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Abstract

This article is concerned with the control of a Semi-Active suspension system

of a 7DOF Full Vehicle model, equipped with four Electro Rheological (ER)

dampers, taking into account their incipient dissipativity constraints. Herein,

a Real-Time, fast, advanced control structure is presented within the Model

Predictive Control framework for Linear Parameter Varying (LPV ) systems.

The control algorithm is developed to provide a suitable trade-off between com-

fort and handling performances of the vehicle in a very limited sampling period

(Ts = 5ms), in the view of a possible realtime implementation on a real vehicle.

The control structure is tested and compared to other standard fast control ap-

proaches. Full nonlinear realistic simulation results illustrate the overall good

operation and behaviour of the proposed control approach.
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1. Introduction

In order to enhance a vehicle’s driving performance in terms of road han-

dling and ride comfort, one should take special care with the vehicle’s suspension

system. More and more present in the automotive industry, Semi-Active sus-

pension systems should be highlighted, being efficient and, at the same time,5

less energy-consuming and less expensive than purely active suspensions.

1.1. Semi-Active Suspension Systems

The use of semi-active suspension systems provides a good trade-off be-

tween costs and performance requirements. This type of suspension is present

on recent state-of-the-art top-cars and a good deal of academic and industrial10

research works have been focused on this topic, as seen in [1, 2, 3] and others.

Further details on semi-active suspension systems are thoroughly discussed in

[4, 5].

The main challenge faced by semi-active suspension control problems is how

to handle the dissipativity constraints of these dampers. Several control15

design problems have been worked out with a range of different approaches. In

[6] and [7], we can find an extensive review of approaches towards semi-active

suspension control; the references therein can provide more details and serve

for further studies for readers. Indeed, some of the most recent and modern

control techniques have been applied for this problem. In [1], an LQ-based20

clipped optimal control is proposed; an H∞ control approach is presented in

[8]; LPV control approaches, dealing with the dissipativity constraints of these

suspension systems, are given in [9, 10]; a robust control approach with input

and state constraints is developed in [11].

1.2. Why Model Predictive Control?25

Nevertheless, a more natural approach towards optimal control of processes

subject to constraints is the Model Predictive Control (MPC ) framework, as

thoroughly introduced in [12]. MPC allows to explicitly consider the effect

of input (actuator) and state constraints in the control design process. This
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framework has been used as a solution to deal with many kinds of processes,30

such as energy plants [13], and various kinds of goals, even serving as fault-

tolerant control schemes [14, 15].

The control of semi-active suspension systems consists in manipulating the

damping coefficient of a controlled damper, the actuator from the system’s

point-of-view. Semi-active dampers have dissipativity constraints that can be35

tackled elegantly as an actuator saturation problem within theMPC framework.

Some works have employed an MPC approach for semi-active suspension

systems, although most of these studies only consider a simpler quarter-car

vehicle model. However, the quarter-car model (and half-car model as well)

is not sufficient to describe the dynamics of a full vehicle with four semi-active40

dampers. The idea of solving the control problem at each corner of the car (four

separate controllers) might seem appealing and simple enough, but the effects

of coupling and load transfer distribution between corners may not be handled,

which should lead to degraded performance, as discussed in [16]. Still on this

matter, this solution presents its difficulties for a real-time implementation,45

given that four control laws have to computed within the sampling period.

The following references are emphasized:

Considering quarter-car models:

• In [17], a fast MPC scheme is designed for a quarter-car vehicle model,

but the computation of the control law is sub-optimal, due to conditional50

constraints;

• In [18], a methodology is proposed for optimal semi-active suspension con-

trol, based onMPC, considering a quarter-car vehicle model and previously-

measured road disturbances;

• Likewise, in [19], the proposition of a clipped-optimal control algorithm is55

seen, with some experimental results;

• Finally, in [20], a hybrid MPC controller is presented, with some strong

discussion on the use of a clipped analytical MPC approach.
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Considering half-car and other models:

• In [21], a fast MPC scheme is designed for a half-car vehicle, where the60

controller is tuned based on a quarter-car suspension model and does not

take into account the effect of future disturbances;

