (zus). To analyse the force variations upon the
ER dampers, four force sensores are available for use. Also, other four sensors are used to
measure tyre forces.

The main goal of this platform is to evaluate the dynamical behaviour of the
full vehicle. For this, the system is equipped with a MEMS -based Attitude and Head-
ing Reference System (AHRS ) which measures the movement of the sprung mass on
three accelerations and on three angular velocities: longitudinal acceleration (ẍ), lateral
acceleration (ÿ), vertical acceleration (z̈), pitch rate (φ̇), roll rate (θ̇) and yaw rate (ψ̇).

It is important to remark that the data acquisition and signal outputs for all sensors
and actuators are done through two National Instruments Data Acquisitions Cards (NI
DAQs) [9].

The closed-loop scheme that represents the controlled test-bench is put on figure 4.
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Figure 4 – Closed-Loop of Soben-Car Test-Bench

1.2.1 Some Operational Remarks for the Test-Bench

As this system is specially designed to evaluate the vertical dynamics of a vehicle
controlled by the semi-active suspension system, some operational remarks have to be
taken into account:

• The only external input of the system is the movement of the linear servomotors
(that impose the road profile, zr, for each wheel) ;

• The operation of the semi-active dampers considers that the control input should
be the percentage of the duty cycle for the PWM command signal. These signals
can vary in the range of 0.1 to 0.8, although some results show that when the PWM
signals are higher than 0.35, the damper forces have the same behaviours (see [5]) ;

• Due to the physical characteristics of the system, only the vertical dynamics, pitch,
roll and vertical bounce can be inferred from the system evolution. Even if the
sensors detect other dynamics (lateral or longitudinal), these should be neglected ;

• The limitations on the type of controllers to be implemented are none, for the
computation resides on the operation directly coming from the MATLAB interface.
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2 Theoretical Background

This chapter presents a review on the availible literature on key concepts, theorems
and propositions to this work.

2.1 On Automotive Suspension Systems

First of all, it is very important to provide the key concepts behind automotive
suspensions.

An automative suspension comprises, basically, two components: a spring and a
damping (shock absorbing) structure, as it can be seen on figure 50. These components
have to work together to maintain the tyre’s contact with the ground. The goal of the
damping structure is to reduce the effect of travelling upon a rough road by absorbing
shock and helping with driving performance, ensuring a smoother and safer drive. In a
automative suspension without an efficient damping system, the vehicle is able to absorb
damps, but continues to bounce, may causing the tyres to leave the road.

Figure 5 – Outline of Studied Suspension System

Automative suspension systems can be classified in two main groups: Passive Suspen-
sion Systems and Controllable Suspension Systems (Active and Semi-Active Suspensions).
This is throughly exploited on [10] and [11].
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2.1.1 On Passive Automative Suspension Systems

An automative suspension system is considered as passive if the characteristics of
its components (spring and damper) are fixed. This is so described on [11] and [12]. These
characteristics are determined by the designer of the suspension according to the intended
application. A passive suspension system is only able to dissipate the energy which is
defined by the Speed Effort Rule (SER) between the suspension deflection speed (given by
difference between chassis speed and wheel speed) and the damping force of the passive
suspension. Notice that a passive damper is only able to dissipate energy!

Figure 6 gives the SER diagram of a passive Electro-Rheological damper of the
SOBEN Car for a fixed level duty cycle (see section 1.2 and [5]).

Figure 6 – Force over Speed deflection characteristics of a Passive Damper

2.1.2 On Controllable Automative Suspension Systems

Controllable Automative Suspension Systems can be divided into Active and
Semi-Active Suspension Systems.

2.1.2.1 Active Suspension

An automative suspension system is considered as active if the passive damper (or
the passive damper and the spring) are replaced by a force actuator. This actuator should
be able to both generate and dissipate energy for (from) the system, as it is represented
on figure 7.

In an active suspension, the actuator can apply force independent of the relative
displacement across the suspension. Given a sensible control strategy, an active suspension
can present better results in respect to ride confort and vehicle stability, as seen on [13]
and [12].
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The disadvantages of active suspension systems reside on the fact that the actuator
of these systems usually have large power requirements, so that these types of suspensions
are mostly found in more expensive passenger vehicles. The power demands of active
suspensions in luxury and (or) heavy vehicles is much greater than standard vehicular
supplies.

Figure 7 – Force over Speed deflection characteristics of an Active Damper

2.1.2.2 Semi-Active Suspension

An automative suspension system is considered semi-active when the conventional
spring component is retained, but the damper is replaced by a controlled damper structure.
Semi-active suspension systems have gained much attention by car manufacturers during
the last decades, for they do not require great amounts of external energy sources to power
actuators as active suspension systems. The power used by semi-active suspensions is only
to adjust the damping levels and operate an embedded controller and a set of sensors.
This embedded controller is adjusted to determine the level of damping, based on the used
control strategy. Likewise as the passive suspension systems, semi-active systems can only
dissipate energy, although the damping capacity (practically, the damping coefficient) can
be modified online to meet the tradeoff between passanger confort and driving (vehicle)
safety. The characteristic set that represents a semi-active damper by the Force over Speed
graph is seen on figure 8.

Further details on semi-active suspension systems are throughly discussed on [14],
[13] and [12].
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Figure 8 – Force over Speed deflection characteristics of a Semi-Active Damper

2.2 Vehicle Modeling

Vehicles can be placed as a part of complex dynamical systems. Vehicular systems
are composed of many components: engine, gearbox, clutch, wheels, suspensions, shock
absorbers, brakes and many other subsystems. As of this, dynamical models of these
systems are highly nonlinear and very complex, as their behaviours change frequently due
to each driving situation.

Enhancing vehicle dynamics and performances using advanced control techniques
and smart systems has become, nowadays, a key requirement for the automotive industry.
For this, the undestandment of vehicle behaviour and a good, consistent physical model is
of uttermost importance to control design. Vehicle modelling is not an easy task, but has
been throughly discussed on [15], [16] and [17]. Figure 9 represents the idea behind the
modelling of a vehicular system.

Figure 9 – Modelling of Vehicular Systems

Throughout literature, some well-established models are dedicated to specific
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studies (for example, the vertical dynamics, including suspensions). This section shall
present three very interesting models for the study of suspensions systems and vertical
vehicular dynamics. These models are: the vertical quarter-car model, the full vertical
vehicle model and the full vehicle nonlinear model. These models will be referred to and
used for validation and control design throughout this work. On background and auxiliary
literature, see [18], [19] and [20].

2.3 Linear Matrix Inequalities

Let us remark some of the important topics on linear matrix inequalities, crucial for
many of the solutions presented throughout this work. A thorough review of the application
of LMI s in control theory can be found on [21]. The references [22] and [23] also present
well this subject.

2.3.1 Convex Optimization

First of all, a brief on optimisation is necessary. Let us define:

Definition 2.1. A function f ∶ Rm → R is said to be convex if and only if for all x, y ∈ Rm

and λ ∈ [0 , 1], it is true that f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). Equivalently, f is
convex if and only if its epigraph is convex.

Remark 1. The epigraph (or supergraph) of a function f ∶ Rn → R is defined as the set
of point lying on or above its graph. This is:

epi(f) = {(x, y) ∶ x ∈ Rn , y ∈ R ∣ f(x) ≤ y} (2.1)

From this, we can define the concept of a Linear Matrix Inequality.

Definition 2.2. An LMI constraint on a vector x ∈ Rm is defined as F (x), for F (x) =
F0 +∑mi=1Fi.xi ⪰ 0 (≻ 0), where F0 = F T

0 and Fi = F T
i ∈ Rn×m .

There are two kinds of problems to be handled by the use of LMI s:

• The feasibility problem: the answer (feasible or not) to the question whether or
not there exists elements x ∈X so that F (x) < 0.

• The optimization problem: given an objective function J ∶ S → R where S =
{x ∣F (x) < 0}, this problem is to determine Vopt = infx∈S J(x).
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2.4 Dynamical Systems

The study (literature review) of dynamical system is important for this work. The
books [24] and [25] should certainly be remarked, for they present the key topics on
dynamical (linear and nonlinear) systems, including observability, controllability, linear
and nonlinear control, flatness and others. [26] is also a good and strong reference.

2.4.1 LTI System Control

It is important to present some key concepts for LTI systems, as well as for general
dynamical systems.

Given the generical LTI system put in (2.2), we can deduce characteristics. Note
that, as usual, x(t) represents a vector of system states, u(t) represents a vector of system
inputs and y(t) represents a vector of outputs. ˙x(t) represents dx(t)

dt . The system (2.2) has
n states, m inputs and p outputs.

˙x(t) = A.x(t) +B.u(t) (2.2)

y(t) = C.x(t) +D.u(t)

From this, we can define:

Definition 2.3. A system is said controllable when, given inicial condition x0 ∈ Rn and
each final state xT ∈ Rn, there exists an input u ∶ [0, T ]→ Rm so that the solution to (2.2),
x ∶ [0, T ]→ Rn, for the initial condition x(0) = x0 satisfies x(T ) = xT , for a generic T > 0.
This means that that system (2.2) can be driven from a inicial state to an arbitrary final
state in a finite time, given the adequate input. A system is said to be uncontrollable when
it is not controllable.

Definition 2.4. A system is said to be observable when, for every unknown inicial state
x(0) ∈ Rn, there exists T > 0 so that the knowledge of the system input u(t) ∈ Rn and the
system output y(t) ∈ Rp through the time intervale [0, T ] is sufficient to determine, by
a single way, the inicial state x(0). A system is said to be unobservable when it is not
observable.

Given, now, the following matrices:

• Controllability Matrix, C = [BABA2B . . . An−1B]n×nm ;

• Observability Matrix, O = ([C CACA2 . . . CAn−1]n×np)T .

Theorem 2.5. Given the LTI system (2.2):
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• The system is controllable if and only if rank(C) = n (complete line rank). In this
case, we can say, simply, that the pair (A,B) is controllable, for the controllability
matrix C depends on matrices A and B;

• The system is observable if and only if rank(O) = n (complete column rank). In
this case, we can say, simply, that the pair (A,C) is observable, for the observability
matrix O depends on matrices A and C;

• The pair (A,C) is observable if and only if the pair (AT ,CT ) is controllable;

• When (2.2) is SISO (m = p = 1), the system is controllable if and only if det(C) ≠ 0.
And, for p = 1 (one output), the system is observable if and only if det(O) ≠ 0.

2.4.2 Closed-Loop Pole Placement

It is important to depict, given the previous theorem and definitions, how to
stabilize, in closed-loop, an unstable (or stable) open-loop system. For this, consider the
system put in (2.3), without direct transfer between entrance u(t) and y(t).

˙x(t) = A.x(t) +B.u(t) (2.3)

y(t) = C.x(t)

Consider the following system input: u(t) = r(t)−K.x(t), given r(t) a new auxiliary
entrance (r(t) ∈ Rm) andK = (kij) a constant gain matrix (K ∈ Rm×n).K is often described
as a feedback matrix. In closed-loop, the system (2.3) results in the system (2.4).

˙x(t) = (A −BK).x(t) +B.r(t) (2.4)

y(t) = C.x(t)

So, the closed-loop transfer function of (2.4) is GCL(s) = C(sI − (A −BK))−1B,
for Y (s) = GCL(s)R(s). From this, it can be neatly seen that the poles (eigenvalues) of
(A −BK) define the CL system’s behaviour.

Definition 2.6. The Stabilization Problem by State Feedback with Pole Place-
ment is so that a matrix K ∈ Rm×n has to be found so that the CL poles of the system as
arbitrarily placed on the complex plane, when u(t) = r(t)−K.x(t) is said a state feedback.
Particularly, if all poles of (A −BK) are placed on the LHP, it is assured that xe = 0 is a
globally asymptotically stable equilibrium point of the CL system and that the transfer
matrix GCL(s) is BIBO stable.
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Theorem 2.7. The pair (A,B) is controllable if and only if the pair (A −BK,B) is
controllable, where K ∈ Rm×n is a constant matrix.

Theorem 2.8. The poles (eigenvalues) of the CL matrix (A − BK) can be arbitrarily
placed on the complex plane by and adequate choice of K ∈ Rm×n if and only if the pair
(A,B) is controllable.

2.4.3 System Observer

It is also important to put, due to this chapter’s study, the concept of system
observer. Let it be suposed that the (2.3) system states x(t) ∈ Rn cannot be measured,
but are of importance. The only available measurements are those of y(t) ∈ Rp.

A system observer will be herein defined as:
˙̂

x(t) = A. ˆx(t) +B.u(t) +L[y(t) −C. ˆx(t)] (2.5)

where ˆx(t) represents the estimated system states.

For the sake of the argument, let us consider the dynamics of the error e(t) =
x(t) − ˆx(t) :

˙e(t) = ˙x(t) − ˙̂
x(t) = (A −LC).e(t) (2.6)

For this, given the analysis of (2.6), it can be easily seen that dynamics of the
estimation error e(t) = x(t) − ˆx(t), by the proposed system observer (2.5), depend on the
placement of the eigenvalues of the matrix (A − LC). If these poles are placed on the
LHP, it is assured by the proposed asymptotical state observer that, given any inicial
condition e(0) = x(0) − ˆx(0) ∈ Rn, it is true that:

lim
t→∞

e(t) = lim
t→∞

[x(t) − ˆx(t)] = 0 (2.7)

Theorem 2.9. All eigenvalues of the matrix (A − LC) can be arbitrarily placed on the
complex plane by an adequate choice of L ∈ Rp×n if and only if the pair (A,C) is
observable.

Note: a state observer can be used, for example, for a stabilizing state feedback
input, on the estimated states, as so: u(t) = r(t)−K. ˆx(t). Practically, the poles of (A−L.C)
are placed on the complex plane to be faster than the poles of (A −B.K).

2.4.4 The Linear Quadratic Regulator

Let it be remarked, also, the Linear Quadratic Regulator control approach. Let us,
then, show the solution to the Stabilization Problem by State Feedback by finding
a matrix K ∈ Rm×n so that the quadratic cost function J(x(t), u(t)) is minimized.
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Considering φ(x(tf) as a terminal cost for the states x(t) at t = tf , we can write
the cost function J(x(t), u(t)) as:

J(x(t), u(t)) = φ(x(tf) + ∫
tf

t0
[1

2
xT (t).Q.x(t) + 1

2
uT (t).R.u(t) + xT (t).N.u(t)]dt (2.8)

Considering t0 the initial time and φ(x(tf) = 0 we have a full LQR formulation.

The solution of the minimization problem is given by:

u(t) = −K.x(t) (2.9)

K = R−1.BT .P (2.10)

where P is the solution of the continuous time algebraic Ricatti 1 equation seen below:

AT .P + P.A − (P.B +N).R−1(BT .P +NT ) +Q = 0 (2.11)

.

In sum, we can weigh the matrices Q and R depending on the system CL response
we expect.

This is control design is further investigated on [28] and [29].

2.5 Linear Parameter Varying Systems

Let us present the basic concepts of a Linear Parameter Varying (LPV ) System.
These can be revisited on the references [30], [31] and [32].

Definition 2.10. A LPV system can be defined as in equation (2.12), where, as usual,
x(t) represents a vector of system states, u(t) represents a vector of system inputs, w(t)
represents a vector of disturbances, y(t) represents a vector of measured outputs and
z(t) represents a vector of controlled outputs. ˙x(t) represents dx(t)

dt . The system (2.12)
has n states, m inputs, d disturbances, p measured outputs and pz controlled outputs.
ρ = (ρ1(t) , ρ2(t) , . . . , ρN(t)) ∈ Ω is a vector of time-varying parameters, assumed to be
known for all t, where Ω is a convex set. ρ(⋅) varies in the set of continuously differentiable
parameter curves ρ ∶ [0,+∞) → RN . The scheduling parameters ρ are assumed to be
bounded: ρ ∈ Uρ ⊂ RN and Uρ is compact, defined by the minimal ρi and maximal ρi
values of ρi(t): ρi(t) ∈ [ρi , ρi], ∀i. The matrices A(⋅) to D22(⋅) are continuous on Uρ.

∑(ρ) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ(t)
z(t)
y(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2(ρ) D21(ρ) D22(ρ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(t)
w(t)
u(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(2.12)

1 see [27]
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The LPV system representation can be understood as something in between the
classical duo of nonlinear and LTI systems. Theoretical analysis of the LPV system
properties (stability, observability, controllability) often falls into the framework of linear
time-varying systems or of nonlinear systems, which usually presents more difficulty
compared to the classical LTI framework.

The scheduling parameters can be exogenous if they are external variables (non
stationary systems), or endogenous if they are a function of the state variables (quasi-LPV
system).

2.6 On Norms

First of all, two definitions are important:

Definition 2.11. The inferior limit of a function can be defined as the inferior bound of
a function f ∶ R→ R. This is:

inf(f(x)) = {min(y) ∣ y = f(x)} (2.13)

Definition 2.12. The superior limit of a function can be defined as the upper bound of a
function f ∶ R→ R. This is:

sup(f(x)) = {max(y) ∣ y = f(x)} (2.14)

The book [33] is essential to this study, where all the following definitions are given.

Definition 2.13. Let V be a finite dimension space, then ∀ρ ≥ 1, the application ∣∣ ⋅ ∣∣ρ is
a norm, defined formally as ∣∣v∣∣ρ = (∑i ∣vi∣ρ)

1
ρ . Let V be a vector space over C and let ∣∣ ⋅ ∣∣

be a norm define on V : then V is a normed space.

2.6.1 Signal Norms

The 1-Norm of a function is defined as:

∣∣x(t)∣∣1 = ∫
+∞

0
∣x(t)∣dt (2.15)

The 2-Norm of a function is defined as:

∣∣x(t)∣∣2 =
√

∫
+∞

0
x∗(t).x(t)dt =

√
1

2π ∫
+∞

−∞
X∗(jw).X(jw)dw (2.16)

The ∞-Norm of a function is defined as:

∣∣x(t)∣∣∞ = supt∣x(t)∣ (2.17)
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2.6.2 System Norms

Let us consider SISO system. Let g(t) be the impulse response of this system.
Then, the H2 norm of G(s) is defined as:

∣∣G∣∣2 = ∣∣g(t)∣∣2 (2.18)

Let us consider MIMO systems with nu inputs and ny outputs. The H∞-norm of
this system G(s) is defined as:

∣∣G∣∣∞ = supu(t)s.t.∣∣u(t)∣∣2≠0
∣∣G(s).u(s)∣∣2

∣∣u(t)∣∣2
(2.19)

This quantity represents the largest possible 2-norm gain provided by the system.

2.7 On Stability

Let us remark briefly the concepts on system stability, as explored in details on [34]
and [35]. Can also be found on [24] and [25].

2.7.1 BIBO Stability

An arbitrary system G is said to be BIBO stable for whichever limited system
entry u(t) (∣∣u(t)∣∣∞ <∞) there is a resulting (mapped) limited output y(t) (∣∣y(t)∣∣∞ <∞).
If this is not true, the system is said to be BIBO unstable. The system is BIBO stable
if and only if the inequality 2.20 holds, where h(t) is the time impulse response of the
system G.

Mh = ∫
+∞

−∞
∣h(τ)∣dτ <∞ (2.20)

Remark: BIBO Stability is often referred to as external stability.

2.7.2 Lyapunov Stability

Also referred to as internal (L2 or asymptotical) stability. In respect to this
criterion, we can define:

Definition 2.14. • A system is said to be asymptotically stable when, for whichever
initial condition x0 ≠ 0, it is true that limt→∞ y(t) = 0.

• A system is said to be asymptotically unstable when, for whichever initial condition
x0 ≠ 0, y(t) is unbounded.
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• A system is said to be marginally stable if we desire to obtain y(t), t ∈ R, limited
and arbitrarily close to the origin (0), it is only needed that the initial condition x0

is sufficiently close to zero.

2.7.3 LTI Systems Stability Analysis

A system G is L2 stable if ∣∣u(t)∣∣2 <∞ implies ∣∣y(t)∣∣2 <∞. The quantification of
the signal amplification (gain) is evaluated as γ = sup0<∣∣u∣∣2<∞

∣∣y∣∣2
∣∣u∣∣2 .

2.7.4 LPV Systems Stability Analysis

The L2 stability of LPV systems is seen on [36]. Given a parametrically dependent
stable LPV system as in equation (2.12), for zero initial conditions x0, the induced L2

norm is defined as:

∣∣∑
ρ

∣∣i,2 = supρ(t)∈Ω supw(t)≠0∈L2

∣∣y∣∣2
∣∣u∣∣2

(2.21)

Theorem 2.15. A sufficient condition for the L2 of the system ∑ρ is the generalized
bounded real lemma using parameter dependent Lyapunov functions, assuming ∣ρ̇i∣ < νi∀i.
If there existis P (ρ) > 0 ∀ρ such that the LMI (2.22) holds, then it is true that ∣∣∑ρ ∣∣i,2 ≤ γ.

⎡⎢⎢⎢⎢⎢⎢⎣

(AT (ρ)P (ρ) + P (ρ)A(ρ) +∑Ni=1 νi
∂P (ρ)
∂ρi

) P (ρ)B(ρ) CT (ρ)
⋆ −γI DT (ρ)
⋆ ⋆ −γI

⎤⎥⎥⎥⎥⎥⎥⎦

< 0 , ∀i (2.22)

2.8 Fault Tolerant Control

A holistic and interesting approach on the concept behind Fault Tolerant Control
(FTC ) is of uttermost importance to this work, and can be found on the article [37]. A
comparative study between active and passive FTC approaches is seen on [1], where there
se a debate of the use and application results of each of these two methods. Last but not
least, on the article [38] we can find a tutorial introduction on reconfigurable FTC.

Let us remark the main idea of Active FTC, theme of this work: any controlled
system is always subject to faults and failures - these can be upon components, signal
processing or even a total system crash. A classical feedback control system usually
comprises actuators and sensors coupled to the real plant (system). Let us admit, then,
that there are faults (measurable or not) each of these three subsystems. An active FTC
scheme is comprised of two parts: a Fault Detection and Diagnosis (FDD) structure and
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a reconfigurable controller. The FTC controller, thus, has an intrinsic reconfiguration
mechanism for the faults upon the system that are well detected by the FDD scheme.
This is clear on figure 10.

A notable article about an implementation of a FDD scheme using parity space is
seen on [39]. The study of different linear reconfiguration mechanisms is studied by the
author on [3].

Figure 10 – The Active FTC Strategy, as seen on [1]

2.9 Conclusions

This chapter presented some key literature review for what is presented on the
following chapters of this work.
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3 A Survey of LPV FDI Schemes: Loss of Ef-

fectiveness on Actuators

3.1 About Chapter

The previous chapters were introductory to this work. Now, this chapter presents
approaches for Fault Estimation for Semi-Active Suspension Systems. The idea herein
proposed is an extension of what was firstly studied at research course at ENSE3, exposed
on [3].

The main problem herein exposed is how to identify faults on actuators by only
measuring outputs of the system, considering vehicular semi-active suspension systems.

This chapter is focused on comparing different methods for actuator fault identifi-
cation considering the use of LPV approaches and a quarter-car model.

3.1.1 Abstract

This chapter presents and compares three different LPV methods for actuator
fault detection and diagnosis (FDD) on automotive systems with semi-active suspensions,
considering a Quarter of a Vehicle model. A first polytopic LPV approach is detailed,
followed by a Mode-Dependent Dwell-Time Constrained Switched LPV approach, with
stronger detectability guarantees, and a final LPV sliding-mode approach. The faults
are considered as loss of effectiveness upon actuators and are, thus, identified. Through
simulation, the efficiency of each presented method is discussed and results show the
behaviour operation of each FDD method.

Keywords: Fault Detection and Diagnosis; LPV Systems; Switched Systems;
Sliding-Mode Observers; Vehicle Systems; Semi-Active Suspensions.

3.2 Introduction

Advanced technological processes present evermore an increase on complexity and
become more vulnerable to faults on instrumentation. For this, highlights have been given
to Fault Tolerant Control (FTC ) schemes, that offer increased process availability, avoiding
process breakdowns from simple faults, as described in [37]. Reconfiguration mechanisms
of compensation represent a common way of how to accomodate faults, see [40].

Considering active Fault Tolerant Control, there is a need of an accurate online
Fault Detection and Isolation (FDI ) strategy in order to compute an efficient reconfig-
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uration mechanism, as show [41] and [1]. A solid Fault Detection and Diagnosis (FDD)
structure is, thus, important for FTC as to provide timely information on the condition,
location, type of failure that occurs on the controlled plant. This chapter shall compare
and conclude on three LPV -based fault estimation schemes specially on their use as to
estimate Loss of Effectiveness situation on actuators.

Although there exist nonlinear model-based approaches for FDI, as presented on [42],
[43] and [39], most methods suppose linear time-invariance (LTI ) system characteristics
and work with parity space approaches, as seen on [44], [45] and [46]. These classical LTI
FDD designs usually face problems when dealing with changes on the observed plant’s
operational point. Whenever these changes occur, there should not appear (false) fault
alarms or the necessity for further observer reconfiguration, which is not always true with
these design methods.

Some approaches to overcome these problems reside on gain-scheduling to extend
the scope of the linear FDI methods to nonlinear systems. A much more natural approach
is to consider the extension of LTI to Linear Parameter Varying (LPV ) systems based
methods, as it is exploited on [47], [48], [49] and [50].

LPV systems can be understood as a gamma of nonlinear systems to be well
suited for the control of dynamical systems with parameter variations. These systems
can be represented as an extension of LTI systems, assuming the classical state-space
representation matrix are dependent on known bounded scheduling parameter ρ. Briefly,
these scheduling parameters must abide to {ρ ∈ Ω ∣ρmin ≤ ρ ≤ ρmax}. Sometimes, bounds
are also needed on the scheduling parameters’ variations, ρ̇.

An LPV -based fault estimation is able to autonomously adjust and schedule
observer or detection filter gains. This is a suitable trade-off between full scaled nonlinear
designs and LTI methods based on a fixed operating condition, since LPV -based FDI
methods provides most of the conveniences of LTI design and still guarantees good
performance and stability conditions over a wider operating set.

In recent years, literature is evermore rich on LPV control design (as seen in [51], [52]
and [53]), although the literature on LPV -based FDI is still limited, up to the author’s
knowledge. For this, this chapter shall discuss the use of some key LPV -based FDI methods
to faults on actuators, considering the application to vehicle suspension systems.

Three LPV FDI techniques shall be herein presented and analyzed: a first polytopic
LPV approach, similar to what is discussed in [49]; a continuation to a switched approach,
with stability guarantees under mode-dependent dwell-time constraints; and, finally, a
sliding-mode approach extended to the LPV paradigma, extending what is presented in
literature on [54].
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3.2.1 The Studied System

In this study, we shall consider the study case of a vehicle’s suspension system that
is subject to faults.

A good trade-off between a vehicle’s road handling performance and ride confort is
strictly related to the vehicle’s suspension system. Evermore present in the automotive
industry, the Semi-active suspension systems are to be highlighted, being efficient and, at
the same time, less energy-consuming and less expensive than purely active suspensions.
The use of semi-active suspension systems seems to provide a good balance between costs
and performance requirements. This type of suspension is present on new state-of-the-art
top-cars and a good deal of academic and industrial research is focused on this topic,
as seen on [55], [56] and others. Further details on semi-active suspension systems are
throughly discussed on [14], [13] and [12].

A semi-active suspension comprises, basically, a spring and a controlled damper.
In terms of system modelling, we shall herein consider the suspension system of a Quarter
of a Vehicle (QoV ) model as our study-case. A QoV model with a semi-active suspension
is ruled by the dynamical equations (3.1) and can be represented as on figure 11, where
the vehicle’s tyre is modelled as a linear spring, with kt coefficient. In this representation,
ks represents the suspensions spring coefficient, ms and mus the sprung and unsprung
masses, respectively, zr the road profile disturbance, and zs and zus the displacements of
the sprung and unsprung masses, respectively.

ms.z̈s(t) = −ks(zs(t) − zus(t)) + FER(t) (3.1)

mus.z̈us(t) = ks(zs(t) − zus(t)) − FER(t) − kt(zus(t) − zr(t))

Considering an Electro-Rheological (ER) damper, the semi-active damper’s force is
given by equation (3.2), and can be re-written as (3.3) considering a nominal (uncontrolled,
fixed) and controlled force, where u(t) represents the control input to the semi-active
suspension system.

FER(t) = c(⋅).(żs(t) − ˙zus(t)) (3.2)

FER(t) = c0(żs(t) − ˙zus(t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nominal

+ u(t)
±

controlled

(3.3)

Remark: c0 stands herein for the minimal damping coefficient, even for faulty
situations. This can be adjusted according to each simulation scenario.

This chapter shall detail and compare different LPV FDI methods and their
results on a QoV model with semi-active damper. This chapter is organized as follows:
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Figure 11 – Control-Oriented Semi-Active Suspension of Quarter-Vehicle with ER Damper

the modelling of actuator faults, for the studied suspension system is seen on section 3.3;
the polytopic LPV fault identification scheme is presented on section 3.4; on section 3.5,
the switched LPV fault identification scheme is detailed; on section 3.6, the Sliding-Mode
FDD scheme is designed and discussed; on section 3.7, these approaches to actuator fault
identification are compared and discussed; conclusions are drawn on section 3.8.

3.3 Problem Statement: Fault Representation and Modelling

This chapter is focused on the identification of faults on the Semi-Active Damper
structure of the described vehicle suspension system. This can later on be used as informa-
tion for a Fault Tolerant Control Strategy.

We shall assume that a fault occurs upon the controlled part of the actuation of
the semi-active ER damper. This fault can represent anything that leads to a loss in the
effectiveness of the damper, for instance, an oil leakage.

Thus, the fault will be represented by a loss of effectiveness factor α, such that:

FER(t) = −c0.( ˙zs(t) − ˙zus(t)) + α.u(t) (3.4)

In a faultless situation, we shall have α = 1 and, in the worst of scenarios (where
the damper is no longer controlled, thus passive), we shall have α = 0. For this, α ∈ [0 , 1].

Let us now consider a state-space representation of this semi-active suspension of
a QoV model with an ER damper subject to faults. By using equations (3.1) and (3.4),

considering system states as x(t) = [ zs(t) żs(t) zus(t) ˙zus(t) ]
T
, the disturbance input

w(t) = zr(t) and the measured outputs y(t) = [ zdef(t) ˙zdef(t) z̈s(t) ]
T
, we are cast into

the following state-space representation of our studied system. These measurements are,
in a certain way, common on vehicular suspension systems. They can be acquired using
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accelerometers (for z̈s(t)), relative displacement sensors (for the suspension deflection,
zdef(t) = zs(t) − zus(t)). The deflection velocity ( ˙zdef(t)) and unsprung mass velocity
( ˙zus(t)) can be used with certain carefullness, as they arise from derivative filters; this will
be further discussed on results section. Finally, this leads us to:

ẋ(t) =

A
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
−ks
ms

−c
ms

ks
ms

c
ms

0 0 0 1
ks
mus

c
mus

− (kt+ks)
mus

−c
mus

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.x(t) +

B1³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0
kt
mus

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.w(t) +

B2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
ms

0

− 1
mus

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.α.u(t) (3.5)

y(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0

0 1 0 −1
−ks
ms

−c
ms

ks
ms

c
ms

⎤⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

.x(t) +

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
²
D1

.w(t) +

⎡⎢⎢⎢⎢⎢⎢⎣

0

0
1
ms

⎤⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

D2

.α.u(t)

The problem herein studied is, finally, to estimate, identify and diagnose the value
of this fault factor α only through the measurements of the system outputs y(t).

To facilitate further development, let us re-write the faulty damper QoV system
with an augmented space-state representation considering xa(t) = [ xT (t) α w(t) ]

T
.

We also assume that the fault factor α is constant, so α̇ = 0. As of this, we have:

∑
Aug. Sys.

∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋa(t)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎣

ẋ(t)
α̇

ẇ(t)

⎤⎥⎥⎥⎥⎥⎥⎦

=

Aa³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B2.u(t)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

Bα

B1

0 0 0

0 0 Amw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.xa(t)

y(t) = [
C

Dα³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
D2.u(t) D1

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ca

.xa(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where we assume to have information on the type of road profile disturbance. On this basis,
we have a model of the disturbance: ẇ(t) = Amw.w(t). This information may come from an
external adaptive road profile estimator, as proposed in [57]. Remark that different road
profiles may have greater state-space models with more than one state (say nw states),
which leads to the growth of matrices B1 and D1 with (nw − 1) null columns - for example,
a sinusoidal road profile has, at least, nw = 2 states.

Notice that the matrices Aa and Ca are affine on u(t), due to the terms (respectively)
Bα and Dα. This will be treated with the studied LPV representations, in next sections.

Finally, we can design an asymptotical state observer to estimate the value of the
fault factor α given by:



Chapter 3. A Survey of LPV FDI Schemes: Loss of Effectiveness on Actuators 48

∑
Fault Obs.

∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

˙̂xa(t) = Aa.x̂a(t) + L(⋅).[y(t) −Ca.x̂a(t)]
α̂ = [ 0size(x) Isize(α) 0size(w) ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M

.x̂a(t)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(3.6)

The dynamics of the estimation error are given in equation (3.7). Then, we shall
compare three different approaches on how to compute the gain matrix L(⋅). This observer
matrix gain will be computed so that (Aa −L(⋅).Ca) is Lyapunov-sense stable.

ė(t) = ẋa(t) − ˙̂xa(t) = [Aa −L(⋅).Ca].e(t) (3.7)

A representation of the complete problem structure is given in figure 12. Notice
that the controller is not a subject of this study, but it will be considered in further works
on a complete FTC -FDI scheme.

Figure 12 – Proposed FDI Scheme

3.4 Polytopic LPV State Observer

Let us, firstly, consider a simpler LPV approach to compute the gain matrix L(⋅).
Let us remark that the control signal u(t) is perfectly known, and bounded (due to
saturation constraints of the semi-active damper) inside the convex set Usat, delimited by
the minimal and maximal values of u(t), u and u, respectively.
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Thus, we can assume u(t) as the scheduling parameter ρ(t), as it satisfies 0 < ρmin ≤
ρ ≤ ρmax. From this, we arrive at Bα = B2.ρ and Aa = Aa(ρ) and, similarly, Dα =D2.ρ and
Ca = Ca(ρ). Thus, the augmented system (3.6) becomes LPV.

A Polytopic representation of the extended state observer (3.6) is, then:

∑
Fault Obs.

(ρ) =
2

∑
k=1

βk(ρ)
⎡⎢⎢⎢⎢⎣

(Aka −Lk.Ck
a) Lk

M 0

⎤⎥⎥⎥⎥⎦
, with

2

∑
k=1

βk(ρ) = 1 , βk(ρ) > 0 (3.8)

where each
⎡⎢⎢⎢⎢⎣

(Aka −Lk.Ck
a) Lk

M 0

⎤⎥⎥⎥⎥⎦
is an individual LTI system frozen at the vertex k of a

polytope P defined by the boundaries of Usat.

To compute the matrix gain L(⋅) of the proposed extended observer which guar-
antees the stability of (3.7), we can use a H2 (noise filtering) criteria, as seen in [23],
considering the measurement noise as an input to the estimation error system. This is an
appropriate method to design the observer, for the H2 norm of a system, from a stochastic
point-of-view, is equal to the square root of the asymptotic variance of the output when
the input is a white noise (see proof in [22]), which means that the measurement noise
effect will be diminished when estimating the loss of effectiveness fault factor α.

3.4.0.1 H2 Observer: Problem Definition

The H2 observer problem definition resides, then, on minimizing the following
objective function:

J = ∣∣Teν(s)∣∣2 under e(t)∣t=0 = 0 (3.9)

under the two following conditions (exponential stability of Teν(s) and closed-loop
observation error dynamics):

limt→∞ e(t)→ 0 for ν ≡Ð→0 (3.10)

ė(t) = (Aa(⋅) −L(⋅).Ca(⋅)).e(t) −L(⋅).Dνν(t) (3.11)

where Teν(s) represents the Laplace-domain transfer function between the estimation error
e(t) and an additive measurement noise ν(t) on each component of y(t). Notice, also, that
the matrix Dν represents the influence of the measurement noise on the system measured
outputs.

3.4.0.2 Problem Solution

This problem’s solution is, then, obtained by minimizing the scalar γ in:

Trace(N) ≤ γ (3.12)
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and solving the following LMI s, given in equations (3.13)-(3.15), taking Q = P.L(⋅), with
P and N being two positive definite matrices.

Remark: the maximal variance of the estimation error, with this solution, is given
by Trace(N).

⎡⎢⎢⎢⎢⎣

ATa (ρ).P + P.Aa(ρ) −CT
a (ρ).QT −Q.Ca(ρ) −Q

⋆ −I

⎤⎥⎥⎥⎥⎦
< 0 (3.13)

2β.P +ATa (ρ).P + P.Aa(ρ) −CT
a (ρ).QT −Q.Ca(ρ) < 0 (3.14)

⎡⎢⎢⎢⎢⎣

N −DT
ν .Q

T

⋆ P

⎤⎥⎥⎥⎥⎦
> 0 (3.15)

Notice that β, in the LMI (3.14), is a root-locus condition imposed on the eigenvalues
of (Aa(ρ) −L(ρ).Ca(ρ)): these must be greater, in module, than β (chosen due to settling
time restrictions of each application), inside region Rp of complex plane C, as described
by figure 13.

It is also worth remarking that a weighting function can be introduced to specify
the frequency range on which sensor noises should be attenuated. Besides, (obviously)
sensor noise is considered as a high frequency signal.

Figure 13 – Pole Placement Region

The interest of the polytopic LPV approach is that the LMI s (3.13)-(3.15) are
computed offline at each vertex of P , minimizing the H2 criterion.

As we have only one scheduling parameter ρ, we shall solve (3.13)-(3.15) at ρ = u,
finding L, and at ρ = u, finding L. Finally, the gain matrix L(⋅) is given by:

L(ρ) = ( ρmax − ρ
ρmax − ρmin

) .L + ( ρ − ρmin
ρmax − ρmin

) .L (3.16)

Simulation and validation results with this Polytopic LPV approach can be found
on section 3.7.
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3.5 Switched LPV State Observer

This previous Polytopic approach might present some Structural Observability
(understood as in the sense presented on [58]) problems whenever u(t) = 0, for the rank

conditions of the structural observability matrix O(ρ) = ( Ca(ρ) Ca(ρ).Aa(ρ) . . . )
T

might not be guaranteed. This is easier to grasp if one takes a look at Aa(ρ)∣ρ=0, which
presents an empty column. Let us now, thus, consider a more robust approach to overcome
this possible problems; this topic is discussed on [59] and [60].

We shall suppose, now, that our systems switched between two types of subsystems:
one of fully observable modes (or, at least, detectable) and one that is not structurally
observable.

From this, we can designed a switched LPV extended observer in order to guarantee
closed-loop continuous observability under dwell-time constraints; dwell-time being, herein,
the time period for which the systems is set to its structurally undetectable mode.

3.5.1 Switched Systems

Before presenting this second LPV FDI approach, let us touch some topics on
switched systems. As presented on [61] and [62], switched systems represent a class of
hybrid dynamical systems consisting on a family of subsystems and a rule that implies a
commutation between them.

This systems can be represented, for instance in discrete-time, as in equation (3.17).
Herein, x[k] ∈ Rn represents the state vector, u[k] ∈ Rm the control input vector and
y[k] ∈ Rp the system output vector. σ[k] ∶ N→ J represents the discrete switching rule,
with J = {1, . . . ,N}, which means the triplet of matrices (Aσ[k],Bσ[k],Cσ[k]) are defined,
at each arbitrary step k, within the finite set {(A1,B1,C1), . . . , (AN ,BN ,CN)}.

x[k + 1] = Aσ[k].x[k] +Bσ[k].u[k] (3.17)

y[k] = Cσ[k].x[k]

Some assumptions shall be considered for further analysis:

• The matrix Cσ[k] is full (row) rank ;

• The switching rule σ[k] is assumed to be known (available) at each instant k.

3.5.2 Stability Condition for Switched LPV Systems

One has, still, to look closely at (Lyapunov-sense) stability conditions for switched
LPV systems. It is important to notice that, for instant, the system (3.17) might be stable
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for every triplet (Aσ[k],Bσ[k],Cσ[k]), but Lyapunov-sense unstable due to the switching
phenomenon.

Let us consider a simple continuos system ẋ(t) = Aσ(ρ).x(t), with x(0) = x0 and
Aσ switching according to the switching rule σ(t) and, thus, Aσ ∈ {A1(ρ), . . . ,AN(ρ)} for
Ai ∈ Rn×n and i = 1, . . . ,N .

The guarantees of (asymptotical) stability to this system reside on: if all subsystems
Ai are stable and the Lyapunov function V (x(t)) is non-increasing at the switching
instants, the system is stable. This is:

Ai(ρ)T .Pσ + Pσ.Ai(ρ) + Ṗσ < 0, ∀i = 1, . . . , M (3.18)

V (x(τk)) ≤ V (x(τ−k )), τk is the switching instant

3.5.3 New LPV Representation

Herein, to facilitate a LPV representation of this system, we shall explicit the
controlled force as u(t) = ∣u(t)∣.sign(u(t)), settling a scheduling parameter ρ(t) = ∣u(t)∣.
Remark: once again, ρ is assumed to satisfy 0 < ρmin ≤ ρ ≤ ρmax, which is true for our
studied system, for u(t) is bounded inside the convex set Usat.

From this, we arrive at Bα = B2.ρ.sign(u(t)) and Aa = Aa(ρ), and, similarly,
Dα = D2.ρ.sign(u(t)) and Ca = Ca(ρ). Thus, once again, our augmented system (3.6)
becomes LPV.

We shall, then, take our switching rule as the discontinuous function σ(t) =
sign(u(t)), considering:

sign(u(t)) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+1 , if u(t) > 0

0 , if u(t) = 0

−1 , otherwise

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(3.19)

It is important to remark that the matrix Bα(ρ) ∈ [−B2.ρ , B2.ρ] and, thus, Aa(ρ)
switches among the three subsystems put on equation (3.20). This similarly occurs to the
matrix Ca(ρ), that switches according to the same rule among the three subsystems seen
on (3.21). On figure 14, we can see a representation of the system (∑Fault Obs.) switching
between its modes due to the switching law σ(t), considering the discontinuous function
sign(⋅) as explained on (3.19).
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Aa(ρ) = col

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

A −B2.ρ B1

0 0 0

0 0 Amw

⎤⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎣

A 0 B1

0 0 0

0 0 Amw

⎤⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎣

A B2.ρ B1

0 0 0

0 0 Amw

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(3.20)

Ca(ρ) = col{[ C −D2.ρ D1 ] , [ C 0 D1 ] , [ C D2.ρ D1 ]} (3.21)

Figure 14 – Switched System and All Switching Modes

Our problem, now, resides on finding L(⋅) for the switched system (3.6), considering
the switching rule σ(t), under dwell-time conditions.

3.5.4 Theoretical Background on Minimal Dwell-Time

Let us recall what is presented on [60], on some theoretical background results that
are welcome to this present study. Considering the generic (continuous-time) switched
system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = Aσ(t).x(t)
x(t0) = x0

σ(t0) = σ0

(3.22)

we can scrutinize:

Lemma 3.1. The following statements are equivalent and when one of them holds, the
switched system (3.22) is (Lyapunov-sense) asymptotically stable for any and all sequence
of switching instants. These statements are:
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(i) The quadratic map V (x(t), σ(t)) = xT (t).Pσ(t).x(t) with each Pj being a positive
definite matrix with j = 1 , . . . , N , is a Lyapunov function for system (3.22) with

V̇ (x(t), j) ≤ −µ∣∣x(t)∣∣22 , t ∈ (τk, τk+1), j = 1 , . . . , N (3.23)

and

V (x(τk+1), σ(τk+1)) − V (x(τk), σ(τk)) ≤ −ξ∣∣x(τk)∣∣22 (3.24)

hold for some µ, ξ > 0, all x(τ), x(τk) ∈ Rn and any sequence of switching instants {τk}k∈N.

(ii) There exists a positive definite matrix Pj with j = 1 , . . . , N , such that the
LMI s (3.25) and (3.26) hold for all j, k = 1 , . . . , N , j ≠ k and all φ ≥ T̂ .

ATj .Pj + Pj.Aj ≺ 0 (3.25)

eA
T
j .φ.Pj.e

Aj .φ − Pm ≺ 0 (3.26)

(iii) There exists some positive definite matrix Pj with j = 1 , . . . , N , such that the
LMI s (3.27) and (3.28) hold for all j, k = 1 , . . . , N and j ≠ k.

ATj .Pj + Pj.Aj ≺ 0 (3.27)

eA
T
j .T̂ .Pj.e

Aj .T̂ − Pm ≺ 0 (3.28)

Proof. Proof of (i) ⇔ (ii). Assuming that (3.23) holds, this would imply that equation
(3.29) is true for all x(t) ∈ Rn, t ≠ τk, k ∈ N. This is equivalent to stating that (3.25)
holds. The proof that (3.24) implies (3.26) follows the same reasoning. With reverse
argumentation, the proof that (ii) ⇒ (i) follows.

xT (t).[Aj.Pj + Pj.Aj].x(t) ≤ −µ∣∣x(t)∣∣22 (3.29)

The proof of (ii) ⇒ (iii) is immediate. Let us consider that (3.27) and (3.28) hold.
From this, one can consider a Taylor expansion of the term T (φ) = eATj .φ.Pj.eAj .φ around
φ = φ0 ≥ T̂ . This yields:

T (φ0 + δ) = eA
T
j .φ0 .Pj.e

Aj .φ0 + σeATj .φ0 .[ATj .Pj + P T
j .Aj].eAj .φ0 + o(σ) (3.30)

where o(⋅) represents a Landau small-o notation. Hence, we arrive at:

T (φ0 + δ) − T (φ0) = σeA
T
j .φ0 .[ATj .Pj + P T

j .Aj].eAj .φ0 + o(σ) (3.31)

Since (3.27) holds, the right-hand side is negative definite for all φ0 ≥ T̂ and,
therefore, we have that:

eA
T
j (T̂+δ).Pj.e

Aj(T̂+δ) ⪯ eATj .T̂ .Pj.eAj .T̂ (3.32)
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for all δ ≥ 0 and, thus:

eA
T
j .φ.Pj.e

Aj .φ − Pm ⪯ eATj .T̂ .Pj.eAj .T̂ − Pm ≺ 0 (3.33)

hold for all δ ≥ T̂ . The proof, then, is complete.

Finally, let us state:

Theorem 3.2. The following statements are equivalent and when one of them holds, the
switched system (3.22) is (Lyapunov-sense) asymptotically stable for any and all sequence
of switching instants. These statements are:

(i) There exists some positive definite matrices Pj with j = 1 , . . . , N such that the
LMIs (3.34) to (3.35) hold for all j, k = 1 , . . . , N and j ≠ k.

ATj .Pj + Pj.Aj ≺ 0 (3.34)

eA
T
j .T̂ .Pj.e

Aj .T̂ − Pm ≺ 0 (3.35)

(ii) There exists matrix maps Rj ∶ [0, T̂ ] → Sn, being Sn the set of symmetric
matrices, with j = 1 , . . . , N , with Rj(0) being positive definite, and a scalar ξ > 0 such
that the LMIs (3.36) to (3.37) hold for all j, k = 1 , . . . , N , j ≠ k and τ ∈ [0, T̂ ].

ATj .Rj(0) +Rj(0).Aj ≺ 0ATj .RJ(τ) +Rj(τ).Aj − Ṙj(τ) ⪯ 0 (3.36)

Rj(T̂ ) −Rm(0) ⪯ −ξ.I (3.37)

(iii) There exists matrix maps Sj ∶ [0, T̂ ] → Sn, being Sn the set of symmetric
matrices, with j = 1 , . . . , N , with Sj(T̂ ) being positive definite, and a scalar ξ > 0 such
that the LMIs (3.38) to (3.40) hold for all j, k = 1 , . . . , N , j ≠ k and τ ∈ [0, T̂ ].

ATj .Sj(T̂ ) + Sj(T̂ ).Aj ≺ 0 (3.38)

ATj .SJ(τ) + Sj(τ).Aj − Ṡj(τ) ⪯ 0 (3.39)

−Sm(0) + Sj(T̂ ) ⪯ −ξ.I (3.40)

Proof. Proof follows from Lemma 3.1 and what is presented as Stability with Periodic
Switching Times theorem on [60].

Notice that the notion of maximal dwell-time was herein represented by T̂ . The
preliminary results brought by lemma 3.1 and theorem 3.2 can be extended considering a
dwell-time condition for each of the systems modes, this is T̂j.
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3.5.5 Detectability of LPV Switched Systems Under Mode-Dependent Dwell-

Time

Now, we can formally investigate the issue of guaranteed detectability of a
LPV switched system, with mode-dependent dwell-time constraints. Let us highlight that
the notion of mode-dependent dwell-time is understood in the sense of [63].

From what is presented on Lemma 3.1 and Theorem 3.2, and considering the convex
conditions Lemma presented on the following (as on [64]), we can consider that our LPV
system (3.6) has dwell-time conditions for each of its modes (refer to figure 14).

Lemma 3.3. Consider the generic switched system ẋ(t) = A.x(t). Assume that for some
interval t ∈ [t0 , tf ] and δt = tf − t0, there exists two positive definite symmetric matrices
P1 and P2 of appropriate dimensions that satisfy the following conditions:

P2 − P1

δt
+ P1.A +AT .P1 < 0 (3.41)

P2 − P1

δt
+ P2.A +AT .P2 < 0

Then, for this system, there is stability when considering Lyapunov function
V (t) = xT (t).P (t).x(t), with P (t) = P1 + (P2 −P1).( t−t0δt ), which is strictly decreasing over
the time interval t ∈ [t0 , tf ].