• Finally, in [22], an MPC is formulated aiming safe handling performances

and validated with experimental results with a 10ms sampling period,

considering a linear bicycle model and an affine force-input model.65

Throughout literature, only few studies have been concerned by multivari-

able MPC semi-active control techniques considering the full car dynamics. In

[23], a nonlinear programming solution approach to this problem is proposed,

considering an approximate description of constraints and dependent on the use

of a camera to preview future disturbances, which might not be practically im-70

plementable due to costly expenses. On the other hand, in [16], a full vehicle

semi-active suspension MPC control is formulated and solved using Mixed In-

teger constraints and optimization, where simulation results show the interest

of this control approach. A more detailed version, presented in [24], shows that

practical implementation on a vehicle testbed is could not be achieved, since75

that the computational time of the MPC is much greater than the sampling

period. It is a known fact that the computation requirements of predictive

controllers (MPC ) are usually high, due to the complex optimization problem

which has to be solved online, at every sampling period.

1.3. Why a Linear Parameter Varying System Approach?80

Thus, in this work, we will develop a practically implementable semi-active

suspension MPC controller for a full vehicle with 4 semi-active dampers, de-

signed in an LPV framework.

Indeed, an LPV system representation is used in this work in order to adapt

the nonlinear input constraints of the dampers (dissipativity constraints) into85

linear constraints dependent on the scheduling parameters.
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1.4. Paper’s Contributions

The paper’s contributions are summarized below:

• A Fast LPV -MPC suspension control is presented by solving a subop-

timal quadratic minimization problem with polyhedral constraints, with90

explicit mathematical methods. The theoretical innovations of this topic

reside in the proposition of a linear parameter varying (fast) predictive

controller that can solve the suspension control problem in a sufficiently

small computational time, allowing possible real-time application, which

has not been seen previously in literature.95

• An H2 extended state observer is presented in order to estimate system

states and disturbances. It is also used to predict future road profile dis-

turbances. Notice that the performances of MPC controllers are improved

with the use of accurate future disturbance information, as clearly seen

in a class of applications, e.g. in [25, 26]. This is a also novel practical100

contribution.

• All theoretical formulation, simulation results and observer validation are

presented with details, showing the interest of the proposed control ap-

proach. Comparisons with other simpler control approaches are provided

in simulation, considering a full realistic nonlinear model.105

The structure of this article is given as follows: Section 2 describes the LPV

full vertical vehicle model with 4 semi-active suspensions, Section 3 presents

the proposed fast LPV MPC controller for the semi-active suspension problem,

Section 4 is devoted to the practical implementation of the control scheme,

considering an extended H2 state-observer to estimate future disturbances and110

system states, validated with the aid of experimental results. In Section 5,

results of the global control scheme are presented and analysed in a thorough

discussion. Finally, conclusions are drawn in Section 6.
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2. Full LPV Vehicle Model

Firstly, this Section presents the dynamical model of a vehicle’s vertical115

behaviour. This is a classic 7 degrees of freedom (DOF ) suspension model,

as seen in Figure 1 and adapted from [27]; it will be used for control design

purposes. This model involves the chassis dynamics (vertical displacement (zs),

roll angle (θ) and pitch angle (φ)) and the vertical displacements of the wheels

(zusij ) at the front/rear - left/right corners (i = (f, r) and j = (l, r)). This120

7−DOF model is governed by the following equations:

msz̈s = −Fsfl − Fsfr − Fsrl − Fsrr

Ixθ̈ = (−Fsfr + Fsfl)tf + (Fsrl − Fsrr)tr

Iyφ̈ = (Fsrr + Fsrl)lr − (Fsfr + Fsfl)lf

musij z̈usij = Fsij − Ftzij







(1)

where Ix and Iy represent the moments of inertia of the sprung mass around

the longitudinal and lateral axis, respectively, h represents the height of the

center of gravity (COG). lf , lr, tf and tr are the COG-front, rear, left and right

distances, respectively.125

The vertical tire forces, Ftzij , are given by:

Ftzij = ktij (zusij − zrij ) (2)

where ktij are the stiffness coefficients of the tires and zrij are the road profile

disturbances that the vehicle is subject to.