Proof. Proof is detailed on [64].

Assuming that upper and lower bounds for the dwell-time for each mode are
those seen on (3.42), for j = 2 as the undetectable mode (taken into by the switching rule
sign(u(t))∣u(t)=0 = 0). Then, as explained, the dwell-time constraints are T jmax ≥ (τ js+1−τ

j
s ) ≥

T jmin for all s ∈ N, considering τ js a switching instant onto (or from) mode j.

DT ∶= [T 1
min, T

1
max] × ⋅ ⋅ ⋅ × [TNmin, TNmax] = [T 1

min,+∞) × [T 2
min, T

2
max] × [T 3

min,+∞) (3.42)

Remark: When T jmax = +∞, for some index j, it is then necessary that the
respectful subsystem j is (Lyapunov sense) stable (likewise, detectable); in our study case,
then, the pairs (A1

a(ρ),C1
a(ρ)) and (A3

a(ρ),C3
a(ρ)) should be detectable, which is true.

From this, we can cast our analysis to the following theorem for the observability
of switched systems under mode-dependent dwell-time constraints, considering the clas-
sical asymptotical observer design, as in (3.6) and its error dynamics. Remark that the
controllability and observability are dual problems!

Thus, let us now propose Theorem 3.4 so that there is guaranteed continuous
detection of α, under the given constrained mode-dependent dwell-time conditions, for
our studied LPV system.
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Theorem 3.4. Guaranteed Continuity of Detection of LPV Switched Systems
under Mode-Dependent Dwell-Time Constraints

Firstly, let us remark that, herein, guaranteed continuity of detection is understood
in the sense that a continuous-time asymptotical observer can be designed and a matrix
gain L(⋅) can be found so that the observation error e(t) converges asymptotically to (0, 0)
in finite time.

It is also, herein, assumed that T 1
min ≥ T 3

min > T 2
max. This might be to conservative,

but its goal is to guarantee the time-wise stabilization of the tracking error e (after possible
instabilities at mode j = 2).

Consider the switched LPV system (3.6) with bounded scheduling parameters ρ
that abide to {ρ ∈ Ω ∣ρmin ≤ ρ ≤ ρmax}. Consider τs as the switching instants to (or from)
mode 2 (structurally undetectable), with s ∈ N and T 2

min ≤ (τs+1 − τs) ≤ T 2
max, in respect to

the bound presented on (3.42).

If the following statements are true, then there is guaranteed detectability of (3.6)
for any ρ ∈ Ω (and for any control input u(t)) and for all t if the dwell-time within each
mode respect the proposed bounded conditions:

(i) There exists positive definite matrices Kj with j = 1 , . . . , N so that the LMIs
(3.43) hold for all Tj ∈ [T jmin , T

j
max] and j, k = 1 , . . . , N for j ≠ k where it is implied that

(3.44) is necessary, considering Ψj(0) = I and s ≥ 0.

Ψj(T j).Kj.Ψj(T j)T −Kk ≺ 0 (3.43)
Ψj

ds
(s) = [Aa(ρ) −Li(ρ).Ca(ρ)](s).Ψj(s) (3.44)

(ii) There exists a collection of N positive definite matrices Pj and Yj for all
j = 0, . . . , N such that the LMIs (3.45) to (3.47) hold, where each Pj(ρ) is polytopic
within each bounded variations of ρ within each of the systems modes. It is important to
remark that: i0 represents the initial mode for the initial switching rule, this is σ(t)∣t=0 -
it most importantly assumed that i0 ≠ 2; τδ is a prescribed time period to guarantee the
piecewise continuity of Pσ(ρ, t) and Yσ(ρ, t) . The notation on these equations is simplified:
A represents Aa(ρ) and C represents Ca(ρ), whereas Pj and Yj are Pj(ρ) and Yj(ρ).
Remark: the matrices Pj→2 and Yj→2 represents the matices whiting witch the continuous
Pσ(ρ, t) and Yσ(ρ, t) were, respectively, when occurred the switching transition τ 2→m

s+1 , inside
the time interval t ∈ [τs , τs + T 2

max)∣∣[τs , τs + T 2
min).
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(Pj+1 − Pj)
T 2
max

+ATj .Pj −CT
j .Y

T
j + Pj.Aj − Yj.Cj < 0, (3.45)

ATj Pj −CT
j .Y

T
j + Pj.Aj − Yj.Cj < 0 (3.46)

Pj+1 − Pj ≥ 0∀j = 1, . . . , (N − 1) (3.47)

Pσ(ρ, t) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi0(ρ) if t ∈ [0 , τ1)
Pj(ρ) + (P2(ρ) − Pj(ρ)). ( t−τs

T 2
max

) if t ∈ [τs , τs + T 2
max)∣∣[τs , τs + T 2

min)
Pj→2(ρ) + (Pm(ρ) − Pj→2(ρ)). ( t−τs+1τδ

) if t ∈ [τ 2→m
s+1 , τ 2→m

s+1 + τδ)
Pm(ρ) if t ∈ [τs+1 + τδ , τs+2)

(3.48)

Yσ(ρ, t) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi0(ρ) if t ∈ [0 , τ1)
Yj(ρ) + (Y2(ρ) − Yj(ρ)). ( t−τs

T 2
max

) if t ∈ [τs , τs + T 2
max)∣∣[τs , τs + T 2

min)
Yj→2(ρ) + (Ym(ρ) − Yj→2(ρ)). ( t−τs+1τδ

) if t ∈ [τ 2→m
s+1 , τ 2→m

s+1 + τδ)
Ym(ρ) if t ∈ [τs+1 + τδ , τs+2)

(3.49)

(iii) Moreover, if one takes in consideration the observer error dynamics, as on
(3.7), these will be (Lyapunov-sense) asymptotically stable for all switching instants in Iτ
and the states of the system (3.6) are continuously reconstructable only if one takes the
proper choice of matrix function Lσ(⋅) as on (3.51).

Iτ = col{τ1 , τ2 , . . .} (3.50)

Lσ(ρ, t) = P −1
σ (ρ, t).Yσ(ρ, t) (3.51)

Proof. Proof of (i): The goal is to show that this statement is a necessary and sufficient
condition for the existence of a feedback gain Lσ(⋅) for the system (3.52) where m(t) =
−Ca.e(t).

ė(t) = Aa.e(t) +Lσ(⋅).m(t) (3.52)

Then, the idea is to use Lemma 3.1 and Theorem 3.2 to prove stability (equivalent
problem to observability) of a closed-loop system subject to a minimum dwell-time, as
presented on [60]. Noting that for all φ ≥ T̂ and Lσ(⋅)∣t=φ = Lσ(⋅)∣t=T̂ and following the
same argumentation as on the proof of Lemma 3.1, we find that condition (3.27) exactly
becomes a classical algebraic Ricatti stabilization condition for our system and condition
(3.28) is cast into (3.43), which proves the exactness of (i).
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Proof of (ii): Let us reduce our analysis to the generic switched system (3.22). Let
us recall that this system is (Lyapunov-sense) asymptotically stable if:

V̇ (x(t)) = xT (t).(Aj(ρ).Pσ(ρ, t) + Pσ(ρ, t).Aj(ρ) + Ṗσ(ρ, t)).x(t) < 0 (3.53)

V (x(τk)) ≤ V (x(τ−k )) , τk as switching instant

It is assumed, then, that at the switching instant τk, the system switched from Aj(ρ) to
Am(ρ). Thus, we can write the Lyapunov function at instant τk as:

V (x(τ−k )) = xT (τk).Pm.x(τk) , V (x(τk)) = xT (τk).Pj.x(τk) (3.54)

Then the non-increasing Lyapunov function condition V (x(τk)) ≤ V (x(τ−k )) holds if
Pm − Pj ≥ 0, which is actually (3.47). Now, we can apply Lemma 3.3 for each switching
instant τs. Indeed, during dwell-time, considering the bounded time interval [τn→js , τ j→ms+1 ]
the Lyapunov matrix Pσ(ρ, t) changes linearly from Pj to Pm. Then, from Lemma 3.3 with δt
(bounded at the maximal time interval T 2

max) the LMI (3.53) is true if (3.45) holds. After the
dwell time and before the next switching instant the Lyapunov matrix Pσ(ρ, t) becomes the
time independent Pm(ρ), then, once again (3.53) hold if ATm(ρ).Pm(ρ) +Pm(ρ).Am(ρ) < 0,
which is equivalent to (3.46), given the polytopic approach for the LPV system.

Proof of (iii) follows from (i) using a change of variables Yj = −Mj.Kj.Lj and
continuing with the solution of the LMI s on (ii). Notice that the condition implied by (i)
is solved by the proposition on (ii).

3.5.6 Method Synthesis

The main idea with this method is to guarantee the observer’s asymptotical stability
(considering error dynamics) for all t, considering there is a restriction on the system’s
maximal dwell-time on each of its modes. With the first polytopic approach, for this study,
there was no guarantees of continuous detection of α (or stability on ė(t)) if the system
passed through its undetectable mode (for u(t) = 0).

Simulation and validation results with this Switched LPV approach can be found
on section 3.7.

3.6 Sliding Mode LPV State Observer

Let us now consider the use of a Sliding Mode LPV State Observer to determine
the value of the loss of effectiveness on actuator α. This method is adapted from what is
throughly discussed on [54], where both actuator and sensor faults are considered, to a
feasible application to our studied system (QoV model).

For this method, we shall consider that the system states can be separated into two
main parts: those state that are unsensible to faults (x1(t)) and those which suffer influence
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of faults (x2(t)). For the QoV system, we shall consider a new state-space representation
for this kind of separation. This is:

ẋ1(t) = A11.x1(t) +A12.x2(t) (3.55)

ẋ2(t) = A11.x1(t) +A12.x2(t) + B12 .w(t) + B22 .u(t) +D2(ρ).fi(t) (3.56)

ynew(t) = x2(t) (3.57)

(3.58)

where A ∈ Rn×n is a linear transformation on states xnew(t) = Tx.x(t), this is
A = Tx.A.T −1

x , B1 ∈ Rn×w comes from Tx.B1, likewise for B2 = Tx.B2 ∈ Rn×m; finally,
D(ρ) ∈ Rn×q represents the fault distribution matrix. Notice that, with this formulation,
the road disturbance w(t) and control signal u(t) only influences x2(t).

Notice that, for this FDI approach, other measured outputs are considered. These
are the deflection velocity, the unsprung mass velocity; the suspension deflection is

also considered as an auxiliary output. This is y(t) =
⎡⎢⎢⎢⎢⎣

˙zdef(t)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
y1new(t)

˙zus(t)
²
y2new(t)

zdef(t)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
yaux(t)

⎤⎥⎥⎥⎥⎦
, where

ynew(t) = x2(t) and x1(t) = [ zs(t) zus(t) ]. The use of the auxiliary output shall be
described soon.

It is assumed that D(ρ) can always be decomposed into fixed and a varying
component, D(ρ) =D.E(ρ), for D ∈ Rn×q and E(ρ) ∈ Rq×q. It is important to remark that
r1(ρ) and ψ ∶ R+ ×Rp ×Rd → R+ are known well-defined functions. Taking our scheduling
parameter as ρ = u(t), with known bounded conditions (explained in the two previous
approaches), we shall arrive, with this formulation, at the point where detected faults
fi(t) will, numerically, represent (α − 1). From this, we can write D = B2 and E(ρ) = ρ.Iq.
Then, let us consider a function fv(t, ρ) ∶ R+ ×Rd → Rq to represent "virtual faults” upon
the actuators, in order to incorporate the LPV variations. Then, it is assumed that (3.59)
is always guaranteed.

∣∣fv(t, ρ)∣∣ < r1(ρ).∣∣u(t)∣∣ + ψ(t, y, ρ) (3.59)

The determinant det(E(ρ)) will be considered as det(E(ρ)) ≠ 0 and, for this, the
actual fault factor α will be able to be retrieved from the estimative fv(t, ρ). The functions
r1(ρ) and ψ(t, y, ρ) are defined so to constitute the upper bound on the worst of a loss of
effectiveness fault on the system dynamics (this is, for α = 0), as shows equation (3.59). The
scenario for which det(E(ρ)) = 0 will be treated as an exception and discussed afterwards.

Then, the fault observer for this approach will little modify what is presented on
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(3.6) to a different structure for observing the fault-free states x1 and the fault-prone states
x2. This is presented on the following structure:

˙̂x1(t) = A11.x̂1(t) +A12.x̂2(t) −GL1 .ey(t) −GN1 .ν1(t) (3.60)
˙̂x2(t) = A21.x̂1(t) +A22.x̂2(t) −GL2 .ey(t) −GN2 .ν2(t) + B12 .ŵ(t) + B22 .u(t) (3.61)

ey(t) = ynew(t) − ˆynew(t) (3.62)

ˆynew(t) = x̂2(t) = [ 0x1 Ix2 ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Cnew

.

⎡⎢⎢⎢⎢⎣

x̂1(t)
x̂2(t)

⎤⎥⎥⎥⎥⎦
(3.63)

where, instead of defining the gain matrix L(⋅), one has to define the gain matrices GL

and GN and the auxiliary input ν(t). These are so that a sliding motion is induced and
the output estimation error ey(t) (see equation (3.62)) goes to zero in finite time. Once
this is true, a first order sliding mode is said to have been obtained on the surface S (see
book [65]), for:

S = {e ∈ Rn ∶ Cnew.e = 0} (3.64)

Remark that the observer on equations (3.60)-(3.61) is purely a state observer and
does not consider the augmented states as in the previous approaches. The information on
the disturbance ŵ(t) shall be generated by a parallel estimator, detailed further on this
section. The state estimation error (ej = xj(t) − x̂j(t)) dynamics will be, thus, given by
what is presented on equations (3.65)-(3.66), considering ŵ(t) = w(t), for simplicity.

ė1(t) = A11.e1(t) +A12.e2(t) +GL1 .ey(t) +GN1 .ν1(t) (3.65)

ė2(t) = A21.e1(t) +A22.e2(t) +GL2 .ey(t) +GN2 .ν2(t) +D2.fv(t, ρ) (3.66)

As once proposed on [66], we can, from this point, start with design tools so that
the sliding mode is attained on the surface S, given by (3.64).

It is important to remark that, with this representation we have A11 = 02×2. From
this, considering an adequate fast stabilization of (3.65), we can take, for instance:

GL1 = −A12 (3.67)

GN1 = L =
⎡⎢⎢⎢⎢⎣

−λ1 0

0 −λ2

⎤⎥⎥⎥⎥⎦
(3.68)

λ1 ≥ λ2 > 0 (3.69)

ν1(t) = ĕ1(t) (3.70)
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which means L is chosen with fast-enough eigenvalues λj and ĕ1(t) represents an
(open-loop) estimative of the prediction error e1. Taking, for simplicity, ĕ1(t) = e1(t), we
arrive at:

ė1(t) = L.e1(t) (3.71)

which is (Lyapunov sense) stable and converges to zero in finite time. The estimation ĕ1(t)
is retrieved with the used of the measured (and auxiliary) outputs. This is:

ĕ1(t) =

x̆1(t)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎣

z̆s(t)
z̆us(t)

⎤⎥⎥⎥⎥⎦
−x̂1(t) (3.72)

z̆us(t) = ∫
t

−∞
y2
new(τ)dτ (3.73)

z̆s(t) = yaux(t) + z̆us(t) (3.74)

Notice that, as our system (QoV model) has physical bounded limits, every state
has bounded conditions: for example zs ≤ zs(t) ≤ zs. This means that there are (known)
bounds on the maximal estimation of e1(t). The error between the estimation (ĕ1(t)) and
the real error e1(t) are given by the initial conditions of the integral on (3.73). Notice that,
then:

e1(t) − ĕ1(t) ≤ ε (3.75)

which means that, on the worst case scenario, we shall have:

ė1(t) = L.e1(t) +Lε (3.76)

e1(t)→ εe

Now, let us analyse how to choose the degrees-of-freedom on the other error
dynamics (ė2(t)). This is, let us expand (3.66), considering that:

w(t) − ŵ(t)→ εw (3.77)

e1(t)→ εe (3.78)

GL2 = (Astab
22 −A22) (3.79)

ν2(t) = µ.∣∣D2∣∣.sign(ey(t)) (3.80)

wherein ν2(t) is a sliding-mode injection term, that µ is an appropriate scalar so that
∣∣B12εw∣∣ + ∣∣A12.εe∣∣ + ∣∣fv(t, ρ)∣∣ < µ and that GN2 is a Lyapunov matrix for Astab

22 , we shall
arrive at:

GN2 .Astab
22 + (Astab

22 )T .GN2 = I2 (3.81)

ė2(t) = Astab
22 .e2(t) + GN2 .ν2(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Sliding-Mode Term

+D2.fv(t, ρ) + (A12.εe + B12 .εw)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ideally=0

(3.82)
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3.6.1 The Sliding-Mode Injection Term

A complete analysis on the Sliding-Mode injection term ν2(t) is exposed on [67],
with results on stability and proofs that the output error will converge to zero in finite
time, considering the suitable choice of GN2 .

3.6.2 Retrieving Fault Information

Let it be assumed that the sliding-mode observer has been well designed and that
the sliding motion on the surface S has been established. Then, during the sliding motion,
we know it is true that ey(t) = 0 and dey(t)

dt = 0, considering the assumptions presented
beforehand. From this, we know:

ė2(t) = [A21.e1(t) + B12(ŵ(t) −w(t))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

stable convergence

+Astab
22 .e2(t) +GN2 .ν2(t) +D2.fv(t, ρ) (3.83)

GN2 .ν
sliding
2 (t)→ −D2.fv(t, ρ) (3.84)

The function ν2(t) is discontinuous, but can replaced by a continuous approximation,
considering a suitable (small enough) choice of σ. This is, for every component k of ν2(t),
we can take:

(νsliding
2 )k(t) ≈ µ.∣∣D2∣∣.

eyk(t)
∣∣eyk(t)∣∣ + σ

(3.85)

Finally, one can retrieve the fault information and the fault factor α by following
the steps:

• Computing the approximate νsliding
2 (t) = col{(νsliding

2 )k(t)} ;

• Retrieving f̂v(t, ρ) = −D̆2

⋆
.(GN2 .ν

sliding
2 ), for D̆2

⋆
being the pseudo-inverse of D̆2 ;

• Reconstructing fi(t) as of f̂i(t) = E−1(ρ).f̂v(t, ρ) ;

• Computing the loss of effectiveness factor α as α̂ = 1 + f̂i.

Let us consider, for this method, that the changes upon α are extremely low-
frequency. This is, we are not interested in transitory behaviour of α, but mostly on
steady-state information on the loss of effectiveness of the actuator. Then, after the
procedure detailed above, one should consider the use of (small band) low-pass a filter
with a time constant sufficiently small to pass the slow component of the fault, but large
enough to eliminate the high frequency components (noise and other nonlinearities).
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3.6.2.1 Zero-Determinant: Problem Solution

Let us emphasize the solution added to this method to overcome the problems
when reconstruction faults f̂i(t) for ρ(t) = 0. Notice that, when this is true, det(E(ρ)) = 0

and, thus, there is no inverse E−1(ρ). In this situation, a feedback of past values of the loss
of effectiveness is used to maintain the signal α(t) continuous. This is, on a discrete-time
sense, when ρ = 0, α[k] is taken as z−1α[k].

3.6.3 Disturbance Estimation

As, for this study, it is assumed that there is a known model on the type of road
profile disturbance, a reduced-order state observer can be designed as on:

⎧⎪⎪⎨⎪⎪⎩

˙̂x(t) = A.x̂(t) + B1.ŵ(t) + B2.u(t).α̂ + Mx

˙̂w(t) = Amw.ŵ(t) + Mw

⎫⎪⎪⎬⎪⎪⎭
(3.86)

⎡⎢⎢⎢⎢⎣

Mx

Mw

⎤⎥⎥⎥⎥⎦
= Lw.y(t) −Lw. [ C 0nw ] .x̂(t)

where α̂ comes from the output of the sliding-mode FDI scheme and Lw is an appropriate
gain matrix.

Finally, we can see on figure 15 a full representation of this LPV Sliding-Mode
Fault Estimation Observer, with details to every sub-block.

Figure 15 – LPV Sliding-Mode FDI Scheme
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3.7 Simulation and Final Discussion

In this section, we will present some simulation results considering the problem of
estimating actuator (loss of effectiveness) faults on a semi-active suspension system of a
Quarter of a Vehicle, with ER dampers.

This simulation scenario (given road profile and control signal) is show in figure 16.

The system is initially considered at the origin x(0) = x0 = [ 0 0 0 0 ]
T
.

Figure 16 – Simulation Scenario

Notice that u(t) is set to zero inside the time interval t ∈ [37 , 42] s, meaning that
the ER damper is uncontrolled inside this interval. This allows us to analyse the switching
behaviour of the studied system and observability conditions of the augmented LPV
system (3.6).

As explained, the information used on the dynamics of the road profile disturbance
w(t) is considered to be provided by a road identification scheme, prior to the FDI
structure.

In figures 17 and 18 we can find, respectively, the obtained simulation results
considering each of the following fault estimation approaches: Polytopic and Sliding-Mode.
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The considered loss of effectiveness factor α varies from 1 to 0.753 at t = 13 s and, then, to
0.357 at t = 25 s - which means that the effectiveness of actuator is successively lost. At
t = 37 s, the fault factor α returns to 1, which is, obviously, hypothetical.

Figure 17 – Fault Estimation: Polytopic LPV Observer Approach
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Figure 18 – Fault Estimation: Sliding-Mode LPV Observer Approach

Figure 17 shows that the proposed polytopic approach accurately estimates the
faults (loss of effectiveness) on the semi-active suspension actuators (dampers) for whenever
u(t) ≠ 0. Likewise, in figure 18, we see that the sliding-mode approach gives an estimated
α̂ that follows the main trend of α(t), but its estimation error (α − α̂) is much bigger than
with the polytopic approach.

3.7.1 Second Simulation Scenario

For goals of illustrations, we shall consider a second simulation scenario as well.
For this scenario, we will use small sinusoidal road profile w(t), that could represent a
series of bumps for a vehicle running on a dry road at constant speed.

In terms of the expected damper force, which is computed with the use of equation
(3.87), where dc(t) represents a manipulated PWM signal, which is taken as a series of
steps to simulate changes upon the damping coefficient c(⋅). In these following simulations,
the control signal (damper force) never stays at u(t) = 0 for any t.

FER(t) =
controlled

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
fc.dc(t).tanh(a1.żdef(t) + a2.zdef(t)) (3.87)

+ b1.żdef(t) + b2.zdef(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

passive
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It important, also, to show the values used for the damper’s parameters, as of
equation (3.87), seen in table 1.

Table 1 – Semi-Active ER Damper Parameters

Parameter Value Unit
fc 6.5137 N

a1 27.7154 s/m2

a2 1.3297 1/m

b1 -19.8951 N.s/m2

b2 37.2670 N/m

The simulated vehicular suspension system is initially considered close to its origin
(this is, x(0) ≠ 0), and the initial conditions on w(t) are also non-null. The suspension
damper is initially fault-less (α = 1). An additive (high-frequency) measurement noise is
added on each measured output y(t), in order to better represent a real situation.

As explained, the information used on the dynamics of each road profile disturbance
w(t) is considered to be provided by a road identification scheme, prior to the proposed
Fault Detection and Identification structure. For the following simulation results, the
disturbance model Amw is different than the disturbance’s dynamic behaviour, to induce
a modelling error and to check if this error is overlapped by the robustness of the H2

extended observer approach. This modelling error is detailed on equation (3.88).

Areal
mw =

⎡⎢⎢⎢⎢⎣

0 −2.4674

4 0

⎤⎥⎥⎥⎥⎦
(3.88)

Aused
mw =

⎡⎢⎢⎢⎢⎣

0 −2.5

3 0

⎤⎥⎥⎥⎥⎦

For the these simulation results, we consider a sequence of steps as the loss of
effectiveness fault. This can represent, for instance, a successive oil leakage scenario. At
t = 13 s, α decreases to 0.735. This is done once again at t = 25 s, when the loss of
effectiveness fault α decreases to 0.375. Finally, at t = 37 s, α decreases to 0.275. The
estimation α̂ is seen in figure 19, in comparison with the actual value of α.
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Figure 19 – Simulation of Fault Estimation: Sequence of Steps

In figure 20, we see the used data for road profile, PWM signal and expected
(fault-less) damper force u(t) = FER(t), according to the measured outputs y(t).

Figure 20 – Simulation Scenario

For another simulation result, we shall consider that the loss of effectiveness fault
upon the damper’s actuation is constantly decreasing, as a ramp. This can represent that
the electro-rheological fluid inside the damper chamber is continuously loss. At t = 17 s, α
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starts to slowly decrease to 0.5. The estimation of α̂ is seen in figure 21, in comparison with
the actual value of α. The same road profile and PWM signal are used for this simulation.

Figure 21 – Simulation of Fault Estimation: Ramp

Finally, we shall herein compare the proposed polytopic LPV FDD scheme to a
Sliding-Mode fault reconstruction approach, as proposed by [68].

For this, we shall take a simple single-step scenario, wherein the loss of effectiveness
fault α decreases at t = 25 s to 0.85. The estimation of α̂ by both approaches is seen in
figure 22, in comparison with the actual value of α.

Remark 2. In real applications, a fault would not be so harsh (step), but actually a
decreasing exponential curve. Nonetheless, simulations with step-like faults are sufficient
to prove accuracy of estimation.
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Figure 22 – Simulation of Fault Estimation: Comparison to Sliding-Mode Approach

As seen in the presented simulation results, the proposed Polytopic LPV approach
presents some accurate and smooth results on estimating damper loss of effectiveness
faults.

In comparison with the discussed sliding-mode fault reconstruction approach, which
is very common in literature, as seen in [54], [69] and [70], the proposed Polytopic LPV
scheme presented more efficient and accurate results.

In terms of simulation, this is very satisfactory, for the accurateness of the approach
proposed by this article is very strong and it is, also, much simpler and less complex than
a sliding-mode approach (or even a parity-space residue analysis approach).

3.7.2 Experimental Validation

Now, in order to throughly validate the proposed approach for damper fault
identification, we shall present some experimental testing. This is of most importance as
it is a proof of the efficiency, reliability and feasibility of the proposed fault detection
method.

For this, a real test-bench is used for the application of this method. This testbed
is the INOVE Soben-Car experimental platform that allows dealing with several con-
figurations and use cases (see full details on [6]). Figure 23 shows the outline of this
test-bench.
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Figure 23 – INOVE Soben-Car Test-Bench

On this plant, the Semi-Active suspension system involves four Electro-Rheological
(ER) dampers which have a force range of ±50 N. These dampers are adjusted using
a controlled voltage inside the range of [0 , 5]kV, generated by amplifier modules. The
control input for these modules are PWM signals at 25 kHz. On terms of capturing the
vehicle’s behaviour, this testbed is equipped with a wide variety of sensors, like the available
measured outputs (y). Once again, remark that the deflection velocity measurement is
computed thanks to the use of a derivative-filter, as explained beforehand.

On table 2, we see the numerical values for each of the parameters of this vehicle
testbed, where the indexes ij represent the vehicle’s front/rear - left/right corners (i = (f, r)
and j = (l, r)).

Let us, then, describe the considered experimental validation scenario:

The used road profile (considering a full vehicle plant and its four suspension
systems) is the scenario of a vehicle running at 120 km/h in a straight line on a dry road,
when it encounters a sequence of 10 mm sinusoidal bumps. This road profile, considering
the front-left corner, is seen on figure 24. The information on this disturbance model Amw
is considered accurate, although there exists some modelling error because, at this testbed,
the actual road profile is slightly different than the desired road due to an internal motor
control system.

The measured system outputs for this validation scenario are seen in figure 25. Real
measurements are zdef(t) and z̈s(t), whereas żdef(t) was computed numerically. Obviously,
measurement noises are already present, due to (physical) instrumentation constraints of
the used test-bench.

For the detailed validation purposes, the loss of effectiveness faults were virtually
set upon the actuators. To mimic a loss of effectiveness fault on the dampers of this
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Table 2 – Vehicle Model Parameters: INOVE Soben-car

Parameter Value Unit
total ms 9.08 kg
musfl 0.32 kg

musfr 0.32 kg

musrl 0.485 kg
musrr 0.485 kg

ktfl 18097.60 N/m

ktfr 18097.60 N/m

ktrl 20819.40 N/m
ktrr 20819.40 N/m

kfl 1396 N/m
kfr 1396 N/m
krl 1396 N/m
krr 1396 N/m

cnomfl 71.3645 N.s/m

cnomfr 71.3645 N.s/m

cnomrl 71.3645 N.s/m
cnomrr 71.3645 N.s/m

Figure 24 – Experimental Validation Scenario: Road Profile

experimental testbed, the PWM signal is multiplied by κ(t), so that the actual damper
force is given by α.u(t). The variation of the PWM signal is seen in figure 26. In terms of
the desired (mimicked) loss of effectiveness fault α, it is considered as a single decreasing
step at t = 45 s, decreasing to 0.5.

As well in figure in figure 26, we can see the expected (faultless) damper force
compared with the real (faulty) damper fault. The expected damper force is computed
with the use of equation (3.87) taking a constant PWM signal at 30 %, whereas the actual
damper force comes from a force sensor present on the used vehicle test-bench.
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Figure 25 – Experimental Validation Scenario: Measured Outputs

Figure 26 – Experimental Validation Scenario: PWM Signal

Finally and most importantly, in figure 27, we see the detection of the loss of
effectiveness fault factor α and its respectively (virtually set) real value. This proofs the
worthiness of the FDI approach proposed in this paper and how it can be efficiently used
for the identification of faults on real dampers of automotive suspension systems. The
accurateness on experimental validation is, obviously, not as strong as on simulation, due
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to physical instrumentation constraints, nonlinearities and noise. On the other hand, the
approach is sufficient and strong to detect faults on dampers, which is the goal of this
article.

Figure 27 – Experimental Validation: Damper Loss of Effectiveness Detection

3.7.3 Analysis and Discussion

As we could see all these two approaches were able to partially detect the loss of
effectiveness on the damper actuator (α), although a discussion should be made on when
each approach is more appropriate.

3.7.3.1 Uncontrolled Damper Situation

Both sliding-mode and polytopic LPV FDI approaches give an inaccurate estimation
of α̂ whenever u = 0. The switched LPV approach, on the other hand, might prove itself
to better compute α̂ for this kind of situation.

This is no necessarily a problem on detection the loss of effectiveness, for it is
not logical to detect the loss of effectiveness of an actuator when there is no actuation.
This means that the Electro-Rheological damper of the suspension system is uncontrolled
(thus, passive). In a purely mathematical sense, not taking into account the actual system
(QoV ), the switched LPV should be considered.

The switched approach is not yet shown herein, for its goals is mostly to provide
tools to guarantee an overall continuity of detection. This approach will be dealt with in
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future works, depicting the proposed theorem and its application to a range of numerical
examples.

3.7.3.2 Complexity of Observers

In terms of implementation complexity, it is important to remark that the sliding-
mode approach is far more complex than the other two: it consists of several steps of
filtering and relies on the use of the sliding-mode term, which is highly nonlinear and must
be implemented with a certain amount of precision so that the results converge to what is
expected. In terms of simulation, this approach need an overly small relative tolerance
error on integrating solvers.

It is also important to remark that this approach need information ˙zdef(t) and
˙zus(t). This signals are not usually measured on vehicle systems and have to be retrieved

through the use of filtered derivatives upon zdef(t) and zus(t), which might increase noisy
behaviour and worsten results on the estimation of α.

Regarding the polytopic approach, it only needs the offline computation of the
L(⋅) matrix and, so, requires small implementation complexity.

3.7.3.3 On the use of Derivative-Filters

Not of least importance, one has still to remark that this studied consider the use
of two measurements ( ˙zdef(t) and ˙zus(t)). These signals are acquired through the use of
derivative-filters, in order to estimate the derivative and reject high-frequency noise. As
the average bandwidth of these signals are known, these derivative filter could be designed
as exposes the (Laplace-domain) equation (3.89), for each variable zj with bandwidth wzj .

Fzj(s) =
s

( 3
1.3wzj

.s + 1)3
(3.89)

3.7.3.4 Overall Analysis

Finally, after a carefull inspection of the results presented on figures 17 to 18, we
can claim that, for the studied problem and purpose (considering the QoV model, the
sliding-mode observer approach, as proposed in [54], is not as efficient as purely LPV
approaches.

The extended version of polytopic LPV observer design proved itself a much
more natural and straightforward extension of almost-LTI control tools to the nonlinear
observation problem, as in [47] and [49]. The proposed switched LPV approach presented
tools of analysis to guarantee detectability of α, assuming that the control signal stays
null for a given maximal period.
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The choice between these two approaches should be made considering each studied
application. For this study, for instance, the simpler polytopic LPV FDI is already sufficient,
given the discussion uncontrolled damper situation, for u(t) = 0.

3.8 Conclusions

This chapter presented the issue of detecting and identifying actuator faults with
three different LPV strategies. As showed by some simulation results, these strategies are
able to collect information on actuator faults, considering the problem of a Quarter of
Vehicle model with a semi-active suspension system and a faulty ER damper. A discussion
is made on which approach should be taken for different situations.
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4 Design of a Real-Time Model Predictive

Control Scheme for Semi-Active Suspension

Control of a Full Vehicle

4.1 About Chapter

The previous chapter dealt with Fault Detection problems on actuators. Now, in
this chapter, let us consider the problem of controlling the semi-active dampers.

The main problem here is to handle the dissipativity constraints of this semi-active
dampers. These constraints can be cast as actuator saturation conditions. From this, our
control design problem is resumed by handling actuator and state contraints with fast
computation.

This chapter is focused on solving the Real-Time application of an MPC controller
scheme for the control of a full car model with semi-active suspension system, with
possibility of implementation on the Soben testbed.

This is a continuation of the theoretical formulation presented in [5] and referenced
as future works in [71].

4.1.1 Abstract

This chapter presents a control structure, based on Model Predictive Control, for
the Real-Time control of a semi-active suspension system of a full vehicle, equipped
with four Electro-Rheological dampers. This control scheme considers a full linear vehicle
model of 14 states and a state-plus-disturbance estimator based on a H2 filtering approach.
The proposed control algorithm should provide a suitable trade-off between comfort and
handling performances of the vehicle in a very short sampling period (Ts = 5 ms), for the
implementation in a real vehicle test-bench. The control structure is tested and compared
to other standard fast control approaches. Results show the overall good behaviour of this
control scheme.

Keywords: Model Predictive Control; LPV Control; Real Time Control; Sub-
optimal Optimization; Vehicle System; Semi-Active Suspensions.
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4.2 Introduction

In order to enhance a vehicle’s driving performance in terms of road handling and
ride comfort, one should take special care with the vehicle’s suspension system. Evermore
present in the automotive industry, Semi-Active suspension systems are to be highlighted,
being efficient and, at the same time, less energy-consuming and less expensive than purely
active suspensions.

The use of semi-active suspension systems seems to provide a good trade-off between
costs and performance requirements. This type of suspension is present on new state-of-
the-art top-cars and a good deal of academic and industrial research is focused on this
topic, as seen in [55], [56] and others. Further details on semi-active suspension systems
are throughly discussed in [14], [13] and [12].

The main challenge faced by semi-active suspension control problems is how to
handle the dissipativity constraints of these dampers. Several control design problems have
been worked on with a range of different approaches. In [72], and more recently in [73]
and [74], we can find an extensive review of semi-active suspension control approaches.
Some of the most recent and modern control techniques have been applied for this kind
of problem. In [75], it is proposed an LQ-based clipped optimal control; a H2 control
approach is presented in [76]; LPV control approaches, dealing with the dissipativity
constraints of these suspension systems, are given in [53], [77] and [78].

Nevertheless, the most natural approach towards optimal control of processes
subject to constraints is Model Predictive Control (MPC ), as throughly detailed in [79].
MPC allows to explicitly consider the effect of input and state constraints in the control
design process. As the studied system does have an actuator saturation problem, MPC
presents itself as a plausible and elegant control solution.

Some works have employed a MPC approach for semi-active suspension systems,
although most of these studies only consider a simpler quarter-car vehicle model. In [80],
a fast MPC scheme is designed for a half-car vehicle, where the controller is tuned based
on a quarter-car suspension model and does not take into account the effect of future
disturbances. In [81], a methodology is proposed for optimal semi-active suspension control,
based on MPC, considering a quarter-car vehicle model and previously-measured road
disturbances. However, the quarter-car model is not sufficient to describe the dynamics
of a full vehicle with four semi-active dampers. The idea of solving the control problem
at each corner of the car (four separate controllers) might seem persuading and simple
enough, but the effects of coupling and load transfer distribution between corners may not
be handled, which should lead to degraded performance, as seen on [71].

Throughout literature, only a few studies have considered multivariable MPC
semi-active control techniques considering the full car dynamics. On [82], a nonlinear
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programming solution approach to this problem is proposed, considering an approximate
description of constraints. A practical implementation of this approach might be not be
suitable.

On the other hand, in [71], a full vehicle semi-active suspension MPC control is
formulated and solved using Mixed Integer constraints and optimization, where simulation
results show the interest of this control approach. The same author presents a more detailed
version on [5], where we can see that practical implementation on a vehicle testbed is
not yet satisfied, since the computational time of the MPC is greater than the nominal
sampling periods. It is a known fact that the computation requirements of predictive
controllers (MPC ) is usually high, due to an optimization problem which has to be solved
online, at every sampling period.

Thus, in this work, a practical implementation of a semi-active suspension MPC
controller for a full vehicle testbed with 4 semi-active dampers is proposed. The designed
control scheme includes a feedback LPV Fast MPC controller with an H2 extended state
observer for system states and future road disturbances. This chapter contains several
contributions:

• A H2 noise-attenuation extended state observer solution is presented as to estimate
system states and predict future road disturbances. Notice that the performance of
MPC controllers are improved with the use of accurate future disturbance information
(as seen in a class of applications, in [83] and [84]);

• A Clipped Analytical MPC suspension controller is presented, obtained by the
analytical solution of quadratic function;

• A Feedback LPV MPC suspension control is presented by solving a quadratic mini-
mization problem with polyhedral constraints, with explicit mathematical methods,
in a sufficient computational time (for a possible real-time application);

• Theoretical formulation, simulation results and observer validation are presented
with details, showing the interest of the proposed control approach. Comparisons
are made with other simpler control approaches.

The structure of this chapter is given as follows: section 4.3 describes the full vertical
vehicle model with 4 semi-active suspensions and the problem to be solved; section 4.4
shows the first theoretical results with the computation of an extended H2 state observer
to estimate future disturbances and system states; section 4.5 presents the MPC controller
for the semi-active suspension problem; in section 4.6, the practical implementation, on a
vehicle testbed, of this LPV MPC approach is described; finally, results are presented and
discussed in section 4.7 and conclusions are drawn in section 4.8.
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4.3 Full Car Model

Figure 28 – Full Vehicle Model with 4 Semi-Active Suspensions

Let us, firstly, present the dynamical model of a vehicle’s vertical behaviour. This
is a classic 7 degrees of freedom suspension model, as seen in figure 28 and referred to
in [85], and will be used for analysis and control purposes. This model involves the chassis
dynamics (vertical displacement (zs), roll angle (θ) and pitch angle (φ)) and the vertical
displacements of the wheels (zusij) at the front/rear - left/right corners (i = (f, r) and
j = (l, r)). This described 7 −DOF model is governed by the following equations:

ms.z̈s = −Fsfl − Fsfr − Fsrl − Fsrr (4.1)

Ix.θ̈ = (−Fsfr + Fsfl).tf + (Fsrl − Fsrr).tr
Iy.φ̈ = (Fsrr + Fsrl).lr − (Fsfr + Fsfl).lf

musij .z̈usij = Fsij − Ftzij

where Ix and Iy represent the moments of inertia of the sprung mass around the longitudinal
and lateral axis, respectively, h represents the height of the center of gravity (COG). lf ,lr,tf
and tr are the COG-front, rear, left and right distances, respectively.

In terms of the forces, Ftzij depicts the vertical tire forces, given by:

Ftzij = ktij .(zusij − zrij) (4.2)

where ktij represent the stiffness coefficients of the tires and zrij are the road profile
disturbances that the vehicle is subject to.

Each vertical suspension forces (for each of the 4 corners of the vehicle) is represented
by Fsij and, in this study, will be modeled by a spring and a damper with linear and
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nonlinear characteristics, respectively. This is:

Fsij = kij.(zsij − zusij) + Fdij (4.3)

where kij representes the nominal spring stiffness coefficient and Fdij the semi-active
controlled damper force. This damper force is given by (4.4), where cij(⋅) represents
controlled damping coefficient. The dissipativity constraints of each semi-active damper
are given in (4.5). To facilitate our control purposes (in order to exclude nonlinearities),
we shall consider the damper forces as given by (4.6), where uij is an incremental force
(used as control input) and cnomij =

(cmaxij+cminij )
2 is the nominal damping coefficient. Then,

the suspension force given in equation (4.3) can be finally re-written as (4.7).

Fdij = cij(⋅).(żsij − żusij) (4.4)

0 ≤ cminij ≤ cij(⋅) ≤ cmaxij (4.5)

Fdij = cnomij .(żsij − żusij) + uij (4.6)

Fsij = kij.(zsij − zusij) + cnomij .(żsij − żusij) + uij (4.7)

The position (and, thus velocities) of each sprung mass at each corner of the vehicle
(zsij) is derived from the vehicle equations of motion, and considering the roll and pitch
angles as small enough, they become linearized as in:

zsfl = zs − lf .(φ) + tf .(θ) (4.8)

zsfr = zs − lf .(φ) − tf .(θ)

zsrl = zs + lr.(φ) + tr.(θ)

zsrr = zs + lr.(φ) − tr.(θ)

4.3.1 State-Space Representation

One obtains the following state-space representation of this Full Car model, when
injecting (4.2) and (4.7) into (4.1), this is:

∑
Full V eh.

∶=
⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = A.x(t) + B1.w(t) + B2.u(t)
y(t) = C.x(t) + D1.w(t) + D2.u(t)

⎫⎪⎪⎬⎪⎪⎭
(4.9)

where the system states are given by (4.10), the control inputs are given by (4.11), the
unmeasured (disturbances) are given by (4.12) and, finally, the measured outputs are given
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in equation (4.13). Remark: A, B1, B2, C, D1 and D2 are constant matrices

x = [ zs θ φ zusfl zusfr zusrl zusrr żs θ̇ φ̇ żusfl żusfr żusrl żusrr ]
T

(4.10)

u = [ ufl ufr url urr ]
T

(4.11)

w = [ zrfl zrfr zrrl zrrr ]
T

(4.12)

y = [ z̈sfl z̈sfr z̈srl z̈srr zusfl zusfr zusrl zusrr ]
T

(4.13)

As this work considers a model predictive control approach, an optimization problem
must be solved at each sampling period (Ts). For this, the continuous-time model (4.9)
will be treated as discrete-time, as in (4.14), considering a discretization at the sampling
frequency of fs = 200 Hz (which is the testbed’s fixed rate, further explained in section 4.6
of this chapter). Note that the matrices Ad, . . . , D2d are constant.

Ts

∑
Full V eh.

∶=
⎧⎪⎪⎨⎪⎪⎩

x[k + 1] = Ad.x[k] + B1d.w[k] + B2d.u[k]
y[k] = Cd.x[k] + D1d.w[k] + D2d.u[k]

⎫⎪⎪⎬⎪⎪⎭
(4.14)

4.3.2 Input Constraints

Let us, now, depict with more details the dissipativity conditions of the semi-active
suspension systems, as given in equation (4.5) - the damper force constraints. As we shall
consider an MPC approach, these conditions have to be put as state, input or output
constraints (upon x, u or y). From (4.5-4.6), considering zdefij = zsij − zusij and multiplying
each (4.5) by zdefij , we have that:

cminij .żdefij ≤ cnomij żdefij + uij ≤ cmaxij żdefij if żdefij ≥ 0

cmaxij .żdefij ≤ cnomij żdefij + uij ≤ cminij żdefij if żdefij < 0
(4.15)

From this, since cnomij =
(cmaxij+cminij )

2 , we must guarantee that: ∣uij ∣ ≤
(cmaxij−cminij )

2 .∣żdefij ∣.
Equivalently, we can express the dissipativity constraints as linear inequalities between
the control inputs uij and the state variables x, this is:

if Cin.x[k] ≥ 0 , then
⎧⎪⎪⎨⎪⎪⎩

uij[k] ≥
(cminij−cmaxij )

2 .Cin.x[k]
uij[k] <

(cmaxij−cminij )
2 .Cin.x[k]

⎫⎪⎪⎬⎪⎪⎭

if Cin.x[k] < 0 , then
⎧⎪⎪⎨⎪⎪⎩

uij[k] ≥
(cmaxij−cminij )

2 .Cin.x[k]
uij[k] <

(cminij−cmaxij )
2 .Cin.x[k]

⎫⎪⎪⎬⎪⎪⎭

(4.16)

where żdefij = żsij − żusij = Cin.x, taking Cin as the appropriate matrix for this linear
combination of states. This representation of the damper force constraints is given in [71],
where a Mixed Integer approach is taken.
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4.4 Extended H2 State Observer

To ensure the feasibility and accuracy of the control objectives, it is of great
importance to present the used observer design methodology. The observer design has to
take two goals into account: estimate the system’s states x[k] and disturbances w[k] and
predict the future disturbances w[k+n] and states x[k+n]. Future disturbance estimation
is well known to improve MPC performances.

In order to satisfy these design goals, we must firstly consider a disturbance model.
As exploited and discussed thoroughly in [86] and [87], and as the system model (4.14) has
no integrating modes (considering input/output dynamics), we can improve the control
perfomances by taking a simple constant model. This is, we consider:

w[k + n] = w[k] for n = 1 . . .Np (4.17)

where Np stands for the prediction horizon.

Remark: Differently from [82], this method does not add any complexity in terms
of sensors (no need for cameras or added structures to our plant).If some prior knowledge
of the road profile is available, a more accurate model can be computed, as seen in [75],
but, for this study, it will be considered that there is no information on the type of road
profile.

So, we can consider an augmented state-space representation of the system, as
follows:

Ts

∑
Aug.Sys.

∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

x[k + 1]
w[k + 1]

⎤⎥⎥⎥⎥⎦
=

Aobs³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎣

Ad B1d

0 I

⎤⎥⎥⎥⎥⎦
.

⎡⎢⎢⎢⎢⎣

x[k]
w[k]

⎤⎥⎥⎥⎥⎦
+

Bobs³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎣

B2d

0

⎤⎥⎥⎥⎥⎦
.u[k]

y[k] = [ Cd D1d ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Cobs

.

⎡⎢⎢⎢⎢⎣

x[k]
w[k]

⎤⎥⎥⎥⎥⎦
+ D2d.u[k]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.18)

Let us also consider the presence of a measurement noise (ν) upon the measured
outputs y. This is:

y[k] = [ Cd D1d ] .
⎡⎢⎢⎢⎢⎣

x[k]
w[k]

⎤⎥⎥⎥⎥⎦
+ D2d.u[k] + Fuν[k] (4.19)

This being defined, we can, then, design an observer to estimate the extended
states with the following structure:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

x̂[k + 1]
ŵ[k + 1]

⎤⎥⎥⎥⎥⎦
= Aobs.

⎡⎢⎢⎢⎢⎣

x̂[k]
ŵ[k]

⎤⎥⎥⎥⎥⎦
+ Bobs.u[k] + L(y[k] − ŷ[k])

ŷ[k] = Cobs.

⎡⎢⎢⎢⎢⎣

x̂[k]
ŵ[k]

⎤⎥⎥⎥⎥⎦
+ D2d.u[k]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.20)
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where L ∈ R18×8 is the observer matrix gain to be defined.

To compute this gain, we will consider anH2 observer with pole placement definition,
as seen in [23]. This is an appropriate method to design the observer, for the H2 norm of
a system, from a stochastic point-of-view, is equal to the square root of the asymptotic
variance of the output when the input is a white noise, see proof in [22].

4.4.1 Problem Definition:

The (discrete-time) H2 observer problem (detailed in [23]), is, then, to minimize
γ in (4.21), taking into account that (4.22) and (4.23) are true, where Teν(z) being the

transfer function that represents the effects of ν(z) upon e(z) =
⎡⎢⎢⎢⎢⎣

x(z)
w(z)

⎤⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎣

ẑ(s)
ŵ(z)

⎤⎥⎥⎥⎥⎦
.

Therefore, the observer design consists in computing the gain L so that the transfer
function (z-domain) from the measurement noise ν[k] to the estimation error e[k] meets
the H2-norm upper bond constraints.

In order to improve the convergence performances of the observer, we shall consider
that the poles of the computed observer are placed inside a parameterized region C(µ, %)
(circle centered at µ with radius %), smaller than the unit circle (being fast enough for the
problem).

∣∣Teν(z)∣∣2 ≤ γ under e[k = 0] = 0 (4.21)

limk→∞ e[k]→ 0 for ν[k] ≡ 0 (4.22)

e[k + 1] = (Aobs −L.Cobs).e[k] −L.Fuν[k] (4.23)

4.4.2 Problem Solution

Following [23], the problem is rewritten in terms of Linear Matrix Inequalities.
Considering that there is one measurement noise for every measured output (Fu = I8 and
ν ∈ R8), the solution to this problem consists in minimizing γ, if and only if there exists
two positive definite symmetric matrices P and R and a matrix Y so that the following
inequalities hold:

⎡⎢⎢⎢⎢⎢⎢⎣

P P (Aobs−µ.I% ) − Y.Cobs% −Y
⋆ P 0

⋆ ⋆ I

⎤⎥⎥⎥⎥⎥⎥⎦

> 0,

⎡⎢⎢⎢⎢⎢⎢⎣

R I 0

⋆ P 0

⋆ ⋆ I

⎤⎥⎥⎥⎥⎥⎥⎦

> 0,

Trace(R) < γ

(4.24)
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From this, L is computed as L = P −1.Y .