Each vertical suspension force (at 4 corners of the vehicle) is represented by

Fsij and, in this study, will be modeled by a spring and a damper with linear130

and nonlinear characteristics, respectively. This is:

Fsij = kij(zsij − zusij ) + Fdij
(3)

Fsij = kijzdefij + Fdij

where kij represents the nominal spring stiffness coefficient, zdefij the deflec-

tion displacement (thus, żdefij the deflection velocity) and Fdij
the semi-active
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2.1. The Proposed LPV State-Space Representation

A major stride of this work in order to reduce the computational time costs

of the control laws is to consider an LPV model of the full vehicle, instead of150

a nonlinear one. In terms of the MPC approach, this model will be considered

fixed through the prediction horizon, for a given scheduling parameter, in order

to compute the optimal control law. This reduces computational costs since

an LPV model with a fixed scheduling parameter is, basically, Linear Time-

Invariant (LTI ).155

To formalize the LPV parameter-dependency of the full vehicle model pre-

sented next, the following assumption is made:

Assumption 2.1. The suspension’s deflections velocities żdefij are bounded,

due to physical limits, and can be measured or, a least, accurately estimated. As

of Equation (5), one has:160

Fmin
dij

max{cij(·)}
≤ żdefij ≤

Fmax
dij

min{cij(·)}
(10)

Then, these variables can be considered (together) as a scheduling vector Θ:

Θ(t) = diag{żdefij (t)} (11)

=











żdeffl
(t) 0 0 0

0 żdeffr
(t) 0 0

0 0 żdefrl(t) 0

0 0 0 żdefrr (t)











So, taking Assumption 2.1 as true, one obtains the following state-space

representation of the Full Car model, by injecting (2) and (8) into (1). This is:

∑

Full

:=







ẋ(t) = Ax(t) + B1w(t) + B2(Θ(t))u(t)

y(t) = Cx(t) + D1w(t) + D2(Θ(t))u(t)
(12)

where the system states are given by (13), the control inputs are given by (14)

and the unmeasured inputs (disturbances) by (15) The measured outputs will165
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be detailed in Section 4.1. Matrices B2 and D2 are LPV and dependent on Θ,

whereas A, B1, C and D1 are constant.

x = [ zs θ φ zusfl
zusfr

. . . (13)

zusrl zusrr żs θ̇ . . .

φ̇ żusfl
żusfr

żusrl żusrr ]T

u =
[

ufl ufr url urr

]T

(14)

w =
[

zrfl
zrfr

zrrl zrrr

]T

(15)

Since a Model Predictive Control approach is considered, an optimization

problem will be solved at each sampling period (Ts). The continuous-time model

(12) is discretized as presented in (16). Note that the matrices Ad, B1d, Cd and170

D1d are constant and matrices B2d and D2d are LPV.

Ts∑

LPV

:=







x[k + 1] = Adx[k] + B1dw[k] + BLPV
2d (Θ)u[k]

y[k] = Cdx[k] + D1dw[k] + DLPV
2d (Θ)u[k]






(16)

The parameter-dependency of matrices BLPV
2d and DLPV

2d is affine in the

scheduling vector Θ, this is:

BLPV
2d (Θ) = B2d ×Θ (17)

DLPV
2d (Θ) = D2d ×Θ (18)

2.2. Input Constraints

Now, the dissipativity conditions of the semi-active suspension systems are175

described with more details, to cope with the MPC approach. From equations

(6-7), it follows:

cminij
|żdefij | ≤ |Fdij

| ≤ cmaxij
|żdefij | (19)

Since cnomij
=

(cmaxij
+cminij

)

2 , the controller will ensure:

(cminij
− cmaxij

)

2
≤ uij ≤

(cmaxij
− cminij

)

2
(20)
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3. A Fast LPV Model Predictive Control Solution for Semi-Active

Suspension Control180

The main objective of the semi-active automotive suspensions is to isolate

the body from the road disturbances, without deteriorating road handling, [5].

These two objectives can be referred to as comfort performance and handling

performance, respectively, and can be described through the vehicle’s COG ac-

celeration (given by z̈s) and roll angle (given by θ), as seen in [28].185

For control design purposes, two perfomance indexes, with respect to each

control objective, are considered:

Jcomfort =

∫ τ

0

z̈2s(t)dt (21)

and

Jroll =

∫ τ

0

θ2(t)dt (22)

where τ represents a given time interval. Let us recall that it is well-known that

(physically) these two objectives are conflicting. For this reason, the control

method must take into account a suitable trade-off between these performance190

indexes, subject to with the input constraints given in equation (19). Moreover,

one may consider a possible minimization of the chassis’ displacement (zs(t)),

for other control purposes (this can help in terms of comfort perfomances for

some road profiles).