Numerical application of the H2 filtering observer design: for the studied
control application, the numerical computation of these LMI s yields γ = 0.6602, which
leads to a good observer, considering % = 0.03 and µ = 0.0067. This poles are chosen so
that the observer’s errors converge very fast to zero, there is no fixed relationship between
these poles and the system’s CL poles. This problem’s solution was obtained with the use
of Matlab [7] and of solver SeDuMi [88].

Let us remark that the variance of e[k] due to variations on ν[k] (white noise) can
be given by ∣∣∆e∣∣2 = ∣∣Teν(z)∣∣H2 .∣∣∆ν∣∣2; as we know that the measurement noise has small
norm, the variance caused upon the estimation error e[k] is small enough for the study, as
seen in the following simulation results.

Let us also remark that there is a trade-off between the convergence velocity of
this H2 observer (given by the pole placement region C(µ, %)) and the noise-attenuation
goals. To better handle this trade-off, an extra output filter is added to the estimation, in
order to guarantee high-frequency noise rejection. The continuous-time transfer function
of this filter is given by We(s) = 1

0.001s+1 .I18.

4.4.3 Experimental Validation Results

Firstly, let us present a (continuous-time) frequency analysis of Teν(s) andWe(s).Teν(s),
so we can analyse the effect of measurement noise ν upon the estimated states. Herein,
the transfer function We(s) represents the high-frequency noise filter for every state. On
figure 29, we see the maximal and minimal singular values (σ decomposition) of Teν(s)
and We(s).Teν(s). As we can see, the effect of measurement noise (in higher frequencies,
over 104 Hz) on the (augmented states) estimation will be throughly attenuated.
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Figure 29 – Frequency σ-Plot: Noise effect on Observer

Let us now present some experimental validation results depicting states (x) and
road profile (disturbances, w) estimation by the designed H2 filtering observer.

These following results herein presented are a validation of the described H2

observer, for they use real measurement data (y) retrieved from the INOVE Soben-Car
mechatronic testbed (details on section 4.6), considering a sequence of bumps road profile
scenario zr. The measurement noise, naturally, is present upon each measured output (y).

On figure 30, we also see an accurate estimation of the road profile at each corner
of the vehicle. The road profile estimation of the front-left corner is showed in details on
figure 31. As it can be seen, the effect of the measurement noise is still present, but the
main trend is followed by the estimated augmented states, which is enough from the MPC
controller’s point-of-view.
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Figure 30 – Road Profile Estimation by H2 Observer

Figure 31 – Front Left Road Profile Estimation by H2 Observer

On figure 32, we see the (sufficiently) somewhat accurate estimation of the system
states (only some important states are shown). Once again, the effect of ν(t) is still present
(but diminished) and the main trend is followed closely by the estimated states.

The proposed H2 extended observer approach can serve well as to provide an MPC
controller information on states and disturbances, as it could be seen with the presented
results.
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Figure 32 – System States Estimation by H2 Observer

4.5 A Model Predictive Controller Solution for Semi-Active Sus-

pension Control

The main control objective of this work on semi-active automotive suspensions
is to isolate the body from the road disturbances, without deteriorating road handling.
These two objectives can be referred to as comfort performance and handling performance,
respectively, and can be described through the vehicle’s COG acceleration (given by z̈s)
and roll angle (given by θ), as seen in [89].

For control design purposes, let us consider two perfomance indexes, with respect to
each control objective: Jcomfort = ∫

τ

0 z̈
2
s(t)dt and Jhandling = ∫

τ

0 θ
2(t)dt, where τ represents

a given time interval. Let us remark that it is well-known that (physically) these two
objectives are conflicting. For this reason, the control method must take into account a
suitable trade-off between these performance indexes, coupled with the input constraints,
given by equation (4.16). We may, also, consider a possible minimization of the displacement
of chassis (zs(t)), for other control purposes (can help on comfort perfomance for given
road profiles).

Thus, the control problem can be solved by a well-posed constrained optimization
problem, formulated in a Model Predictive Control framework. The MPC control approach
to the semi-active suspension problem consists in solving the minimization of the following
cost function at every discrete-time step k in a computational time smaller than the
sampling period Ts:

J(U,x[k],w,Np,Nc) =
Np

∑
j=1

[ξ1(
z̈s[k + j∣k]
z̈max
s

)2 + ξ2(
θ[k + j∣k]
θmax )2] (4.25)

+
Np

∑
j=1

[ξ3.(
zs[k + j∣k]
zmax
s

)2] +
Nc−1

∑
j=0

uT [k + j∣k].Qu.u[k + j∣k]



Chapter 4. Design of a Real-Time Model Predictive Control Scheme for Semi-Active Suspension Control
of a Full Vehicle 90

where Np is the given prediction horizon, Nc is the control horizon, u[k + j∣k], z̈s[k + j∣k],
zs[k + j∣k] and θ[k + j∣k] denote, respectively, the control efforts, the chassis displacement,
the chassis acceleration and roll angle predicted for instant k + j at instant k, using the
prediction model (4.14) and considering the initial states x[k] and disturbance information

w, and U = [ u[k∣k] u[k + 1∣k] . . . u[k +Np − 1∣k] ]
T
represents the vector of control

efforts inside the prediction horizon (to be optimized). Qu is a weighting matrix, ξ3 is a
weighting scalar and ξ1 and ξ2 are adequately tuned weighting coefficients that influence
the trade-off between handling and comfort performances.

Remarks: for this application to be scale-wise correct, the control inputs u, zs, z̈s
and θ are normalized with the use of zmax

s , z̈max
s and θmax - this values were retrieved from

experimentation on a real vehicle test-bench. For this study, we shall take Nc = Np.

In regard to what is presented on section 4.4, let us remark that the information
about system states used for the solution of the MPC problem (4.26) relies on the states
estimated by the designed H2 extended observer (x̂[k]) and the information of future road
profile disturbances (ŵ) that is considered constant throughout the prediction horizon.
The computation of the estimated states and disturbances by the H2 extended observer
has to be done before the MPC computation in a fast-enough response time.

Finally, the MPC design can be defined as:

minU J(U, x̂[k], ŵ,Np,Nc)

s.t.
⎧⎪⎪⎨⎪⎪⎩

x̂[k + 1] = Ad.x̂[k] +B1d.w +B2d.u[k]
dissipativity constraints on (4.16)

⎫⎪⎪⎬⎪⎪⎭

(4.26)

As the usual MPC control approach, the problem (4.26) is solved at every iteration
k and the control effort to be applied to the real system corresponds to the first entry of
the minimized control effort vector U (solution to (4.26)).

In figure 33, the proposed control approach is summarized, considering the MPC
and the H2 observer blocs. Remark: ν(t) is the unknown measurement noise and the plant
is subject to an external w(t) road profile.
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Figure 33 – Proposed Predictive Control Scheme

4.5.1 On Constraints

The computation of the MPC optimization problem depends heavily on the con-
traints. The solution to this problem as put in (4.26) must be U ∈ U , where U is the set
that represents the constrained region within which the control law is applicable to the
real plant.

For the present problem, the set U is given by every u[k] so that the dissipativity
constraints on (4.16) are respected. These constraints switch according to the sign of
Cin.x[k]. To solve this issue, the optimization problem can be formulated as a quadratic
problem with logical constraints - Mixed Integer Quadratic Programming problem, for
details see [71], [5]. A practical application is given in [90] and in others throughout
literature.

4.6 Practical Implementation

The main goal of this chapter’s work is the Real-Time implementation of a model-
based predictive controller for semi-active suspension systems, as described in the previous
sections.

For this, a real testbed is considered for the application of the control scheme
proposed in figure 33. This testbed is the INOVE Soben-Car experimental platform that
allows dealing with several configurations and use-cases (see full details on [6]). Figure 34
shows a picture of this testbed.
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Figure 34 – INOVE Soben-Car Test-Bench

In table 3, we see the numerical values for each of this vehicles’ parameters,
considering the full vertical vehicle model presented on section 4.3.
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Table 3 – Vehicle Model Parameters: INOVE Soben-car

Parameter Value Unit
ms 9.08 kg
musfl 0.32 kg

musfr 0.32 kg

musrl 0.485 kg
musrr 0.485 kg

Ix 5 kg.m2

Iy 2.5 kg.m2

tf 0.23 m
tr 0.23 m
lf 0.2 m
lr 0.37 m

ktfl 12270 N/m

ktfr 12270 N/m

ktrl 12270 N/m
ktrr 12270 N/m

kfl 1396 N/m
kfr 1396 N/m
krl 1396 N/m
krr 1396 N/m

cmaxfl 111.729 N.s/m

cminfl 31 N.s/m

cmaxfr 111.729 N.s/m

cminfr 31 N.s/m

cmaxrl 111.729 N.s/m
cminrl 31 N.s/m
cmaxrr 111.729 N.s/m
cminrr 31 N.s/m

On this plant, the semi-active suspension system involves four Electro-Rheological
(ER) dampers which have a force range of ±50 N. These dampers are adjusted using
a controlled voltage inside the range of [0 , 5]kV, generated by amplifier modules. The
control input for these modules are PWM signals at 25 kHz. The characteristic set that
represents the real nonlinear behaviour of the used semi-active dampers are seen on figure
35, where a force vs. deflection speed graph is seen, for different PWM signals, as presented
on [5]. These characteristics imply on the input constraints presented on equation (4.16).

In terms of capturing the vehicle’s behaviour, this test-bench is equipped with a
wide variety of sensors. For our study, these sensors correspond to the available measured
outputs (y) as seen on equation (4.13).
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Figure 35 – Force over Speed deflection characteristics of used ER Semi-Active Dampers

4.6.1 Computational Time Constraints

On figure 36, we can see a representation of the closed-loop system of this testbed,
that is able to interpretMatlab and SimuLink control laws, operating with a fixed sampling
frequency of fs = 200 Hz. This condition implies that the available working time within
which the proposed control scheme (MPC and H2 observer) has to compute the control
law is fixed (has to be smaller than 0.005 s).

Figure 36 – Closed-Loop of INOVE Soben-Car Test-Bench

Through simulation, the online computation of the proposed constrained MPC
problem was tested, with the use of Matlab [7] with Yalmip toolbox tools [91] and Gurobi
solver [92]. The computational time, considering these softwares, is seen compared to the
maximal sampling period Ts of the testbed in figure 37 and to the computational time of only
the H2 observer. An efficient discrete controller has to be able to compute the control law in
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a period always smaller than the sampling time Ts. The mean computational time is around
0.0295 s and the maximal computational time is around 10 times bigger than Ts. These
results come from simulation on a 2.4 GHz, 8 GB RAM Macintosh computer. Obviously,
faster approaches have to be considered for this real-time MPC application.

Figure 37 – Computational Time of Constrained MPC vs Ts

4.6.2 Faster MPC Approaches

4.6.2.1 Analytical Unconstrained MPC Approach

The first faster MPC approach to be tested is to consider the problem’s input
constraints only after the computation of the control law and clip each computed control
(compare and saturate in respect to figure 35) before applying to the plant. This is an
unconstrainedMPC approach, as seen in [79], and the minimization of J(U,x[k],w,Np,Nc)
can be computed analytically.

Considering an auxiliary output vector z[k] as in equation (4.27), we can write:

z[k] = [ z̈s[k] zs[k] θ[k] ]
T

(4.27)

z[k] = Cz.x[k] +Dzu.u[k] +Dzw.w[k] (4.28)

where Cz and Dz are constant matrices. From this, our cost function to be minimized
(4.25) can be re-stated as:

J(U,x[k],w,Np,Nc) =
Np

∑
j=1

∣∣z[k + j∣k]∣∣2Qz +
Nc−1

∑
j=0

∣∣u[k + j∣k]∣∣2Qu (4.29)

where ∣∣ ⋅ ∣∣M represents the M -weighted 2-Norm and Qz = diag{ξ1, ξ2, ξ3}.
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From equation (4.28), we can evolve onto the future behaviour, considering the
disturbances to remain constant during the prediction horizon:

Z(k∣k) = [ z[k∣k] z[k + 1∣k] . . . z[k +Np − 1∣k] ]
T

(4.30)

Z(k∣k) =

A
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cz

Cz.Ad

⋮
Cz.A

(Np−1)
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.x0 +

Bw³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dzw

(Cz.B1d +Dzw)
⋮

(Cz.(A(Np−2
d ).B1d + ⋅ ⋅ ⋅ +Cz.B1d +Dzw)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.w0 (4.31)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dzu 0 . . . . . . 0

Cz.B2d Dzu 0 . . . 0

⋮ ⋮ ⋮ ⋮ ⋮
Cz.(A(Np−2)

d ).B2d Cz.(A(Np−3)
d ).B2d . . . Cz.B2d Dzu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bu

.U

where x0 represents the states at given instant k, w0 the disturbance vector at given instant
k (assumed to remain constant) and U represents the future control inputs vector, as
previously stated.

This formulation leads us to re-write our cost function (4.29) as quadratic in U as:

J(U,x0,w0,Np,Nc) =
1

2
UT .H.U + xT0 .Fx.U +wT0 .Fw.U + Ĵct (4.32)

where Ĵct is a constant matrix and H is defined positive, posing H = 2.(BTuQzBu +Qu),
Fx = 2.A.Qz.Bu and Fw = 2.Bw.Qz.Bu.

In the absence of constraints, as we shall consider for the moment, the minimal
value of J(U,x0,w0,Np,Nc) is given by Umin = −H−1.[FTx .x0 +FTw .w0], which corresponds
to a static LTI feedback control law. Given a suitable choice of Qz and Qu, there are
guarantees of asymptotic stability of the closed-loop system.

This simplified faster MPC approach consists, then, on computing the feedback
control at every instant k, given x̂0 and ŵ0 as estimated by the H2 observer, saturating
(clipping) the control law inside the feasible region (as in figure 35) and applying to the
plant. This is clear on the equivalent controller scheme put on figure 38.
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Figure 38 – Simplified Unconstrained Analytical MPC

A small remark has to be done: in most pratical applications, an Anti-Windup
structure is coupled to saturation (clipping) blocks, in order to unload excessive integral
action. This means that the computed unconstrained law is summed to an anti-windup
term uAW so that the control law "gets out” of the saturated mode. The Anti-Windup
structure commonly considers the use of a matrix gain multiplied by the difference between
the clipped law (u) and the unclipped law (uunc); this is, if there was clipping action:

uAW = KAW .(u − uunc) (4.33)

4.6.2.2 Fast MPC Approach

Now, let us consider a stronger fast control approach to be implemented in
real-time to the full vehicle testbed. This method has been introduced in [93].

Firstly, let us use the original non linear damper force formulation, as given in
equation (4.4), instead of using the approximated linear version (4.6). This will imply that
the dissipativity constraints of the semi-active suspension system will be linear inequalities
on u, as in (4.5), and the use of Mixed Integer Quadratic Programming will not be needed.

The goal here in to use an LPV model of the system to handle the nonlinearities
of the damper force (4.4). Doing so, the use of Mixed Integer Quadratic Programming is
no longer needed.

Then, let us assume that u is no longer what is given in (4.11), but the actual
incremental damping coefficients ∆cij[k], over the nominal values, as given by equation
(4.34). The actual damping coefficients will be regulated by the PWM signal, given that
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cij[k] = cnomij[k] +∆cij[k].

u = [ ∆cfl ∆cfr ∆crl ∆crr ]
T

(4.34)

ρ = [ ( ˙zsfl − żusfl) ( ˙zsfr − żusfr) ( ˙zsrl − żusrl) ( ˙zsrr − żusrr) ]
T

(4.35)

Then, the (discrete-time) system representation will change from what was presented
in equation (4.14) to

Ts

∑
LPV Full V eh.

∶=
⎧⎪⎪⎨⎪⎪⎩

x[k + 1] = Ad.x[k] + B1d.w[k] + B2d(ρ).u[k]
y[k] = Cd.x[k] + D1d.w[k] + D2d(ρ).u[k]

⎫⎪⎪⎬⎪⎪⎭
(4.36)

The matrices of (4.36) are not equivalent to those of (4.14), since the matrices
B2d(ρ) and D2d(ρ) are, now, LPV. Let us remark that the difference between these two
system representation models are those explained through equations (4.37)-(4.39).

BLPV
2d = B2d.diag{żdefij[k]} (4.37)

DLPV
2d =D2d.diag{żdefij[k]} (4.38)

ρij[k] = żdefij[k] (4.39)

LPV systems can be understood as a range of systems well suited for the control
of dynamical systems with parameter variations. These systems can be represented as an
extension of LTI systems, assuming that the classical state-space representation matrix
are dependent on bounded scheduling parameters ρ.

For this representation, the scheduling parameters taken are those presented on
(4.35). Remark: this implicitly assumed that (żsij − żusij) is bounded.

Given this representation, the dissipativity constraints, combined with the LPV
parameter assumption, imply the following (linear) problem constraints:

umin ≤ u[k] ≤ umax (4.40)

xmin ≤ x[k] ≤ xmax

Then, the MPC problem consists on minimizing (4.25), subject to (4.40) in avid
time. For this, the Fast Model Predictive Control approach, using online optimization,
first proposed in [93], can be considered. This method can evaluate a MPC control rule,
at every sampling instant k, even for time-varying input disturbances and space-state
representation matrices, which is our case (for B2d(ρ) and D2d(ρ) are time-varying, as
well as w(t)). This method is also interesting since it has been proved to work with a
system with 12 states, 3 control inputs and a horizon of 30 samples, computing the control
actions in around 5 ms - the problem herein studied is of similar size.
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This method (FMPC ) greatly speeds up the computational time of the control
action. It consists on exploiting the special structure of the MPC quadratic problem and
solving the problem approximately with the use of an early terminated primal barrier
interior-point method combined with warm-start techniques. The quality of the achieved
control is very high, as demonstrated in [93]. Notice that this method only considers linear
inequality constraints on control inputs and states, which, for the present control problem
(using the LPV formulation) is sufficient.

Note also that the FMPC control law that will be obtained at each sampled instant
k depends on the matrices B2d(ρ) and D2d(ρ) fixed at instant k for ρ[k] (considered
constant throughout the prediction horizon Np). This is, after all, a gain-scheduling
approach. See [94] for further reading on the stability and optimality issues of this kind of
approach, and in particular on the procedure to determine bounds on the suboptimality
of this FMPC solution.

Let us, now, detail the FMPC method applied to the LPV system (4.36); this
follows [93]: in section 4.6.2.2.1, the primal barrier interior-point method is presented and
its application to the quadratic problem is shown; in section 4.6.2.2.2, the infeasible start
Newton method is shown, in order to deal with the quadratic problem’s constraints; in
section 4.6.2.2.3, the used warm start techniques are presented and, finally, in section
4.6.2.2.4, some other possible adjustments are briefly described.

4.6.2.2.1 Primal Barrier Interior-Point Method

From here on, let us consider the quadratic program as expressed in equation (4.41),
where z represents an overall optimization variable given by (4.42). It is important to
depict that the matrices H, P , . . . , b have a special considerable structure, as exposed
in [93]. Herein, Np stands for the prediction horizon, n represents the number of states,
whereas m depicts the number of control inputs.

minimize zTHz + gT z
subject to Pz ≤ h, Cz = b

(4.41)

z = (u[k], x[k + 1], . . . , u[k +Np − 1], x[k +Np]) ∈ RNp(m+n) (4.42)

The primal barrier method resides, roughly speaking, on replacing the inequality
constraints of (4.41) by a barrier term, finding, then, an approximate problem. This is
put on equations (4.43)-(4.44), considering pTi as the rows of P . This problem is, after all,
a convex optimization problem with linear equality constraints.
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minimize zTHz + gT z + κ.φ(z)
subject to Cz = b

(4.43)

φ(z) =
l.Np+κ

∑
i=1

−log(hi − pTi .z) (4.44)

A complete discussion of this approximate optimization method is discussed on [95].

4.6.2.2.2 Infeasible Start Newton Method and Fast Computation of the Newton Step

The presented FMPC approach resides on the primal barrier method, but as well
on the infeasible start Newton method (see the book [96], Sect. 11.2.2 for a complete
discussion) and fast computations of the Newton step.

Let us associate the equality constraints on z with a dual variable µ ∈ RNp.n. The
conditions of optimality for our modified problem (4.43) become those seen on equation
(4.45), where κP Td is the gradient of κφ(z) and di = 1

hi−pTi z
. The residual vector r, composed

by the primal residual rp and the dual residual rd, is to be stacked by the solver.

rd = 2Hz + g + κP Td +CTµ = 0 (4.45)

rp = Cz − b = 0

The infeasible start Newton method consists, then, on initializing the optimization
algorithm at point z0 (given by any µ0 such that the inequality constraints are strictly
satisfied). From this point, the solution (zsol, µsol) is maintained if the residuals (r) are
small enough; else, the estimative solution is refined by linearizing the optimality conditions
(4.45) and computing the dual and primal increments ∆z and ∆µ, to be summed upon z
and µ. The search for these increments is done by solving the following linear equations:

⎡⎢⎢⎢⎢⎣

2H + κP Tdiag(d)2P CT

C 0

⎤⎥⎥⎥⎥⎦
.

⎡⎢⎢⎢⎢⎣

∆z

∆µ

⎤⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎣

rd

rp

⎤⎥⎥⎥⎥⎦
(4.46)

The fast computation of the Newton step, then, resides on the following steps,
considering Σ = 2H + κP Tdiag(d)2P :

• Computing the Schur complement (see [97]), Y = CΣ−1CT and β = −rp +CΣ−1rd -
this is done using the Cholesky factorization of each sub-block of Σ and forming Y
by backward and forward substitution ;
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• Determining ∆µ by solving Y∆µ = −β - using, once again, the Cholesky factorization
of Y and backward and forward substitution ;

• Finally, computing ∆z by solving Σ∆z = −rd −CT .µ - this requires only matrices
already computed in previous steps.

4.6.2.2.3 Warm Start Techniques

Let us remark that the studied FMPC method also uses some warm start techniques
for the described approximate optimization method. The used warm start method is, simply,
to use the previously computed z as the initial z0 for the next optimization (Newton) step.
Using this technique, it can be proved with self-concordance, that the total number of
steps will be bounded by a polynomial function of (4.43)’s dimension.

The application of the warm start to the MPC algorithm is, basically, using the
previous plan of control actions (u[k] to u[k+Np−1]), shifted in time (z+1) as the starting
point for the next Newton loop.

4.6.2.2.4 Other Adjustments and Comments

Some other adjustments can be used upon the Infeasible Start Newton Method
coupled with Warm Start techniques and the Approximate Primal Barrier Method applied
to MPC. These are discussed on [93] and, herein, shall be only enumerated:

• Use of a fixed parameter κ in (4.46);

• Use of a maximal iteration limit, for the Newton algorithm.

Also on [93], we can see a number of problems tested using the FMPC method
and a SDPT3 -based (see [98]) MPC solution. The FMPC method far outperforms the
SDPT3 solver, in terms of computational time.

4.7 Results and Analysis

Given the presented problem and the respective control approaches, in this section
we shall analyze the effectiveness of these controllers with respect to the control goals, in
simulation, considering the fixed sampling period of 5 ms. The used prediction horizon
for all the controllers is fixed at Np = Nc = 10 samples. The tuning parameters of the fast
MPC method are given in table 5. The use of different prediction horizons was tested,
whereas these values were found to be a sufficiently good trade-off between computational
time and accuracy of computed control law.
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On the following results, AMPC represents the analytical unconstrained clipped
predictive controller as seen in section 4.6.2.1, whereas FMPC represents the stronger fast
LPV MPC approach presented in section 4.6.2.2.

Let us, before presenting practical results, show that the computational time
constraints of the problem (as exposed in section 4.6.1) are strictly satisfied with both
analytical and fast MPC approaches. Through simulation, the online computation of the
two proposed MPC approaches were tested, with the aid of software tools Matlab [7] and
Yalmip toolbox [91]. Both mean computational times are seen compared to the maximal
sampling period Ts of the testbed on figure 39, considering that the computational time of
the H2 observer is embedded into the controller’s computational time. As it can be seen,
the computational time for the control law with the analytical MPC and with the fast
MPC approach are smaller than 5 ms (testbed’s sampling period).

Figure 39 – Sampling Time vs. Computational Time: AMPC and FMPC

Let us consider, now, the scenario of a vehicle running at 120 km/h in a straight
line on a dry road, when a first 5 cm bump occurs simultaneously on all wheels, to excite
the bounce motion and chassis vibration, a second 5 cm bump occurs afterwards, but only
on the left wheels, to cause a roll motion and, finally, a third bump occurs at both front
wheels, causing a pitch motion. This road profile and its estimation by the H2 observer is
shown in figure 40; a white measurement noise was added to each measured output (y), in
order to mimic real conditions, as shows figure 41.

The used weighting coefficients for the predictive controller are given in table 4.
These are settled so that the minimization of the chassis’ acceleration is prioritized, while
the minimization of the roll angle is not neglected - a suitable trade-off, leading mainly to
comfort performances of the vehicle.
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Figure 40 – Road Profile and its Estimation

Figure 41 – Measurement Noise

Table 4 – MPC Synthesis Parameters

Parameter Value
ξ1 0.975
ξ2 0.025
ξ3 0.00001

Qu

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.975 0 0 0
0 0.975 0 0
0 0 0.975 0
0 0 0 0.975

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Table 5 – FMPC Synthesis Parameters

Parameter Value
κ 0.01

Maximal number of Newton iteration steps 17
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4.7.1 Simulation Results

Let us, firstly, analyse the efficiency and the performance of the two proposed
Real-Time MPC controllers, applied to the semi-active suspension control of a full vehicle.

The chassis’ displacement due to the road profile is seen in figure 42, for both
proposed control approaches and the nominal damper case. The minimization of zs(t) is
not of great importance for this study, as explained beforehand.

Figure 42 – Chassis’ Displacement

Of uttermost importance, in figure 43, we can see the behaviour of the chassis’
acceleration (z̈s(t), key for comfort performances of a vehicle) due to the road profile,
with a comparison between the AMPC, FMPC and nominal case. As expected, in most
situations the response with a controlled damper is more efficient than with a passive
nominal suspension system. In table 6, we see the RMS values (root mean square over
simulation time) for these three cases. It is, thus, clear that the FMPC method is the
most efficient (specially considering what happens to roll angle behaviour with the AMPC
approach).

Table 6 – RMS Values: Chassis’ Acceleration

Control Approach Value Unit
Uncontrolled Damper 2.22066 m/s2RMS

AMPC 2.11640 m/s2RMS
FMPC 2.10061 m/s2RMS
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Figure 43 – Chassis’ Acceleration

The behaviour of the vehicle’s roll angle is, as expected, enhanced due to the
sideways bump from the road profile around t = 2 s. Figure 44 shows the behaviour of the
roll angle (θ(t)) considering the nominal passive damper (uncontrolled, taking ∆cij = 0),
and a controlled semi-active damper with the AMPC and LPV FMPC approaches. In
terms of handling performances, the LPV FMPC controlled response is, at least, equal
to the nominal damper, whereas the AMPC controlled response is much worse, because
closed-loop system might present internal instabilities (marginal stability) due to the
saturation effects (clipping constraints) not taken into account during the design step.
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Figure 44 – Roll Angle θ

Finally, on figure 45 we see that the dissipativity constraints of all the four dampers
are respected by both Real-Time MPC approaches, although, for the AMPC method,
the controlled damping coefficient stays most of the time forced at cmaxij . For the FMPC
method, a wider gamma of values of cij(⋅) is used. On figure 46, we see the respective
PWM signals to be applied to plant, for both control approaches.

Figure 45 – Suspension Force at Each Corner
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Figure 46 – PWM Signal for Each Damper

4.7.2 Second Scenario

Let us also show the results of the proposed control scheme to a different simulation
scenario, aiming handling performance (prioritize minimization of θ2(t)). The same road
profile (see figure 40) and measurement noise are considered.

On table 7, we see the chosen tuning parameters for the MPC scheme.

Table 7 – MPC Synthesis Parameters: Second Scenario

Parameter Value
ξ1 0.1
ξ2 0.9
ξ3 0

Qu

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.9 0 0 0
0 0.9 0 0
0 0 0.9 0
0 0 0 0.9

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The chassis’ displacement behaviour is seen on figure 47 and its acceleration is seen
on figure 48. As it can be seen, once again, the FMPC still outperforms the uncontrolled
damper and the AMPC method in terms of comfort performances, given the RMS values
for this simulation, as put on table 8.
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Figure 47 – Chassis’ Displacement - Scenario 2

Figure 48 – Chassis’ Acceleration - Scenario 2

Table 8 – RMS Values: Chassis’ Acceleration - Scenario 2

Control Approach Value Unit
Uncontrolled Damper 2.2206 m/s2RMS

AMPC 2.1842 m/s2RMS
FMPC 2.1412 m/s2RMS

Finally, as this scenario considers mostly handling performances, we can analyse
the roll angle behaviour, with each approach and with the uncontrolled damper, on figure
49. Once again, analyzing the RMS values for θ(t), on table 9, we can see the efficiency of
the FMPC method, compared to the uncontrolled damper situation.
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Figure 49 – Roll Angle θ - Scenario 2

Table 9 – RMS Values: Roll Angle - Scenario 2

Control Approach Value Unit
Uncontrolled Damper 25.7122 .10−3 radRMS

FMPC 25.7044 .10−3 radRMS

4.7.3 Discussion

After detailing the behaviour of the closed-loop system (presented in figure 33), we
can deepen a discussion on the efficiency of the proposed control approaches, given that
they aim to be implemented on a real vehicle system.

The trade-off between handling and comfort performances is the main goal of this
work. For the first simulation scenario, the tuning parameters ξ have been set so that the
comfort performance is better than with an uncontrolled damper and so that the handling
performance is, at least, equal. For the second simulation scenario, the tuning parameters
were set so that handling performance is prioritized.

Firstly, let us say that there is no guarantee that the closed-loop system would
remain stable with the AMPC approach, since the saturation (clipping) blocks, see figure
38, might affect the internal stability. This is seen on the handling performances sense,
as the AMPC presents a much worse behaviour than that of the uncontrolled damper.
In figure 46, we can also see that the PWM signal, with this approach continues to vary
after the road profile stabilizes, trying to stabilize internal modes.
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On the other hand, the proposed FMPC control approach presents extremely
efficient results, abiding to constraints, guaranteeing internal stability (as expected) and
being able to enhance comfort performances (z̈s is well minimized, compared to the
uncontrolled damper behaviour) and to maintain good handling performances (θ̈ is, at
least, as small as when the damper is uncontrolled). The tuning parameters can be
adjusted so that an adequate trade-off is achieved, as it was shown through the two
different simulation scenarios.

4.8 Conclusions

This chapter presented the issue of controlling a semi-active suspension system,
considering a full vertical vehicle model and using a fast model-based predictive control
framework. A H2 observer is designed to estimate the system states and future road distur-
bances, considering the attenuation of measurement noise. A fast Linear Parameter Varying
MPC control scheme is designed for a real-time application with a sampling frequency of
200 Hz and tested through realistic simulation scenarios, considering nonlinearities and
measurement noise. Thanks to the MPC -based strategy, a multi-objective problem is
considered, implementing a trade-off between road handling and passenger comfort, while
ensuring dissipativity constraints, with the adequate choice of tuning parameters. As
showed by the simulation results, the proposed control structure behaves very well. A
comparison is done to a simplified analytical unconstrained MPC.

The proposed control scheme has not yet been implemented on a full vehicle system
due to practical instrumentation issues, but this shall be done in the near future. On the
other hand, some validation was already done using the experimental platform INOVE
Soben-Car, as presented herein. The fixed sampling time constraints of 5 ms are set in
order to respect a plausible implementation on a real vehicle, with the use of a fast
microcontroller.

For further works, an interesting theme is to study different kinds of implementations
of this MPC proposition, considering the use of Mixed Integer Quadratic Programming in
Real-Time MPC controllers.
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5 A Robust LPV -H∞ Approach as a Fault-

Tolerant Control Framework: Application to

Full Vehicle Semi-Active Suspension Sys-

tems

5.1 About Chapter

The previous two chapters presented background results that shall be used herein.
This chapter presents a Robust LPV -H∞ approach for the goal of Fault-Tolerant Recon-
figuration Technique. Previous work on FT reconfiguration techniques, by the author, is
seen in [3].

This chapter considers a full vehicle model, as presented on the previous chapter
and loss of effectiveness faults on each actuator.

The main problem herein exposed is how to maintain system performance whenever
there is a faulty situation.

Remark 3. Not all the development proposed herein was finished until the end of the
internship period by the author at gipsa-lab. Anyhow, this chapter represents a sketch for
future works in terms of FTC applied to vehicle systems. All the theoretical background,
contextualization, motivations and justification have already been developed. The last part
focused on controller synthesis, result analysis and robustness analysis has been sketched
but shall be finished post-July 2017 (end of internship).

5.1.1 Abstract

In this chapter, the problem of designing a Robust Fault Tolerant dynamic output-
feedback controller for Semi-Active Suspension Systems is considered. The suspension
system is considered as subject to Loss of Effectiveness (time-varying) faults on each
of the four actuators (suspension’s dampers). An active reconfiguration fault tolerant
scheme is proposed, considering a Polytopic LPV -H∞ approach. The proposed solution
aims to maintain the plant’s driving performances (considering handling and comfort
indexes) whenever there are sudden actuator faults. These faults are identified through a
parallel LPV -based FDI scheme, which is also thoroughly detailed. A robustness analysis
is presented for the case sensor faults and of different estimation errors on actuator faults.
The validity and performance of the proposed control structure are demonstrated through
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simulation. Results show the overall good operation of this control scheme, which is
compared to other standart control approaches.

Keywords: Fault Tolerant Control; LPV Control;H∞ Control; Robustness; Vehicle
System; Semi-Active Suspensions.

5.2 Contextualization

For several years, the automotive engineering sector rapidly has come to know
the use of passive safety features, such as modern seat belts and state-of-the-art airbags,
evermore present on vehicles. On the other hand, active safety and comfort features are
still arising. There is an incipient trade-off when dealing with comfort and road handling
performances, for these characteristics are naturally conflicting [55]. In order to enhance a
vehicle’s driving performance aiming road handling and ride comfort, a trade-off can be
achieved if the vehicle’s suspension system is carefully controlled.

Evermore present in the automotive industry, Semi-Active suspension systems
have to be given attention: these systems are efficient and altogether less expensive and
energy-consuming than purely active suspensions. This type of suspension is present on
new state-of-the-art top-cars and a good deal of academic and industrial research is focused
on this topic, as seen on [56], [12] and others. Further details on semi-active suspension
systems are throughly discussed on [14], and [13].

This study shall consider, thus, this type of suspension system, where the controlled
input is the suspension’s damper’s damping coefficient c(⋅). Numerous approaches have
been studied for semi-active suspension control, on [72], and more recently on [73] and [74],
we can find an extensive review of semi-active suspension control. Some of the most recent
and modern control techniques have been applied for this kind of problem, as presented
by the author on [99], where a fast model-based predictive controller is designed.

5.2.1 Why Fault Tolerant Control?

Most of the practical control systems are subject to possible faults, failures, compo-
nent malfunctions and others. These might imply on significant performance degradation
or even loss of control and instability.

Accordingly, in recent years attention has been considerably been given to fault
tolerant control (FTC ) schemes. A FTC system has the goal to allow a system to
recover performances when faults occur (or, at least, guarantee continuous stability). FTC
systems are categorized into two types: passive and active approaches, as seen in [38] and
(firstly) [37]. Passive approaches usually reside on more conservative control schemes, as
details [1], whereas active approaches reside on continuous reconfiguration of the controller,
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due to identified faults.

The accurate behaviour of active FTC schemes, then, dependes on a solid Fault
Detection and Isolation (FDI ) system. Adaptive control techniques have been designed
to integrate FDI and FTC, as seen in [100] and [101]. It is recognised that the combined
FDI /FTC design could be profitable, but, yet, very challenging, [102].

On the other hand, the modulated design (FDI and FTC designed separately) also
presents its benefits, being more flexible for practical applications and easier to test and
implement. This is the approach used herein.

It is important to remark that, for this modulated design approach, scientific
breakthrough has been achieved with gain-scheduling and LPV approaches for active
FTC, as seen in [103] and [104]. Notice that, therein, the FTC framework considers the
imperfect estimation of fault effect by the FDI structure, aiming robustness.

5.2.2 Linear Parameter Varying Systems

Synthesis and investigation techniques for Linear Parameter Varying (LPV ) Sys-
tems have gathered evermore attention from the Control Systems community, see [30]
and [32].

Firstly introduced in [105], the LPV system paradigm has become an established
formalism in systems and control, in terms of analysis, controller synthesis and system
identification. This kind of system can be understood as a representation methodology
to be well suited for the control of dynamical systems with parameter variations, as it
is exploited in [47], [48], [49] and [50]. These (LPV ) structures can be represented as
an extension of LTI systems, assuming the classical state-space representation matrices
are dependent on known bounded scheduling parameter ρ. Briefly, these scheduling
parameters must abide to:

{ρ ∈ Ω ∣ρmin ≤ ρ ≤ ρmax} (5.1)

Sometimes, bounds are also needed on the scheduling parameters’ variations, ρ̇.

Within the LPV framework, developments regarding the architecture of observers
[106], [59], state-feedback controllers [78], H∞ controllers [107], [108] and model reference
controllers [109] have been obtained. This work shall be preoccupied with the use of the
LPV methodology on extended-state observers for the case of fault estimation and dynamic
output-feedback controllers for the case of Fault Tolerant reconfiguration (explained further
on).

An LPV -based fault estimation is able to autonomously adjust and schedule
observer or detection filter gains. This is suitable trade-off between full scaled nonlinear
designs and LTI methods based on a fixed operating condition, for LPV -based FDI
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methods provides most of the conveniencies of LTI design and still guarantees good
performance and stability conditions over a wider operating set.

5.2.3 H∞ Control

H∞ Control Theory has been used for suspension control in some works throughout
literature, as in [110] and [107]. This technique shall be used herein for it presents some
efficient tools for our performance control goal: provide a trade-off between handling and
comfort performances, which shall be done with the use of adequate weighting functions.
LPV control design for suspension control, on the other hand, is evermore present in
literature, as seen in [51], [52] and [53].

5.2.4 Problem Statement

Considering the given contextualization, the problem dealt within this chapter
is the following: how to design an efficient (and robust) Fault Tolerant Control scheme,
considering actuator faults, for the control of a full vehicle model with four semi-active
suspension systems, maintaining (sufficient) comfort and handling performances whenever
occurs a faulty scenario ?

This shall be treated by a threefold:

• Firstly, a LPV -based Fault Detection and Isolation structure shall be presented,
in order to detect Loss of Effectiveness faults on each of the suspensions’ dampers
(actuation);

• Secondly, an internal Force Control System scheme is designed to deal with reference
tracking and disturbance rejection for each damper;

• Lastly, a LPV -H∞ FTC scheme shall be detail, in order to guarantee closed-loop
stability and performances, based on controller reconfiguration in the case of faulty
scenarios.

It is also important to state that very few works have dealt with robustness analysis
(performance and stability) due to parameter uncertainties, in the automotive industry
and research. This issue is essentially due to the mass production and nonlinearities of
vehicle components, that become more and more susceptible to faults. As of this, this work
shall also present a robustness analysis for the case sensor faults and estimation errors
(from the FDI scheme) on actuator faults.

5.2.5 About Chapter

This chapter is outlined as follows:
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• The considered full vehicle model with 4 semi-active suspension systems is presented in
section 5.3, as well as a reduced quarter-of-vehicle model, used for fault identification
goals;

• In section 5.4, the proposed LPV Fault Diagnosis and Isolation structure is described
and some validation results are already presented;

• In section 5.5, an internal control scheme is designed to rapidly track force references
to each of the semi-active dampers;

• In section 5.6, performance and robustness specifications for our control goals are
presented and the proposed Robust LPV -H∞ Fault Tolerant controller is designed;

• A complete robustness analysis is done in section 5.7;

• Simulation results and a thorough discussion are seen in 5.8 and, finally, conclusions
are drawn in section 5.9.

5.3 Vehicle Modelling

An automative suspension system comprises, basically, two components: a spring
and a damping (shock absorbing) structure, as it can be seen on figure 50. These components
have to work together to maintain the tire’s contact with the ground. The goal of the
damping structure is to reduce the effect of travelling upon a rough road by absorbing
shock and helping with driving performance, ensuring a smoother and safer drive. An
automative suspension without an efficient damping system might be able to absorb damps,
but continues to bounce, and this might lead the tires to leave the road.

Figure 50 – Outline of Studied Suspension System
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Throughout literature there are some established dynamical models of vehicles and
automotive suspension systems. Herein, two models shall be considered: a full vertical
vehicle model (FVV ) for the vehicle’s suspension control and a reduced quarter-of-vehicle
model (QoV ), used for fault detection and identification goals. Further details on each of
this models are seen on [5].

5.3.1 Full Vertical Vehicle Model

Figure 51 – Full Vehicle Model with 4 ER Semi-Active Suspensions

Let us first present the dynamical model that represents a vehicle’s vertical dynam-
ical behaviour, considering the suspension system comprised by four Electro-Rheological
(ER) dampers (which have a force range of ±50 N). This is a classic 7 degrees of freedom
suspension model, as seen in figure 51 and referred to in [85], and shall be used for analysis
and control purposes. This model comprises the chassis dynamics (vertical displacement
(zs), roll angle (θ) and pitch angle (φ)) and the vertical displacements of the wheels (zusij )
at the front/rear - left/right corners (i = (f, r) and j = (l, r)). This described 7 −DOF
model is governed by the following equations:

ms.z̈s = −Fsfl − Fsfr − Fsrl − Fsrr (5.2)

Ix.θ̈ = (−Fsfr + Fsfl).tf + (Fsrl − Fsrr).tr
Iy.φ̈ = (Fsrr + Fsrl).lr − (Fsfr + Fsfl).lf

musij .z̈usij = Fsij − Ftzij

where Ix and Iy represent the moments of inertia of the sprung mass around the longitudinal
and lateral axis, respectively, h represents the height of the center of gravity (COG). lf ,lr,tf
and tr are the COG-front, rear, left and right distances, respectively.
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The position (and, thus velocities) of each sprung mass at each corner of the vehicle
(zsij) is derived from the vehicle equations of motion, and considering the roll and pitch
angles as small enough, they become linearized as in:

zsfl = zs − lf .(φ) + tf .(θ) (5.3)

zsfr = zs − lf .(φ) − tf .(θ)

zsrl = zs + lr.(φ) + tr.(θ)

zsrr = zs + lr.(φ) − tr.(θ)

In terms of the forces, Ftzij depicts the vertical tire forces, given by:

Ftzij = ktij .(zusij − zrij) (5.4)

where ktij represent the stiffness coefficients of the tires and zrij are the road profile
disturbances that the vehicle is subject to.

Each vertical suspension forces (for each of the 4 corners of the vehicle) is represented
by Fsij and, in this study, will be modeled by a spring and a damper with linear and
nonlinear characteristics, respectively. This is:

Fsij = kij.(zsij − zusij) + Fdij (5.5)

where kij representes the nominal spring stiffness coefficient and Fdij the semi-active
damper force. Herein, we shall consider a two-level control scheme, where the damper force
is treated by an internal lever control structure.

Anyhow, the damper force is given by equation (5.6), divided into passive and
controlled parts, where dcij(t) represents a controlled PWM signal inside [0 , 100]%. The
dissipativity constraints of each of these semi-active dampers will be treated by the lower
level controllers; this will be dealt with in later sections.

Fdij(t) =

passive
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
c0ij .(żsij − żusij)+

controlled
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
fcij .dcij(t).tanh(a1ij .żdefij(t) + a2ij .zdefij(t)) (5.6)

Remark: herein we shall use the notation zdefij = zsij − zusij as the suspension
deflection.

To facilitate our control purposes, the full vehicle’s control inputs are, thus, given
by:

u = [ Fdfl Fdfr Fdrl Fdrr ]
T

(5.7)
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5.3.1.1 FVV State-Space Representation

This studied (FVV ) system model can be represented, thus, by a state-space
representation, when injecting (5.4) and (5.7) into (5.2). This is:

∑
FV V

∶=
⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = A.x(t) + B1.w(t) + B2.u(t)
y(t) = C.x(t) + D1.w(t) + D2.u(t)

⎫⎪⎪⎬⎪⎪⎭
(5.8)

where the system states are given by (5.9), the controlled inputs are given by (5.7), the
disturbances (unmeasured) are given by (5.10) and, finally, the measured outputs are seen
on equation (5.11). Remark: A, B1, B2, C, D1 and D2 are constant matrices. This model
is continuous-time, obviously.

x = [ zs θ φ zusfl zusfr zusrl zusrr żs . . . (5.9)

θ̇ φ̇ żusfl żusfr żusrl żusrr ]
T

w = [ zrfl zrfr zrrl zrrr ]
T

(5.10)

y = [ zdeffl zdeffr zdefrl zdefrr żdeffl żdeffr żdefrl żdefrr . . . (5.11)

zusfl zusfr zusrl zusrr ]
T

5.3.2 Quarter-of-Vehicle Model

Let us, also, present a reduced-order model that can be used to analyse the
behaviour of an automotive system on a single of its corner. Considering the same type of
ER damper, a representation of a Quarter-of-Vehicle model (QoV ) is seen in figure 52.

Figure 52 – Semi-Active Suspension of Quarter-Vehicle with ER Damper

The dynamical equations that rule this model are similar to those for the FVV
model. These are, for each corner (i − j) of the vehicle:
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msij .z̈sij(t) = −kij.zdefij + Fdij(t) (5.12)

musij .z̈usij(t) = kij.zdefij − Fdij(t) − ktij .(zusij(t) − zrij(t))

where Fdij represents the semi-active ER damper’s force (controlled and passive) at the
given corner. As of the proposed FVV model, herein Fdij(t) is also the controlled damper
force.

5.3.2.1 QoV State-Space Representation

A state-space representation can be found if considering system states as of equation
(5.13), a disturbance input as of equation (5.14) and finally, the measured outputs as of
equation (5.15).

xijqov(t) = [ zsij(t) żsij(t) zusij(t) żusij(t) ]
T

(5.13)

wijqov(t) = zrij(t) (5.14)

yijqov(t) = [ zdefij(t) żdefij(t) zusij(t) ]
T

(5.15)

This measurements are, in a certain way, common on vehicular suspension systems.
They can be acquired using relative displacement sensors. The deflection velocity (żdefij(t))
can be used with certain carefullness, as they arise from derivative filters. Finally, this
leads us to the following LTI model:

ij

∑
QoV

∶=
⎧⎪⎪⎨⎪⎪⎩

ẋijqov(t) = Aijqov.x
ij
qov(t) + Bij

1qov
.wijqov(t) + Bij

2ij
.Fdij(t)

yijqov(t) = Cij
qov.x

ij
qov(t) + Dij

1qov
.wijqov(t) + Dij

2qov
.Fdij(t)

⎫⎪⎪⎬⎪⎪⎭
(5.16)

where the matrices Aijqov to Dij
2qov

are all constant. Notice that this representation repeats
itself for every corner of the full vehicle.

5.4 Fault Detection and Isolation Scheme

Now that the used vehicle models have been detailed, let us introduce the proposed
Fault Detection and Isolation (FDI ) scheme.

As explained beforehand, this work shall consider actuator faults on each of the
ER dampers of the full vehicular suspension system. Considering the studied suspension
system, a fault can occur due to oil leakage, physical deformation or even the presence of
air on the ER fluid. The study of faults on Electro-Rheological Dampers is thoroughly
discussed in [111].
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5.4.1 Loss of Effectiveness Faults

Faults on each of the actuators, in a practical sense, result on a loss of effective-
ness of these components. For this, in this study, the actuator faults shall be represented
by a multiplicative factor αij upon each damper force Fdij .

Remark 4. In a faultless situation, we shall have αij = 1 and, in the worst of scenarios
(where the damper is completely broken), we shall have αij = 0. For this, αij ∈ [0 , 1]. In
figure 53, we see a representation of the studied loss of effectiveness fault scenario.

It is also worth noting that even if α is assumed to be constant, the corresponding
additive fault magnitude on nth semi-active damper is given by f(t) = (1 − α)u(t) is a
time varying signal and depends on the value of the control input u(t). Thanks to the
multiplicative representation, the information about the actuator fault α is considered as
constant or slow-varying and α̇ = 0.

This multiplicative fault representation has been firstly presented in [112], and
introduces a solid framework for the identification of damper faults.

Figure 53 – Damper Loss of Effectiveness Fault Problem

Synthetically: The problem herein is, thus, to identify this loss of effectiveness fault
factor α only through the available measurements y(t), see equation (5.11).

Then, these loss of effectiveness faults on the dampers on each corner of a full
vehicle results on nonlinear system model representation. By using the QoV model, we
are cast into the following representation of each corner of the studied suspension system:

ij

∑
QoV

∶=
⎧⎪⎪⎨⎪⎪⎩

ẋijqov(t) = Aijqov.x
ij
qov(t) + Bij

1qov
.wijqov(t) + Bij

2ij
.diag{αij}.Fdij(t)

yijqov(t) = Cij
qov.x

ij
qov(t) + Dij

1qov
.wijqov(t) + Dij

2qov
.diag{αij}.Fdij(t)

⎫⎪⎪⎬⎪⎪⎭
(5.17)

In terms of the FVV model, we arrive at:

∑
Full V eh.