Thus, this control problem can be solved by a well-posed constrained opti-195

mization problem, formulated within the Model Predictive Control framework.

The MPC control approach to the semi-active suspension problem consists in

minimizing the following cost function at every discrete-time step k in a com-

putational time smaller than the sampling period Ts:

J(U, x[k], w,Np) = (23)

Np∑

j=1

[ξ1(
z̈s[k + j|k]

z̈max
s

)2 + ξ2(
θ[k + j|k]

θmax
)2]

+

Np∑

j=1

[ξ3(
zs[k + j|k]

zmax
s

)2] +

Np−1
∑

j=0

uT [k + j|k]Quu[k + j|k]

11



where Np is the given prediction horizon, u[k + j|k], z̈s[k + j|k], zs[k + j|k]200

and θ[k + j|k] denote, respectively, the control efforts, the chassis acceleration,

the chassis displacement and roll angle predicted for instant k + j at instant k,

using the LPV prediction model (16) and considering the initial states x[k] and

disturbance information w.

U =
[

u[k|k] u[k + 1|k] . . . u[k +Np − 1|k]
]T

(24)

represents the vector of control efforts inside the prediction horizon (to be op-205

timized). Qu is a weighting matrix and ξ1, ξ2 and ξ3 are weighting coefficients

that influence the trade-off between handling and comfort performances.

Remark 2. For this application to be scale-wise correct, the control inputs u,

zs, z̈s and θ are normalized with the use of zmax
s , z̈max

s and θmax - these values

are retrieved from experimentation each vehicles.210

As already stated, the scheduling vector Θ is considered (for simplicity) to

remain constant at Θ0 during the prediction horizon, from the MPC ’s point-

of-view. This reduces computational efforts while maintaining good control

performances. Thus, finally, the LPV-MPC design can be defined as:

minU J(U, x̂[k], ŵ, Np,Θ0)

s.t.







x̂[k + 1] = Adx̂[k] +B1dŵ[k] +BLPV
2d (Θ0)u[k]

dissipativity constraints in (19)







(25)

So, the two following assumptions must be satisfied.215

Assumption 3.1. The states (13) are measurable or, at least, accurately esti-

mated.

Assumption 3.2. The information on the road profile disturbances, given by

ŵ[k], is available to the controller at every measurement instant k. This in-

formation can come from preview structures or adaptive schemes, like the one220

presented in [29]. Herein, this information will come from an extended observer,

as presented later in Section 4.2.
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and Gurobi solver [32]. The mean computational time, considering these soft-

ware packages, is around 0.0295 s. These results come from simulation on a

2.4GHz, 8GB RAM Macintosh computer, although similar values were ob-245

tained using different (top) PCs (running Windows and Unix ); different solvers

were also (unsuccessfully) tried. Modern automotive application make use of

even tighter sampling periods, such as 1ms, which would never be achieved with

such application, as discussed in [24]. Obviously, faster approaches had to

be proposed and this is the goal of this article.250

3.1. Sub-Optimal Fast Implementation

The detailed LPV-MPC approach (25) will be solved with approximate sub-

optimal methods, in order to fit with the maximal computing time constraint

of 5ms, and be able to be implemented in real-time with a microcontroller

for semi-active suspension systems. This is necessary as the full constrained255

optimization solution overlaps the maximal allowed time, as discussed in section

3.0.1 of this paper. The approximate method that is used herein, named Fast

Model Predictive Control (FMPC ), was firstly introduced in [33]. Here, this

method is slightly adapted to cope with the LPV model and its assumptions.

This method can compute an optimal control law, minimizing cost function260

(23), at every sampled instant k, even for time-varying input disturbances and

space-state representation matrices - which is the case of this work, for B2d(Θ)

and D2d(Θ) are time-varying, as well as w(t). This approach is also interesting

since it has been proved (in [33]) to work with a system with even 12 states,

3 control inputs and a horizon of 30 samples, computing the control actions in265

around 5ms - the problem studied herein is of similar size and time constraints.