∶=
⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = A.x(t) + B1.w(t) + B2(diag{αij}).u(t)
y(t) = C.x(t) + D1.w(t) + D2(diag{αij}).u(t)

⎫⎪⎪⎬⎪⎪⎭
(5.18)
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5.4.2 LPV -based FDI Design

Considering an automotive suspension system subject to actuator loss of effective-
ness faults, we can design a reduced-order FDI structure for each of the full vehicle’s
suspensions systems, considering the use of the QoV model.

For this goal, we can re-write our faulty damper QoV system with an augmented
space-state representation considering xija (t) = [ (xijqov)T (t) αij wijqov(t) ]

T
. We also as-

sume that each fault factor αij is statical, so α̇ij = 0. As of this, we have:

˙
xija (t)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎣

ẋijqov(t)
α̇ij

ẇijqov(t)

⎤⎥⎥⎥⎥⎥⎥⎦

=

Aija³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aijqov Bij
2qov

.Fdij(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bijα

Bij
1qov

0 0 0

0 0 Aijmw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.xa(t)

yijqov(t) =
⎡⎢⎢⎢⎢⎣ Cij

qov

Dijα³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Dij

2ij
.Fdij(t) Dij

1qov

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Cija

.xija (t)

where we assume to have information on the type of road profile disturbance. This is, we
have a model of the disturbance: ẇijqov(t) = Amw.w(t). This information may come from an
external adaptive road profile estimator, as proposed on [57]. Remark that different road
profiles may have greater state-space models with more than one state (say nw states),
which leads to the augmentation of matrices Bij

1qov
and Dij

1qov
with (nw − 1) null columns -

for example, a sinusoidal road profile has, at least, nw = 2 states.

It is important to notice that the matrices Aija and Cij
a are affine on Fdij(t), due to

the terms (respectively) Bij
α and Dij

α . Let us remark, then, that damper force signal Fdij(t)
is perfectly know (use of compression force sensors), and bounded (due to saturation
constraints of each semi-active damper) inside the convex set Usat, delimited by the minimal
and maximal values of Fdij , Fdij and Fdij , respectively.

Thus, we can assume Fdij(t) as a scheduling parameter ρij(t), as it satisfies 0 <
ρijmin ≤ ρij ≤ ρ

ij
max. From this, we arrive at Bij

α = Bij
2qov

.ρij and Aija = Aija (ρij) and, similarly,
Dij
α =Dij

2qov
.ρij and Cij

a = Cij
a (ρ). Thus, the augmented system (5.19) becomes LPV.

Finally, we can design an asymptotical state observer to estimate the value of each
fault factor αij. This is:

∑
FDI

∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̂
xija (t) = Aija .x̂

ij
a (t) + Lij(⋅).[yijqov(t) −Cij

a .x
ij
a (t)]

α̂ij = [ 0size(xijqov) Isize(αij) 0size(wijqov) ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Cα

.x̂ija (t)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(5.19)
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Finally, let us consider the dynamics of the estimation error. These dynamics are
presented in equation (3.7). Then, the LPV FDI design resided on computing the gain
matrix L(⋅) as dependent of the scheduling parameter ρij so that (Aija − Lij(ρij).Cij

a ) is
Lyapunov-sense stable.

ėij(t) = ẋaij(t) −
˙̂
xija (t) = [Aija −Lij(ρij).Cij

a ].eij(t) (5.20)

From here, we shall consider a Polytopic LPV -based solution. Notice, once again,
that what is subsequently presented has to be solved for each of the four (i − j) corners of
the automotive suspension system.

To compute the matrix gain Lij(⋅) of the proposed extended observer and guarantee
the stability of each (5.20), we shall follow a H2 (noise filtering) criterion, as seen in [23].
The H2 norm of a system, through a stochastic point-of-view, is equal to the square
root of the asymptotic variance of the output when the input is a white noise (proof is
seen on [22]), which means that the measurement noise effect will be diminished when
estimating the loss of effectiveness fault factor α (impulse to energy gain minimization),
taking the measurement noise as the input to the estimation error system (5.20);

Definition 5.1. The H2 observer problem definition resides, then, on minimizing the
following objective function:

J = ∣∣T ijeν(s)∣∣22 under eij(t)∣t=0 = 0 (5.21)

under the two following conditions (exponential stability of T ijeν(s) and closed-loop
observation error dynamics):

limt→∞ eij(t)→ 0 for νij ≡Ð→0 (5.22)

ėij(t) = (Aija (⋅) −Lij(⋅).Cij
a (⋅)).e(t) +Bij

ν ν
ij(t) (5.23)

where T ijeν(s) represents the Laplace-domain transfer function between the estimation error
eij(t) and an additive measurement noise νij(t) on each component of xij(t). Notice, also,
that the matrix Bij

ν represents the influence of the measurement noise on the system states.

Lemma 5.2. This problem’s solution, then, is obtained by minimizing the scalar γij on:

Trace(N) ≤ γij (5.24)

and solving the following LMI s, exposed in equations (5.25)-(5.27), taking Qij = P ij.Lij(⋅),
with P and N being two positive define matrices.
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⎡⎢⎢⎢⎢⎣

(Aija )T (ρij).P ij + P ij.Aija (ρij) − (Cij
a )T (ρij).(Qij)T −Qij.Cij

a (ρij) −Qij

⋆ −I

⎤⎥⎥⎥⎥⎦
< 0(5.25)

[2βij.P ij + (Aija )T (ρij).P ij + P ij.Aija (ρij) − (Cij
a )T (ρ).(Qij)T −Qij.Cij

a (ρ)] < 0(5.26)
⎡⎢⎢⎢⎢⎣

N ij (Bij
ν )T .P ij

⋆ P ij

⎤⎥⎥⎥⎥⎦
> 0(5.27)

Proof of Lemma 5.2 1. Is immediate from what is seen in [23].

Remark 5. The gain matrix Lij(⋅) is taken, thus, as Lij = (P ij)−1.Qij.

Remark 6. The maximal variance of the estimation error, with this solution, is given by
Trace(N ij) = γijH2

.

Remark 7. The maximal amplification of the estimation error, with this solution, due to
the presence of the uncertain disturbance δw(t) is given by γijH∞

.

Remark 8. The scalar βij in the LMI (5.26) is a root-locus condition imposed on the
eigenvalues of (Aija (ρij) −Lij(ρij).Cij

a (ρij)): these must be greater, in module, than βij.

Remark 9. A weighting function can be appropriately introduced to specify the frequency
range on which sensor noises should be attenuated. Besides, (obviously) sensor noise is
considered as a high frequency signal.

As, to our problem, we have only one scheduling parameter ρij for each corner of
the vehicle, we shall solve the observer synthesis problem (5.24) at ρij = Fdij , finding Lij,
and at ρij = Fdij , finding Lij. Finally, our gain matrix Lij(⋅) is given by:

Lij(ρij) = ( ρijmax − ρij

ρijmax − ρijmin
) .Lij + (

ρij − ρijmin
ρijmax − ρijmin

) .Lij (5.28)

5.4.3 Validation of Proposed FDI Scheme

To finalize this section of this work, we shall present some simulation results to
prove the proposed fault identification and diagnosis scheme is accurate. The validation
simulation is detailed from here on, considering a single corner of a vehicle (front-right).
The indexes i − j are omitted for simpler notation purposes.

For goals of simulation, we shall use small sinusoidal road profile w(t), that could
represent a series of bumps for a vehicle running on a dry road at constant speed. In
terms of the expected damper force, which is computed with the use of equation (5.6), the
manipulated PWM signal dc(t) is taken as a series of steps, to simulate changes upon the
damping coefficient c(⋅). This is shown in figure 54.
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The simulated vehicular suspension system is initially considered close to its origin
(this is, x(0) ≠ 0), and the initial conditions on w(t) are also non-null. The suspension
damper is initially fault-less (α = 1). An additive (high-frequency) measurement noise is
added on each measured output y(t), in order to better represent a real situation.

As explained, the information used on the dynamics of each road profile disturbance
w(t) is considered to be provided by a road identification scheme, prior to the proposed
Fault Detection and Identification structure. For the following simulation results, the
disturbance model Amw is different than the disturbance’s dynamic behaviour, to induce
a modelling error and to check if this error is overlapped by the robustness of the H2

extended observer approach. This modelling error is detailed on equation (5.29).

Areal
mw =

⎡⎢⎢⎢⎢⎣

0 −2.4674

4 0

⎤⎥⎥⎥⎥⎦
(5.29)

Aused
mw =

⎡⎢⎢⎢⎢⎣

0 −2.5

3 0

⎤⎥⎥⎥⎥⎦

Figure 54 – Simulation Scenario

For these simulation results, we consider a sequence of steps as the loss of effective-
ness fault. This can represent, for instance, a successive oil leakage scenario. At t = 13 s, α
decreases to 0.735. This is done once again at t = 25 s, when the loss of effectiveness fault
α decreases to 0.375. Finally, at t = 37 s, α decreases to 0.275. The estimation α̂ is seen
in figure 55, in comparison with the actual value of α. This is a satisfactory simulation
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result, for the accurateness of the approach proposed herein is very strong. In table 10, we
see the used parameters for the computation of the damper force Fd.

Figure 55 – Simulation of Fault Estimation: Polytopic LPV Observer Approach

Table 10 – Semi-Active ER Damper Parameters

Parameter Value Unit
fc 6.5137 N

a1 27.7154 s/m2

a2 1.3297 1/m

c0 37.2670 N/m

As it can be seen, the fault factor αij is well detected and, thus, the proposed
polytopic LPV FDI scheme can be used to gather information on actuator faults for
a posterior Fault Tolerant Control scheme. This kind of FDI scheme has already been
discussed and validated in a real test-bench, as details chapter 3.

5.5 Internal Controller: Damper Control

Let us, now, present a proposition for a internal level controller, to track references
of desired damper forces. Herein, we shall consider that there is an availability of the
following measurements: suspension deflections (zdef ), suspension deflection velocities (żdef )
and damper forces (Fd). Once again, we shall suppress the i − j notation for simplicity,
but the following proposition is repeated for each corner of the vehicle.
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The use of force control system to handle fast force reference tracking for semi-active
dampers is discussed on [2] and other previous works. This is not the main goal of this
chapter, but a necessary paradigm.

As we know, the damper force is given by the nonlinear characteristic presented
on equation (5.6), considering the controlled portion of the damper force (passive part is
already included in the dynamical equation (5.5) given the nominal damping coefficient
c0ij). Because of this nonlinear condition, it is possible to attain same force levels at
different conditions. This is seen in figure 56, where points (i), (ii) and (iii) indicate
the same controlled damper force value Fd(t) = 10 N (the passive part is set to 0), with
different PWM duty-cycles (dc(t)) and average deflection velocity (żdef(t)).

Figure 56 – Force vs. Deflection Velocity - Different PWM signals, adapted from [2]

We shall also consider that the controlled and passive parts of the damper force
are given, respectively, by:

FSA(t) = F(dc(t), zdef(t), żdef(t)) (5.30)

FPass(t) = H(żdef(t)) (5.31)

Then, let us consider the compensation nonlinear function G, used to compute a
PWM signal dc(t) so that FSA tracks a desired reference ug(t). For simplicity, up to now,
no saturation constraints or disturbances are considered. Thus, we can take:

G(ug(t), zdef(t), żdef(t)) = ug(t) − FPass(t)
fc.tanh(a1.żdef(t) + a2.zdef(t))

(5.32)

Then, let us take the function sat(u⋆(t)) as the saturation of u⋆(t) inside the
bounded PWM percentage region [0 , 100]%.

Let us remark that a dynamical behaviour shall be considered upon the damper’s
actuation. This means the damper force is not purely statical as described by equation
(5.6), but also depends on a second-order (Laplace) transfer function, as proposes [113].
This transfer function shall be given by:
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D(s) = 1

( 1
w2
d
).s2 + (2.md

wd
).s + 1

(5.33)

Table 11 details the values used for this transfer function’s parameters.

Table 11 – Damper Dynamical Parameters

Parameter Value
wd 20 rad

s
md 1

From this, our proposed internal damper force control scheme is detailed on figure
57. Therein, ν(t) represents an additive measurement noise, q(t) represents an output
(unknown) disturbance, FF(t) represents the actual full (dynamical) damper force that
should track a reference signal RefFd(t). Notice that the transfer function from ug(s) to
FF(s) is, ideally, equal to D(s).

As of this, a double PID controller is added considering the tracking error eFd(t)
and its output ug(t). This PID is used to ensure the rejection of q(t) and high-frequency
ν(t), tuned with classical control techniques, guaranteeing some robustness in terms of
phase and gain margins. This PID ’s transfer-function shall be considered as:

ug(s)
eFd(s)

≡ PID(s) (5.34)

PID(s) = (kc1 .
(τz1s + 1)
s.(τp1 .s + 1)

) .(kc2 .
(τz2s + 1)
(τp2 .s + 1)

)

The parameters kc1 , kc2 , τz1 , τz2 , τp1 and τp2 are set in order to determine the
closed-loop response of this scheme. From the point-of-view of the outer loop, ideally, the
closed-loop force control system can be approximated by:

FF(s)
RefFd(s)

≈ 1

(τs + 1)
(5.35)

Remark 10. The gain KAW represents an anti-windup action in order to discharge the
integral action whenever there is a saturation of u⋆(t).

This proposed internal control framework is simple enough to be implemented
quickly, so that, from the point-of-view of an exterior-layer controller, the response to a
damper force references uij(t) is immediate (considering τ is relatively small enough). In
figure 58, we see the outline of the force control system, from the point-of-view of the
outer loop.
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Figure 57 – Proposed Internal Damper Force Controller

Figure 58 – Outline of Force Control System

5.5.1 Semi-Active Dissipativity Constraints

It is very important to state that some adaptations on the presented Force Control
System have to be done in order to strictly guarantee the dissipativity constraints of the
semi-active dampers.

A Semi-Active damper must always dissipate energy, which implies that the direction
and sense of the force must be the same as the connected mass’s velocity. As of this, in a
Force vs. Velocity graph, only the second and fourth quadrants can be used as of desired
forces. This is clearer to be understood as of figure 59.

Figure 59 – Achievable Domain of Damper Forces
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Let us also state that each semi-active damper has its maximal and minimal
damping constraints. If the damper force equation (5.6) is approximated by the following
equation

Fdij(t) = cij(⋅).żdefij (5.36)

these constraints are converted to:

cminij ≤ cij(⋅) ≤ cmaxij (5.37)

Then, the force references RefFd(t) that are actually passed onto the Force Control
System have to be previously treated in order to abide to the dissipativity contraints. This
is done by the use of a Force Clipping block, as presents [2].

If the desired damper force (chosen by the controller, given by Fdes(t)) is inside
the admissible force region RF (so to abide to the constraints), this is the reference to
be tracked by the Force Control System. Else, the reference is taken as the orthogonal
projection of the desired force over the region RF , given by F ⊥. Synthetically, this means
that the damper force reference is given by:

RefFd = Clip(Fdes(t), żdef) (5.38)

Clip(Fdes(t), żdef) ∶=
⎧⎪⎪⎨⎪⎪⎩

Fdes(t) if Fdes(t) ∈RF
F ⊥des(t) if Fdes(t) ∉RF

Before showing some simulation results, let us depict the chosen values for the
double PID ’s parameters and the closed-loop gain and phase margins. These values and
margins are seen in tables 12 and 13, respectively.

Table 12 – Double PID : Parameters

Parameter Value
kc1 3.1058167
τz1 0.0107 s
τp1 0.3310−3 s

kc2 1000
τz2 0.0118 s
τp2 0.3310−3 s
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Table 13 – Closed-Loop Margins

Margin Value
Gain Margin MK 34.78
Phase Margin Mφ 44.3568 o

5.5.2 Simulation Results

In order to asses the effectiveness of the proposed control approach, let us present
some simple simulation results of this scheme. A simulation scenario using data (zdef(t), żdef(t))
from a real mechatronic testbed (see [6]) is presented below, in figure 60.

Figure 60 – Internal Damper Force Control System: Simulation Scenario

In figure 61, we can see this proposed internal Force Control System (FCS ) tracking
a reference of 20 N of force and the rejection of an additive output load disturbance of
−3 N, at t = 2.5 s. Notice that q(t) is a step signal and a high-frequency noise ν(t) was
added to the loop (and is well rejected). The response time of this internal loop, as it
can be seen, is approximately 0.05 s, which means this FCS can be approximate by the
transfer function in equation (5.35), with τ = 0.015 s.
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Figure 61 – Internal Damper Force Control System: Reference Tracking and Disturbance
Rejection

Remark 11. Notice that, as the system’s response shall be approximate by a first order
dynamic, a filter can be added in order to reduze the overshoot due to reference changes.

Finally, the respective control signals ug(t) (LTI control signal), u⋆(t) (nonlinear
compensation signal) and dc(t) (final control law) are seen on figure 62, compared with the
tracking error eFd(t). Remark that ug(t) stabilizes as the tracking error eFd(t) converges
to zero. The saturation law implied on u⋆(t) is sometimes attained and the anti-windup
gain KAW unloads the integral action so that u⋆(t) leaves the saturated mode.

5.6 Proposed Robust LPV -H∞ Fault Tolerant Controller

This section presents the main interest of this chapter’s study: the design of
an efficient (and robust) Fault Tolerant Control scheme considering actuator loss of
effectiveness fault for the control of a full vehicle suspension system. Herein, for obvious
reasons, the considered model is the fault-prone FVV model, presented beforehand on
(5.18), considering the depicted states (5.9), measured outputs (5.11), disturbances (5.10)
and control inputs (5.7).

Firstly, let us remember that, in order to enhance a vehicle’s driving performance
aiming road handling and ride comfort, one should take special care with the vehicle’s
suspension system. The main goal of a vehicle suspension control is to isolate the body
from the road disturbances, without deteriorating road handling. These two objectives can
be referred to as comfort performance and handling performance, respectively, and can be
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Figure 62 – Simulation of Internal Damper Force Control Loop: Control Signals

described through the vehicle’s COG acceleration (given by z̈s) and roll angle (given by
θ), as seen on [89].

For control design purposes, let us consider two perfomance indexes, with respect to
each control objective: Jcomfort = ∫

τ

0 z̈
2
s(t)dt and Jhandling = ∫

τ

0 θ
2(t)dt, where τ represents

a given time interval. Let us remark that it is well-known that (physically) these two
objectives are conflicting. For this reason, our control method must take into account a
suitable trade-off between these performance indexes.

As of this, our control approach will be based on the H∞ control framework. This
means this work aims to solve the following problem:

Definition 5.3. Find a controller C(⋅), which, based on the information of some measured
output y (as of equation (5.11)), generates a control signal u (as of equation (5.7)) that
counteracts the influence of the disturbances w (as of equation (5.10)) on some controlled
outputs z, thereby minimizing the closed-loop H∞ norm from w to z.

As the control objectives depend on the vehicle’s chassis acceleration and roll angle,
we shall consider our controlled outputs as:

z(t) = [ zz̈s(t) zθ(t) zu(t) ]
T

(5.39)

z(t) = E.x(t) + F1.w(t) + F2(diag{αij}).u(t) (5.40)

zz̈s(t) = Wz̈s(s).z̈s(s) (5.41)

zθ(t) = Wθ(s).θ(s) (5.42)

zu(t) = Wu(s).u(s) (5.43)
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where Wu, Wz̈s and Wθ are adequate weighting functions, soon to be detailed, the matrices
E and F1 are constant and F2 is dependent on collection of fault factors αij, likewise to
the matrix B2 in (5.18). The controlled output zu(t) is to constrain the controlled damper
force by the FTC controller.

From this point forward, let us remark that the control signal u actually determines
set-points to the internal force control system, described on the previous section. As the
transfer function seen on (5.35) is adequately fast, we shall assume that, at this control
level, the reference tracking is perfect and instantaneous (for τ << 1 s). The faults occur a
posteriori to the Force Control System, although the measured force FF (t) is faulty but
the reference shall be corrected by the fault tolerant controller scheme.

Considering the paradigm of actuator loss of effectiveness faults, that imply on
each αij, as explained on section 5.4, we need to solve the described H∞ control problem
for fault-less and fault-prone situations (at any value of each αij, inside their respective
bounded sets). As of this, the achieved controller C(⋅) has to be autonomously reconfigured
with the information form the prior FDI scheme.

In figure 63, we see the outline of the studied Fault Tolerant Control problem,
where, once again, the notation ν is used to represent measurement noise.

Figure 63 – Outline of Studied Fault Tolerant Control Problem

Remark 12. Notice that the velocity of the FDI scheme might influence the closed-loop
dynamics. As of this, for the controller synthesis, this is ignored, supposing that each fault
is perfectly detected. Further on, in the results analysis, this is taken into account. Note,
nonetheless, that the convergence speed of the proposed FDI scheme, as seen in figure 55,
is relatively small (around 1 s).
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5.6.1 LPV Problem Solution

To treat this H∞, problem, we should remark that the studied faulty system seen
in equation (5.18) can be represented in a polytopic form, as this systems has an affine
dependence on the fault factors αij and these are assumed to be bounded within the
following set:

{Kα ⊂ R4 ∣∣ Kα = [0 , 1] × [0 , 1] × [0 , 1] × [0 , 1]} (5.44)

So, the faulty full vertical vehicle system, augmented with controlled outputs z,
can be re-written as:

LPV

∑
Full Veh.

(α) ∶=
Z
∑
k=1

βk(α).

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A B1 Bk
2

C D1 Dk
2

E F1 F k
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5.45)

with
Z
∑
k=1

βk(α) = 1 (5.46)

βk(α) > 0 (5.47)

where the vector of faults α (as of equation (5.49)) evolves inside a polytope Lp defined by
Z = 24 vertices. Notice that the LTI system (5.48) corresponds to the LPV system frozen
at vertex k ∈ Z.

k

∑
Full Veh.

∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A B1 Bk
2

C D1 Dk
2

E F1 F k
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5.48)

α = [ αfr αfl αrl αrr ]
T

(5.49)

Finally, the H∞ Fault Tolerant controller C(⋅) can be designed considering a convex
sum of Z controllers, solved at each vertex k of the described polytope Lp. This is:

C(α, s) =
Z
∑
k=1

βk(α).Ck(s) (5.50)

Notice that this controller shall reconfigure itself autonomously, as desired, due to
variations on each loss of effectiveness factor αij.
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5.6.2 H∞ Problem Solution

Then, to finalize the LPV -FTC framework design, one has to solve the described
H∞ control problem at each vertex k of the polytope defined by α, finding each Ck(s).

Let us, now, present the Generalized H∞ Control Problem Formulation, commonly
named as the P −K form. This is depicted in figure 64, where P k is the generalized
plant, containing the actual plant and the chosen weights, see equation (5.51). Notice that,
therein, w(t) contains the road profile disturbances and, also, the measurement noise ν(t).
Therein, Ww(s) is a weighting function considered upon the road profile disturbances in
order to inform the controller, at least, the amplitude of this disturbance (normally given
in mm).

Figure 64 – P -K Generalized Formulation

⎡⎢⎢⎢⎢⎣

z(t)
y(t) + ν(t)

⎤⎥⎥⎥⎥⎦
= P k.

⎡⎢⎢⎢⎢⎢⎢⎣

col{zrij(t)}
ν(t)
u(t)

⎤⎥⎥⎥⎥⎥⎥⎦

(5.51)

Now, the controller Ck(s) is to be found for the system P k such that, given γ∞,

∣∣Fl(P k,Ck)∣∣∞ < γ∞ (5.52)

where the operator Fl represents the lower Linear Fractional Transformation, see [33].

The solution to this problem can be found by the use of Linear Matrix Inequalities,
as presents the following lemma.

Lemma 5.4. A dynamical LPV output feedback controller of the following form:

⎡⎢⎢⎢⎢⎣

ẋc(t)
u(t)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

Ac(α) Bc(α)
Cc(α) Dc(α)

⎤⎥⎥⎥⎥⎦
.

⎡⎢⎢⎢⎢⎣

xc(t)
y(t) + ν(t)

⎤⎥⎥⎥⎥⎦
(5.53)
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defined inside the polytope Lp, which is LTI when frozen at each of the polytope’s vertex
k, as of:

Ck(s) ∶=
⎡⎢⎢⎢⎢⎣

Akc Bk
c

Ck
c Dk

c

⎤⎥⎥⎥⎥⎦
(5.54)

has xc(t) as internal controller states and can solve the LPV /H∞ control problem defined
on 5.3 and given explicitly by equation (5.52). Remark that herein the general case is
solved, with linear parameter variations upon all matrices A to F2.

The resulting closed-loop system, also denoted through the use of the Linear
Fractional Transformation (LFT ) is given, thus, by:

⎡⎢⎢⎢⎢⎣

ξ̇(t)
z(t)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

A(α) B(α)
C(α) D(α)

⎤⎥⎥⎥⎥⎦
.