The LPV model reconfiguration is described by the pseudo-code 1.

The FMPC method can greatly speed up the computational time of the con-

trol action. It consists in exploiting the special structure of the MPC quadratic

problem and solving the problem approximately with the use of an early ter-270

minated primal barrier interior-point method combined with warm-start tech-

niques. The quality of the achieved control is very high, as demonstrated in [33].
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Algorithm 1 LPV-FMPC

Constants: Ts, Ad, B1d, B2d, Cd, D1d, D2d;

for every Ts do

Constants: x[k]

2: Compute ŵ[k], with model Amw

Constants: Θ[k]

Compute BLPV
2d

4: Compute DLPV
2d

Compute U == FMPC(J, x, ŵ, constraints, Ad, B1d, B
LPV
2d , Cd, D1d, D

LPV
2d )

6: Apply U(0)

end for

Notice that this approach only considers linear inequality constraints on control

inputs and states, which, for our control problem (using the LPV formulation)

is compatible.275

To be synthetic, the FMPC method consists in solving the MPC problem

approximately (sub-optimal), given the following steps:

1. Rearranging the quadratic program with the use of a Primal-Barrier term,

maintaining the convex optimization problem with linear equality con-

straints structure, where the barrier term is parametrized by factor κ;280

2. Using an Infeasible Start Newton Method and a fast computation of the

Newton step, considering the use of a residual vector and a search for

increments solved by linear equations;

3. Using a Schur complement and Cholesky factorizations and some other

simplifying techniques;285

4. Finally, fixing a maximal iteration limit for the Newton algorithm and us-

ing warm start techniques, i.e. taking the previous plan of control actions

(U [k|k]), shifted in time as the starting point for the next Newton loop.

Remark 4. As summarized by Algorithm 3.1, the FMPC control law obtained at

each sampled instant k depends on the parameter-varying matrices BLPV
2d and290
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DLPV
2d , affine on the scheduling vector fixed at instant k, noted Θ0 (considered

constant throughout the prediction horizon Np, as explained beforehand). For

further reading on the stability and optimality issues of this kind of approach,

and in particular on the procedure to determine bounds on the suboptimality

of this FMPC solution, refer to [34].295

The proposed LPV-FMPC strategy for the control of semi-active suspension

system is efficiently synthesized using Matlab.

4. Practical Implementation

As stated before, Assumptions 3.1 and 3.2, the proposed LPV-FMPC con-

troller needs to be fed with x[k] and ŵ[k] by some other scheme. To ensure300

the feasibility and accuracy of the control objectives, this work considers an

extended observer approach to estimate system states and disturbances. Here-

after, the used experimental testbed is presented and, then, the observer design

methodology.

4.1. Experimental Test-bench305

In this work, an experimental platform (see Figure 4) is considered as a tool

for validation in order to retrieve physical and computational constraints to the

control problem, as it mimics all operational aspects of a real car.

This testbed is the INOVE Soben-Car, a reduced-size vehicle where several

configurations and use cases can be tested (see full details in [30], [29] and on the310

website [35]). Table 1 gives the numerical values of the modelling parameters

related to the dynamic model (12) of the Soben-car.
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Table 1: Vehicle Model Parameters: INOVE Soben-car

Parameter Value Unit

ms 9.08 kg

musfl
0.32 kg

musfr
0.32 kg

musrl 0.485 kg

musrr 0.485 kg

Ix 5 kg.m2

Iy 2.5 kg.m2

tf 0.23 m

tr 0.23 m

lf 0.2 m

lr 0.37 m

ktfl
18097.60 N/m

ktfr
18097.60 N/m

ktrl 20819.40 N/m

ktrr 20819.40 N/m

kfl 1396 N/m

kfr 1396 N/m

krl 1396 N/m

krr 1396 N/m

cmaxfl
111.729 N.s/m

cminfl
31 N.s/m

cmaxfr
111.729 N.s/m

cminfr
31 N.s/m

cmaxrl
111.729 N.s/m

cminrl
31 N.s/m

cmaxrr 111.729 N.s/m

cminrr 31 N.s/m

18



On the INOVE testbed, the semi-active suspension system includes four

Electro-Rheological (ER) dampers, [36], which have a force range of approxi-

mately ± 20N. These dampers are adjusted using a controlled voltage inside the315