⎡⎢⎢⎢⎢⎣

ξ(t)
w(t)

⎤⎥⎥⎥⎥⎦
(5.55)

where these internal LPV matrices are given by:

A =
⎡⎢⎢⎢⎢⎣

A(α) +B2(α).Dc(α).C(α) B2(α).Cc(α)
Bc(α).C(α) Ac(α)

⎤⎥⎥⎥⎥⎦
(5.56)

B =
⎡⎢⎢⎢⎢⎣

B1(α) +B2(α).Dc(α).D1(α)
Bc(α).D1(α)

⎤⎥⎥⎥⎥⎦
(5.57)

C = [ E(α) + F2(α).Dc(α).C(α) F2(α).Cc(α) ] (5.58)

D = F1(α) + F2(α).Dc(α).D1(α) (5.59)

Then, the dynamical output feedback controller C(s,α), of the form presented
on equation (5.53), that solves the LPV /H∞ control problem is obtained by solving the
following LMI s in (X(α), Y (α), Ă(α), B̆(α), C̆(α), D̆(α)), while minimizing γ∞:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 (⋆)T (⋆)T (⋆)T

M21 M22 (⋆)T (⋆)T

M31 M31 M33 (⋆)T

M41 M41 M43 M44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0 (5.60)

⎡⎢⎢⎢⎢⎣

X I
I Y

⎤⎥⎥⎥⎥⎦
≻ 0 (5.61)
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where,

M11 = A(α).X(α) +X(α).AT (α) + ∂X(α)
∂α

.α̇ (5.62)

+ B2(α).C̆(α) + C̆T (α).BT
2 (α)

M21 = Ă +AT (α) +CT (α).D̆T (α).BT
2 (α) (5.63)

M22 = Y (α).A(α) +AT (α).Y (α) + ∂Y (α)
∂α

α̇ + B̆(α).C(α) +CT (α).B̆T (α) (5.64)

M31 = BT
1 (α) +DT

1 (α).D̆T (α).BT
2 (α) (5.65)

M32 = BT
1 (α).Y (α) +DT

1 (α).B̆T (α) (5.66)

M33 = −γ∞.I (5.67)

M41 = E(α).X(α) + F2(α).C̆(α) (5.68)

M42 = E(α) + F2(α).D̆.C(α) (5.69)

M43 = F1(α) + F2(α).D̆.DT
1 (α) (5.70)

M44 = −γ∞.I (5.71)

Then, the controller reconstruction is obtained by the following equivalent transfor-
mation, considering ∂X(α)

∂α .α̇ = 0 and ∂Y (α)
∂α .α̇ = 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dc(α) = D̆(α)
Cc(α) = (C̆(α) −Dc(α).C(α).X(α)).M−T (α)
Bc(α) = N−1(α).(B̆(α) − Y (α).B2(α).Dc(α))
Ac(α) = N−1(α).(Ă − Y (α).A(α).X(α) − Y (α).B2(α).Dc(α).C(α).X(α)

− N(α).Bc(α).C(α).X(α) − Y (α).B2(α).Cc(α).MT (α)).M−T (α)

(5.72)

where M(α) and N(α) are defined so that M(α).NT (α) = I −X(α).Y (α). This can be
solved through a singular value decomposition and the use of a Cholesky factorization.

Proof. This lemma is an adaptation (addition of some relaxations) of the Bounded Real
Lemma and proof is immediate from what is seen in [114].

Remark 13. The first requirement for the application of this lemma is that there exists
no direct energy transfer between input and output. This is, that the generalized plant P
must be strictly proper and implies that D2 = 0, which is true for our system, given the
measured outputs seen on equation (5.11).

Remark 14. The second and final requirement for the application of this lemma is that
the input and output matrices ought to be paramater independent. This is: matrices
[ B2(α) F2(α) ] and [ C(α) D1(α) ] must be constant.
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Remark 15. This second requirement is not fulfilled for our studied system. A simple
solution to overcome this problem, then, consists in filtering the input and/or output
through strictly proper transfer functions. This is exemplified and detailed in [19].

Remark 16. Once again, as the LPV problem studied herein is polytopic, defined by
the polytope Lp, then the lemma above has to be applied at each of its vertex Z, with
the scheduling parameter vector α frozen. Then, the full controller is given as of equation
(5.50). In order to ensure the global stability, each of these controllers (at the frozen
vertex) must share the same Lyapunov function (quadratic stability). This means that the
controllers found are stabilizing the entire set formed by the system’s polytope Lp.

5.6.2.1 Choice of Weighting Functions

Let us now depict the methodology used to choose appropriate weighting functions
Wz̈s(s), Wθ(s) and Wu(s).

Firstly, let us present the frequency response plots for z̈s(j.w) and θ(j.w) in the
case of purely passive suspension systems - taking the controlled part of the damper force
as null and keeping only the nominal passive part (given by c0ij .żdefij), bare in mind that
the suspension force is considered to be given by equation (5.5), neglecting dynamical
behaviour described in section 5.5.

The following results consider the use of the FVV model, as presented in the first
sections of this chapter, considering equation (5.8). These plots consider the maximal
values for singular value decomposition of z̈s(j.w) and θ(j.w), considering only the
effect of the road profile disturbance. Remark that the proposed controller has the goal to
minimize the chassis’ acceleration (z̈s) and the vehicle’s roll motion (angle, θ) in order to
enhance comfort and handling performances, respectively. These performances are affected
by the external road profile (disturbance to the system) and, with the use of the proposed
controller, should be enhanced.

The parameters used for the computation of the FVV model consider those of
INOVE Soben-Car experimental platform, present in the facilities of gipsa-lab, allows the
user to deal with several configurations and use cases (see full details on [6]). Figure 65
shows the outline of this test-bench.
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Figure 65 – INOVE Soben-Car Test-Bench

On this plant, the Semi-Active suspension system involves four Electro-Rheological
(ER) dampers which have a force range of ±50 N. These dampers are adjusted using a
controlled voltage inside the range of [0 , 5]kV, generated by amplifier modules. The control
input for these modules are PWM signals at 25 kHz. On terms of capturing the vehicle’s
behaviour, this testbed is equipped with a wide variety of sensors and can accurately
measure the chassis’ acceleration, given by z̈s(t), and the vehicle’s roll angle, given by θ(t).

Finally, in figure 66 we see the singular values decomposition frequency response
for the chassis’ acceleration, and in figure 67, the sigma-plot for the roll angle.
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Figure 66 – Frequency Response: Chassis’ Acceleration z̈s(j.w)



Chapter 5. A Robust LPV-H∞ Approach as a Fault-Tolerant Control Framework: Application to Full
Vehicle Semi-Active Suspension Systems 141

10
0

10
1

10
2

10
3

10
4

−60

−50

−40

−30

−20

−10

0

10

20

30

40

 

 

Singular Values

Frequency (rad/s)

S
in

g
u
la

r 
V

a
lu

e
s
 (

d
B

)

Roll Angle

Figure 67 – Frequency Response: Roll Angle θ(j.w)

Now, as we want to choose weighting functions Wz̈s(s) and Wθ(s) in order to
minimize, respectively, z̈s(s) and θ(s), we shall define them in order to reduce the peaks
present on the open-loop response (uncontrolled damper), as seen in the figures above.

As of this, we should remind that our H∞ control problem resides on guaranteeing
that:

∣z̈s(jw)∣ ≤ 1

∣Wz̈s(jw)∣
∀w ⇔ ∣∣Wz̈s .z̈s∣∣∞ ≤ 1 (5.73)

∣θ(jw)∣ ≤ 1

∣Wθ(jw)∣
∀w ⇔ ∣∣Wθ.θ∣∣∞ ≤ 1 (5.74)

∣u(jw)∣ ≤ 1

∣Wu(jw)∣
∀w ⇔ ∣∣Wu.u∣∣∞ ≤ 1 (5.75)

by the minimization of the H∞ norm from the disturbances (w(t)) to the controlled
outputs (z(t)), as explained beforehand.

5.6.2.1.1 Weighting Function Wu(s)

This weighting function shall be used, mainly, to limit the amplitude of the response
of u(t), as it shall be treated as a reference to be tracked by an internal Force Control
System, as detailed beforehand.

As of this, we shall define Wu(s) as simple first order transfer function in order to
guarantee some low-frequency performances, due to the damper actuation constraints and
specifications. This is:

1

Wu

(s) ≡ εus +wu
s + wu

Mu

(5.76)
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where the parameters εu, wu and Mu are defined so that:

• there is a better limitation of measurement noises and possible high-frequency
modelling errors, with the use of εu;

• and there is an upper bound on the control signal u(t), with the use of Mu.

This template is detailed on figure 68. The used parameters are seen in table 14.
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Figure 68 – Template for Control Signal

Table 14 – Weighting Function Parameters: Wu(s)

Parameter Value
εu 10−3

wu 100 rad
s

Mu 2

5.6.2.1.2 Weighting Function Wz̈s(s)

Firstly lets us remark that the range on frequencies wherein the chassis’ acceleration
response has the greatest peaks (in terms of the H∞ norm) is rz̈s = [1 , 104] rad

s .

As of this, we shall define Wz̈s(s) as simple first order transfer function in order to
guarantee some robustness and bandwidth specifications. This is:

1

Wz̈s

(s) ≡ εz̈ss +wz̈s
s + wz̈s

Mz̈s

(5.77)

where the parameters εz̈s , wz̈s and Mz̈s are defined so that:
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• there is a rejection of measurement noises and possible high-frequency modelling
errors, with the use of εz̈s ;

• there is a fast enough bandwidth, given by wz̈s , hence the transient behaviour of the
minimization of the effect of the disturbances (road profile);

• and there is a limit on the overshoot of the response, with the use of Mz̈s .

This template is detailed on figure 69. The used parameters are seen in table 15.
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Figure 69 – Template for Chassis’ Acceleration

Table 15 – Weighting Function Parameters: Wz̈s(s)

Parameter Value
εz̈s 10−3

wz̈s 100 rad
s

Mz̈s 1.5

5.6.2.1.3 Weighting Function Wθ(s)

Firstly lets us remark that the range on frequencies wherein the roll motion response
has the greatest peaks (in terms of the H∞ norm) is rθ = [1 , 400] rad

s .

As of this, we shall define Wθ(s) as simple first order transfer function in order to
guarantee some robustness and bandwidth specifications. This is:

1

Wθ

(s) ≡ εθs +wθ
s + wθ

Mθ

(5.78)

where the parameters εθ, wθ and Mθ are defined so that:
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• there is a rejection of measurement noises and possible high-frequency modelling
errors, with the use of εθ;

• there is a fast enough bandwidth, given by wθ, hence the transient behaviour of the
minimization of the effect of the disturbances (road profile);

• and there is a limit on the overshoot of the response, with the use of Mθ.

This template is detailed on figure 70. The used parameters are seen in table 16.
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Figure 70 – Template for Roll Motion

Table 16 – Weighting Function Parameters: Wθ(s)

Parameter Value
εθ 10−7

wθ 15 rad
s

Mθ 1.39

Finally, in figures 71 and 72 we see, respectively, the comparisons between the real
frequency-domain response and the templates.
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Figure 71 – Chassis’ Acceleration: Uncontrolled vs. Template
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Figure 72 – Roll Angle: Uncontrolled vs. Template

5.6.2.2 Controller Synthesis

The proposedH∞ controller synthesis has to be solved at each vertex of the polytope
Lp using a single Lyapunov matrix function, as seen in lemma 5.4, specifically in the LMI
(5.60)-(5.61). This can be done with the use of MATLAB [7] and Yalmpi [91], as proposed
by [19].

This synthesis leads us to the solution of the H∞ Control Problem, as shows
equation (5.52), finding a minimal scalar γ∞ of 0.1.

Let us, then, show the H∞ frequency plots for the controlled outputs z(t), presented
in equation (5.39), compared to their respective Weighting Functions.

Firstly, in figure 73 we see the σ-plot for u(t). As it can be seen, the controller
synthesis is able to guarantee that the H∞ norm of the control signal u(s) is always
bounded by the chosen template Wu(s).
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Figure 73 – Final Controller: σ-plot for Control Signal u(t)

Then, in figures 74 and 75 we see, respectively, the σ- for z̈s(t) (chassis’s acceleration)
and θ(t) (roll angle). As it can be seen, the controller synthesis is able to guarantee that
the H∞ norm of these controlled output signals are always bounded by their respectful
chosen templates Wz̈s(s) and Wθ(s).
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Figure 74 – Final Controller: σ-plot for Chassis’ Acceleration z̈s(t)
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Figure 75 – Final Controller: σ-plot for Roll Angle θ(t)

5.7 Robustness Analysis

The part on robustness analysis has been already partially developed by author.
Anyhow, it shall be herein only mentioned as a perspective to be finished in the near
future. Nonetheless, avid readers can find theoretical development in Annex A.

5.8 Results and Discussion

Finally, in this section we shall present some simulation results to asses the overall
behaviour of the proposed Fault Tolerant Control scheme, as seen in figure 63. Then,
we shall discuss these results and conclude on the performance of the proposed control
scheme.

On the following results, LPVFTC represents the proposed LPV H∞ Fault Tolerant
Controller, HINF represents a H∞ Controller solved with the same weighting functions
and controlled inputs, but not taking into account the effect of the faults (αij fixed at 1),
and Unc. represents the use of purely passive damper, uncontrolled, taking every dcij(t)
as 0. For these results, we should also mention that a high-frequency measurement noise
was added to each measured output (y), in order to mimic realistic conditions.

First of all, we have to show the chosen simulation scenario. Let us consider, thus,
the scenario of a vehicle running at 120 km/h in a straight line on a dry road, when a first
5 cm bump occurs simultaneously on all wheels, to excite the bounce motion and chassis
vibration, a second 5 cm bump occurs afterwards, but only on the left wheels, to cause a
roll motion and, finally, a third bump occurs at both front wheels, causing a pitch motion.
This road profile is shown in figure 76.
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Figure 76 – Simulation Scenario: Road Profile at Every Corner

The final results considering the proposed controller as an FTC scheme shall be
presented in future works.

5.9 Conclusions

This chapter presented the issue of controlling a full vehicle semi-active suspension
system, during fault-less and fault-prone situations on the dampers’ actuations.

A polytopic LPV -based Fault Detection and Diagnosis structure is designed to
provide accurate informations on loss of effectiveness of each of the vehicle’s suspension
system’s dampers.

An internal controller is designed to track damper force references quickly. Finally,
a LPV -H∞ Fault Tolerant Controller is presented, with some performance specifications
as to provide a trade-off between the vehicle’s comfort and handling performance indexes.
An additional robustness analysis was also drawn, considering the structured singular
value approach, in order to analyse the proposed controller in the case of parametric
uncertainties and, also, sensor faults.

For further works, the author shall finish the simulation results. Also, an interesting
theme is to consider the same presented (efficient) control strategies applied to other
processes, like the control of energy Microgrids.
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6 Conclusion

This chapter finally concludes on the work herein presented as an end-of-studies
monograph (Projeto de Final de Curso, Projet de Fin d’Études) supported by the project
PERSYVAL LPV4FTC – A Linear Parameter Varying approach for Fault Tolerant
Control design, in collaboration with CRAN Nancy and the Academy of sciences of
Budapest (MTA SZTAKI ).

6.1 What Was Done, Effectively

In sum, this work presented:

• As of chapter 2, a thorough literature review was done, providing a full theoretical
background for further chapters;

• The issue of Fault Identification of actuator loss of effectiveness faults was considered
on chapter 3, wherein three different LPV techniques were designed and analysed
for FDI goals;

• An implementation of a Real-Time Model Predictive Control scheme for the Semi-
Active suspension control of a Full Vehicle was presented on chapter 4;

• Finally, a full vehicle Fault Tolerant Control was presented and designed on chapter
5, considering an LPV approach to deal with actuator faults on each suspension
system.

6.2 Comparison to Initial Schedule: PERSYVAL Project

Let us, also, compare the results achieved with the initial monograph’s objectives,
in the context of the PERSYVAL Project:

1) As of chapter 3, the author completed the first scheduled goal:

Present and compare Linear Parameter Varying approaches on Fault
Estimation for loss of efficiency on actuators

2) As of chapter 4, the author completed, then, the second scheduled goal:

Test and develop viable ways for a real-time high-complexity Model
Predictive Controller for the Soben-Car test-bench

It is important to remark that the proposed fast (Real-Time) MPC was, for now,
only tested in simulation. Application to the testbed is soon to be developed.
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3) As of chapter 5, the author completed, then, the third scheduled goal:

Present and justify new approaches for Fault Tolerant Control (of
Multi-Input Multi-Output systems) in the case of sensor and actu-
ator faults
considering the case of several actuator faults, instead of actuator and sensor faults.

4) Finally, the last scheduled task was completed with validation and experimental
results presented throughout all chapters:

Present the results of experimental validation of the Soben-Car
test-bench.

6.3 Scientific Work

Let us point out that the work presented herein enabled the development of some
scientific work (in terms of papers and proceedings). These are:

• Design of a Fast Real-Time LPV Model Predictive Control System for
Semi-Active Suspension Control of a Full Vehicle, to be submitted to Inter-
national Journal of Control, First Author;

• Damper Fault Estimation for Automotive Suspension Systems: An LPV -
based Extended State Observer Approach, to be submitted to Control Engi-
neering Practice, First Author;

• Complete Modelling of Electro-Rheological Dampers: A Thorough Anal-
ysis for Faultless and Faulty Scenarios, to be submitted to Mechanical Systems
and Signal Processing, Co-Author;

• A Robust LPV /H∞ Approach as Fault Tolerant Control Framework: Ap-
plication to Full Vehicle Semi-Active Suspension System, to be submitted
to the 9th IFAC Symposion on Robust Control Design, Florianópolis, 2018, First
Author.

6.4 Personal Analysis

Writing from the author’s point of view: The work developed on Gipsa-lab was most
pleasurable for me. I was really well received and guided by professors Olivier Sename and
Luc Dugard. I hope to have presented some interesting results on LPV Control Approaches
for further researches. My personal and academic development during this internship was
enormous.
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6.5 On Future Works

As the author previously worked with renewable energy systems, some topic for
further research are:

• LPV (H∞) Control of the load/charge process of microgrids and its connection to
the external power grid;

• Detection of faults on renewable microgrids ;

• Robust Fault Tolerant Control of distributed microgrids.
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ANNEX A – Robustness Analysis

Now, as the Fault Tolerant controller has been synthesized, this section shall be
dedicated to a robustness analysis for the proposed control scheme, seen in figure 63.

For the goals of this robustness analysis we shall consider two situations: the case
of sensor faults and the case of bad estimation on the loss of effectiveness actuator faults.
These are, thus, detailed:

A.0.1 Badly Estimated Actuator Faults

In this work, we assume a reconfigurable fault tolerant control scheme, to be
adjusted by the collected information on actuator loss of effectiveness faults. Then, for
this scenario, we shall analyze the case of badly estimation of these faults.

This means, we shall analyze our control system with plausible actuator faults
that are distributed as: correctly estimated multiplicative (loss of effectiveness) faults and
additive (unknown to the controller) faults.

From this point, the system representation seen in (5.45) changes to:

ẋ(t) = A.x(t) +B1.w(t) +B2(α).u(t) +B2.fa(t) (A.1)

y(t) = C.x(t) +D1.w(t) +D2(α).u(t) +D2.fa(t)

z(t) = E.x(t) + F1.w(t) + F2(α).u(t) + F2.fa(t)

where the α-dependent matrices are LPV due to the well-estimated loss of effectiveness
faults (by the FDI scheme) and fa(t) represents an un-estimated percentage (δa(t)) upon
the multiplicative loss of effectiveness α factors, as details equation (A.2).

fa(t) = δa(t).Inu.u(t) (A.2)

where nu represents the number of control inputs u(t) and δa(t) is of dimension 1.

A.0.2 Sensor Faults

In the case of sensor faults, these shall be represented by an additive signal upon
the measured outputs y(t). This means the LPV system representation in (5.45) changes
to:
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ẋ(t) = A.x(t) +B1.w(t) +B2(α).u(t) (A.3)

y(t) = C.x(t) +D1.w(t) +D2(α).u(t) + Fy.fs(t)

z(t) = E.x(t) + F1.w(t) + F2(α).u(t)

where the α-dependent matrices are LPV due to the actuator loss of effectiveness faults
and the signal fs(t) represents sensor faults, distributed upon the measured outputs by
matrix Fy.

To simplify this analysis, we shall take fs(t) as dependent on the system states.
This is:

fs(t) = δs(t).Inx.x(t) (A.4)

where nx represents the number of system states x(t) and δs(t) is of dimension 1.

A.0.3 Final Uncertain Representation

Then, considering the system representations presented in (A.1) and (A.3) can be
coupled into a single feature. Towards an upper Linear Fractional Transformation (LFT ),
see [33], we can re-represent this system (A.1)-(A.3) with the use of an P −K −∆ structure,
where the closed-loop system (as defined by the H∞ Control Problem, see equation (5.52)),
is given by:

N(αi) = Fl(P (αi),C(αi)) (A.5)

for a fixed scheduling parameter α = αi.

Figure 77 – P − K − ∆ Representation
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In this global P − K −∆ General Control Configuration, seen in figure 77, the
transfer matrix (once again considering a fixed scheduling vector α) is given by:

Tzw = Fu(N,∆) = N22 +N21.∆.(I −N11.∆)−1.N12 (A.6)

Remark 17. In this representation, N is known and ∆(s) collects all the uncertainties
taken into account the two detailed faults for the stability analysis of the uncertain
closed-loop system. As of this, ∆(s) has the following structure:

∆(s) = diag{ δa.Inu δsInx } (A.7)

And, in this case, we shall have u∆(t) as a collection of fa(t) and fs(t) and, thus
of equations (A.2)-(A.4), y∆(t) shall be the collection of u(t) and x(t). The constraints
upon ∆(s) are assumed to be satisfied by the chosen representation: the uncertainties are
normalized, such that:

• ∣∣∆(s)∣∣∞ ≤ 1

• ∣δa∣ < 1

• ∣δs∣ < 1

Notice that, from this point, the robustness criteria are:

• Robust Stability (RS ): If Fu(N,∆) is stable for all ∆, ∣∣∆∣∣∞ < 1 and N is internally
stable;

• Robust Performance (RP) : If ∣∣Fu(N,∆)∣∣∞ < 1 for all ∆, ∣∣∆∣∣∞ < 1 and N is
internally stable.

Remark 18. To relax our analysis conditions for RS and RP of LPV systems, we shall
take αi = 14×1. This means, for us to evaluate robustness towards given uncertainties
u∆, we shall assume that the system’s loss of effectiveness faults are none apart from the
badly estimate ones fa(t). This is adequate, for there is guarantees of nominal stability
and performance for all possible values of α, due to the H∞ problem solution. For other
tools and a complete scrutinization of Robustness Analysis for LPV Systems, see [115].

Then, for RS, our analysis resides on determining wether the system remains
stable for all plants inside uncertainty set. According to the definition of the upper LFT,
instability may only come from the term (I −N11.∆). This is equivalent to the study of
the Small Gain Theorem, [116], applied to N11.
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Lemma A.1. Suppose N11 ∈ RH∞. Then the closed-loop system, as presented in figure
77, for α = αi, is well-posed and internally stable for all ∆ ∈ RH∞ so that:

∣∣∆(s)∣∣∞ ≤ δRS (A.8)

if and only if

∣∣N11(s)∣∣∞ < 1

δRS
(A.9)

Proof 1. Refer to [33].

Towards RP, the analysis becomes more complex: it is necessary to apply the Small
Gain Theorem to the H∞ norm of the full upper LFT. Let us, then, consider a structured
representation of ∆(s), as seen in the following equation:

∆ =
⎡⎢⎢⎢⎢⎣

∆f 0

0 ∆r

⎤⎥⎥⎥⎥⎦
(A.10)

where ∆f represent fictive full block complex uncertainty and ∆r represents the real block
diagonal matrix uncertainties.

From this point, we are cast into the following lemma:

Lemma A.2. Suppose N = Fl(P,K) ∈ RH∞. Then the closed-loop system, as presented
in figure 77, for α = αi, is well-posed and internally stable for all ∆ ∈ RH∞ if and only if:

µ∆(N) < 1∀w (A.11)

where the operator µ∆(⋅) stand for the structured singular value. Remark that the struc-
tured singular value cannot be determined explicitly. For this, numerical methods exist in
order to compute upper and lower bounds of µ∆(⋅), as close as possible to µ∆.

Proof 2. Refer to [117].

A.0.4 Analysis

Finally, after background to the analysis of RS and RP has been presented, let us
analyse the robustness of the proposed control scheme, considering, for now, the scheduling
parameter α fixed as 14×1.

In terms of (badly estimated) actuator faults, we shall take a maximal percentage
δa(t) as 10 %. Notice that this is rather conservative for the estimation of the loss of
effectiveness factors has an overall small estimation error (see section 5.4).
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Then, is terms of sensor faults, we shall consider a maximal δs(t) as 5 %, with
Fy = 1ny ×nx, being ny the number of measured outputs. This is an adequate choice for
sensor faults, which usually are of small amplitude for our study case (vehicle systems
with relative displacement sensors).

A.0.4.1 Robust Stability

Shall be analysed in future works.

A.0.4.2 Robust Performance

Shall be analysed in future works.

A.0.4.3 For Other αi

Shall be analysed in future works.
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