range of [0 , 5] kV, generated by amplifier modules. The control input for these

modules are PWM signals at 25 kHz. A real controllable automotive suspension

system has the same structure. Below each wheel lies a linear servomotor that is

used to mimic the desired road profile zrij . This servomotors have a bandwidth

of 0− 20Hz and operate with a maximal velocity of 1.5m/s.320

The real nonlinear behaviour of the ER semi-active dampers are seen in Fig-

ure 5, where the Force vs. Deflection Velocity diagram is plotted, as presented

in [24]. These characteristics are related on the input constraints presented on

equation (19).

This test-bench is equipped with a wide variety of sensors that capture the325

vehicle’s behaviour. The available measured outputs (y) are given in equation

(26). These measurements might also be present in a real vehicle, with the use

of accelerometers and relative displacement sensors.

y = [ z̈sfl
z̈sfr

z̈srl z̈srr . . . (26)

zdeffl
zdeffr

zdefrl zdefrr . . .

żdeffl
żdeffr

żdefrl żdefrr ]T

4.2. H2 Observer330

Considering the presented testbed, the observer design has to take two goals

into account: estimate the system’s states x[k] and disturbances w[k] and predict

the future disturbances w[k+ n] and states x[k+ n]. This is depicted in Figure

6, where the complete control problem is illustrated.

To satisfy these two design goals, this work must firstly consider a distur-335

bance model. As exploited and discussed thoroughly in [37] and [38], and since
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computed, as seen in [1] and [29], but, for this study, it will be considered that

there is no information on the type of road profile.345

From this point, joining equations (16), (26) and (27), we can consider an

augmented state-space representation of the system, as follows:




x[k + 1]

w[k + 1]



 =

Aobs
︷ ︸︸ ︷



Ad B1d

0 I








x[k]

w[k]



 +

Bobs
︷ ︸︸ ︷



BLPV

2d (Θ0))

0



Fc[k]

y[k] =
[

Cd D1d

]

︸ ︷︷ ︸

Cobs




x[k]

w[k]



 + DLPV
2d (Θ0))Fc[k]







(28)

Remark 6. Herein Fc(t) stands for the controlled part of the damper force. This

is computed, for each corner of the vehicle, as a function of the control input

uij(t) and the suspension deflection zdefij (t) at given computation instant k0,350

as details the following equation:

Fcij [k] = uij [k]× z0defij (29)

The complete vector is given by:

Fc[k] =
[

Fctfl
[k] Fctfr

[k] Fctrl [k] Fctrr [k]
]T

(30)

Remark 7. Once again, Θ0 stands for the scheduling vector at the instant of

measurement. z0defij stands for the suspension deflection at the same instant.

Let consider that the measured outputs y[k] are corrupted by some measure-355

ment noises ν[k], giving:

y[k] =
[

Cd D1d

]




x[k]

w[k]



 + Dfixed
2d Fc[k] + Fuν[k] (31)

Assumption 4.1. In this work, it is considered that there is one measurement

noise for every measured output (Fu = I8 and ν ∈ R
8).
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Then, one wishes to design an observer to estimate the extended states with

the following structure:360




x̂[k + 1]

ŵ[k + 1]



 = Aobs




x̂[k]

ŵ[k]



 + BobsFc[k] + L(y[k]− ŷ[k])

ŷ[k] = Cobs




x̂[k]

ŵ[k]



 + Dfixed
2d Fc[k]







(32)

where L ∈ R
18×8 is the observer matrix gain to be defined.

To compute this gain, this work considers a classicH2 filtering observer, with

pole placement definition, as in [39]. This is an appropriate method to reduce

the effect of noise on the estimations. Remark that the H2 norm is related to

the impulse to energy gain.365

The estimation error dynamics of the observer are presented below:

e[k + 1] = (Aobs − LCobs)e[k]− LFuν[k] (33)

Definition 4.2. The (discrete-time) H2 observer problem (detailed in [39]), is,

to find L in order to minimize γ such that:

||Teν(z)||2 ≤ γ under e[k = 0] = 0 (34)

under

limk→∞ e[k] → 0 for ν[k] ≡ 0 (35)

where Teν(z) stands for the (z-domain) transfer function that represents the370

effects of ν(z) upon the estimation error:

e(z) =




x(z)

w(z)



−




x̂(z)

ŵ(z)



 (36)

In order to improve the convergence performances of the observer, this work

considers an additional constraint concerning the poles of the computed observer

which are to be placed inside a parameterized region Rp(µ, ̺) (circle centered

at µ with radius ̺), smaller than the unit circle (being fast enough for the375

semi-active suspension problem’s goals), as depicted in Figure 7.
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mechatronic testbed, considering a sequence of bumps road profile scenario zr

at each corner. The measurement noise is, naturally, present for each measured

output (y).

Remark 8. There is a trade-off between the convergence speed of this H2

observer (given by the pole placement regionRp(µ, ̺)) and the noise-attenuation395

goals.

To further reject high-frequency noises, the measured outputs y(t) are nu-

merically filtered. The continuous-time transfer function of the used filter is

given by:

We(s) =
1

0.001s+ 1
× I12 (38)

The validation scenario is that of a vehicle running at 120 km/h in a straight400

line on a dry road, when it encounters a sequence of 1 cm sinusoidal bumps.

Figure 8 shows an accurate estimation of the road profile at each corner of the

vehicle. A zoom of the road profile estimation for the front-left corner is showed

in details in Figure 9: the effect of the measurement noise is still present, but

the main trend is followed by the estimated augmented states, which is enough405

from the FMPC controller’s point-of-view.

Figure 10 displays the (sufficiently) accurate estimation of some (important)

system states (pitch φ(t) and roll θ(t)). Once again, the effect of ν(t) is still

present (but diminished) and the main trend is followed by the estimated states.

Show by the previous Figures, the proposed H2 filtering extended observer410

approach can serve well in order to provide the design controller information on

states and disturbances.

5. Results, Analysis and Discussion

Simulation results are presented and discussed, considering the problem of

controlling a Full Vehicle’s Semi-Active Suspension, within the Model Predictive415

Control framework.
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For both simulations, the FMPC synthesis considered 17 as the maximal

number of Newton iteration steps and the parameter κ, related to the primal-

barrier term, is taken as 0.01. The prediction horizon is fixed at Np = 10

samples for all the controllers; several different prediction horizons were tested455

by authors and these values were found to give a sufficiently good trade-off

between computational time and accuracy of computed control law.

In order to compare the effectiveness of this work’s propositions, the follow-

ing results compare three different behaviours:

• The proposed LPV-FMPC approach;460

• The purely passive, uncontrolled damper (uij = 0);

• A clipped analytical MPC (AMPC ) scheme, as discussed similarly in [19].

This AMPC stands for the analytical, offline solution of quadratic problem

(25), without taking into account the dissipativity constraints and considering

the scheduling parameter Θ[k] as fixed through the horizon. The resulting465

control law is clipped (saturation) inside the feasible region (determined by the

dampers’ dissipativity constraints) and then applied to the vehicle. The use of

an Anti-Windup gain (KAW ) is considered in order to unload excessive integral

action. This control method is a good comparison to the LPV-FMPC method

for it can be, also, implemented in real-time, given that the control law at each470

instant k is a simple clipped state-feedback law u[k] = clip{−Kxx̂[k]−Kwŵ[k]}

(anti-windup action is omitted). The matrices KAW , Kx and Kw are constant

and were computed offline. This approach is more robust than a simple state-

feedback action because it considers the feasible region of u.

Remark 9. Although the goal of this work is not to demonstrate that the pro-475

posed LPV-FMPC method for Semi-Active suspensions presents better results

than when using purely passive suspensions, this is illustrated by the ”uncon-

trolled damper” results, in the following Figures.
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Table 4: RMS Values - Scenario 1

Comfort Performance - z̈s(t) Value Unit

Uncontrolled Damper 2.22066 m/s2RMS

AMPC 2.11640 m/s2RMS

LPV-FMPC 2.10061 m/s2RMS

Roll Performance - θ(t)

Uncontrolled Damper 0.2571 radRMS

AMPC 0.2713 radRMS

LPV-FMPC 0.2571 radRMS

As expected, the behaviour of the vehicle’s roll angle is enhanced, due to the

sideways bump of the road profile around t = 2 s. Figure 15 shows the behaviour

of the roll angle (θ(t)) considering the nominal passive damper (uncontrolled,510

taking uij = 0), and a controlled semi-active damper with the AMPC and

LPV-FMPC approaches. In terms of handling performances, the LPV-FMPC

controlled response is, at least, equivalent to the nominal damper, whereas the

AMPC controlled response is much worse, because closed-loop system might

present internal instabilities (marginal stability) due to the saturation effects515

(clipping constraints) not taken into account during the design step. This is

confirmed by the RMS values for θ(t), given in in Table 4.

Finally, Figure 16 clearly shows that the dissipativity constraints of all the

four dampers are respected by both Real-Time MPC -based approaches, al-

though, for the AMPC method, the controlled damping coefficient stays most of520

the time ”forced” at cmaxij
(saturation). Considering the LPV-FMPC method,

a wider range of values of cij(·) is used. Figure 17 emphasizes the respective

PWM signals to be applied to the vehicle, for both control approaches, consid-

ering the three dimensional look-up table method described.
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5.3. Final Discussion

After detailing the behaviour of the closed-loop system (as presented in545

Figure 3), the efficiency of the proposed LPV model-based fast predictive control

approach can be discussed more deeply, given that it aims to be implemented

on a real vehicle system, in the near future.

Firstly, remark that the improvements from the new proposed scheme (LPV-

FMPC ) are not huge because when compared with the nominal damper because550

this is a reduced (small) vehicle. Small changes in z̈s do influence the passager’s

comfort, just as small changes in θ influence the car’s roll motion. Using a large

vehicle model, the order of magnitude of z̈s and θ would greatly enlarge and the

improvements would be further noticeable.

Also, remark that the AMPC method is essentially used for comparison555

goals for it is a feasible way to implement a real-time MPC -based method for

the semi-active suspension control of a full vehicle. Moreover, remark that

there is no guarantee that the closed-loop system would remain stable with this

AMPC approach, since the saturation (clipping) phase might affect the internal

stability. This is seen in terms of handling performances, as the AMPC presents560

a behaviour ever worse than that of the uncontrolled damper. In Figure 17, one

can also see that the PWM signal, with this control approach, continues to vary

after the road profile stabilizes, trying to stabilize internal modes.

The trade-off between handling and comfort performances is the main goal of

this work. As it was seen, for the first simulation scenario, the tuning parameters565

ξ were set so that the comfort performances tended to be prioritized and that the

handling performance would be, at least, equivalent to the ones obtained with

a passive damper. For the second simulation scenario, the tuning parameters

were set in a ”inverse” way, so that handling performance were prioritized.

The proposed LPV-FMPC control approach presents extremely efficient re-570

sults, abiding to constraints, guaranteeing internal stability (as expected) and

being able to enhance comfort performances (z̈s is well minimized, compared to

the uncontrolled damper behaviour) while maintaining good roll performances

(θ̈ is, at least, as small as when the damper is passive). The tuning parameters
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can be adjusted so that an adequate trade-off is achieved, as shown through the575

two different simulation scenarios.

6. Conclusion and Future Works

This article presented the control of a semi-active suspension system, con-

sidering a full vertical vehicle model and using a fast model-based predictive

control framework. A fast Linear Parameter Varying MPC control scheme is580

developed for a real-time application with a sampling frequency of 200Hz and

tested through realistic simulation scenarios, considering nonlinearities and mea-

surement noise. An H2 observer is designed to estimate the system states and

future road disturbances, considering the attenuation of measurement noise.

Thanks to the MPC -based strategy, a multi-objective problem is considered,585

implementing an efficient trade-off between road handling and passenger com-

fort, while ensuring dissipativity constraints, with an adequate choice of tuning

parameters. The performances of the proposed LPV-FMPC have been assessed

using simulation and compared with an analytical, unconstrained MPC, [19].

For further works, an interesting theme is to study different kinds of im-590

plementations of this MPC proposition, considering the use of Mixed Integer

Quadratic Programming in Real-Time MPC controllers.

Acknowledgements

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR−

11−LABX−0025−01), funded by the French program Investissements dávenir.595
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