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Abstract

This article is concerned with the control of a Semi-Active suspension system
of a TDOF Full Vehicle model, equipped with four Flectro Rheological (ER)
dampers, taking into account their incipient dissipativity constraints. Herein,
a Real-Time, fast, advanced control structure is presented within the Model
Predictive Control framework for Linear Parameter Varying (LPV') systems.
The control algorithm is developed to provide a suitable trade-off between com-
fort and handling performances of the vehicle in a very limited sampling period
(Ts = 5ms), in the view of a possible realtime implementation on a real vehicle.
The control structure is tested and compared to other standard fast control ap-
proaches. Full nonlinear realistic simulation results illustrate the overall good
operation and behaviour of the proposed control approach.
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1. Introduction

In order to enhance a vehicle’s driving performance in terms of road han-
dling and ride comfort, one should take special care with the vehicle’s suspension
system. More and more present in the automotive industry, Semi-Active sus-
pension systems should be highlighted, being efficient and, at the same time,

less energy-consuming and less expensive than purely active suspensions.

1.1. Semi-Active Suspension Systems

The use of semi-active suspension systems provides a good trade-off be-
tween costs and performance requirements. This type of suspension is present
on recent state-of-the-art top-cars and a good deal of academic and industrial
research works have been focused on this topic, as seen in [I} 2, 3] and others.
Further details on semi-active suspension systems are thoroughly discussed in
[4, 5].

The main challenge faced by semi-active suspension control problems is how
to handle the dissipativity constraints of these dampers. Several control
design problems have been worked out with a range of different approaches. In
[6] and [7], we can find an extensive review of approaches towards semi-active
suspension control; the references therein can provide more details and serve
for further studies for readers. Indeed, some of the most recent and modern
control techniques have been applied for this problem. In [I], an LQ-based
clipped optimal control is proposed; an H., control approach is presented in
[8]; LPV control approaches, dealing with the dissipativity constraints of these
suspension systems, are given in [9] [I0]; a robust control approach with input

and state constraints is developed in [11].

1.2. Why Model Predictive Control?

Nevertheless, a more natural approach towards optimal control of processes
subject to constraints is the Model Predictive Control (MPC') framework, as
thoroughly introduced in [12]. MPC allows to explicitly consider the effect

of input (actuator) and state constraints in the control design process. This
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framework has been used as a solution to deal with many kinds of processes,
such as energy plants [I3], and various kinds of goals, even serving as fault-
tolerant control schemes [14] [15].

The control of semi-active suspension systems consists in manipulating the
damping coefficient of a controlled damper, the actuator from the system’s
point-of-view. Semi-active dampers have dissipativity constraints that can be
tackled elegantly as an actuator saturation problem within the MPC framework.

Some works have employed an MPC approach for semi-active suspension
systems, although most of these studies only consider a simpler quarter-car
vehicle model. However, the quarter-car model (and half-car model as well)
is not sufficient to describe the dynamics of a full vehicle with four semi-active
dampers. The idea of solving the control problem at each corner of the car (four
separate controllers) might seem appealing and simple enough, but the effects
of coupling and load transfer distribution between corners may not be handled,
which should lead to degraded performance, as discussed in [16]. Still on this
matter, this solution presents its difficulties for a real-time implementation,
given that four control laws have to computed within the sampling period.

The following references are emphasized:

Considering quarter-car models:

e In [I7], a fast MPC scheme is designed for a quarter-car vehicle model,
but the computation of the control law is sub-optimal, due to conditional

constraints;

e In [18], a methodology is proposed for optimal semi-active suspension con-
trol, based on MPC, considering a quarter-car vehicle model and previously-

measured road disturbances;

e Likewise, in [I9], the proposition of a clipped-optimal control algorithm is

seen, with some experimental results;

e Finally, in [20], a hybrid MPC controller is presented, with some strong

discussion on the use of a clipped analytical MPC' approach.
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Considering half-car and other models:

e In [21], a fast MPC scheme is designed for a half-car vehicle, where the
controller is tuned based on a quarter-car suspension model and does not

take into account the effect of future disturbances;

e Finally, in [22], an MPC is formulated aiming safe handling performances
and validated with experimental results with a 10ms sampling period,

considering a linear bicycle model and an affine force-input model.

Throughout literature, only few studies have been concerned by multivari-
able MPC semi-active control techniques considering the full car dynamics. In
[23], a nonlinear programming solution approach to this problem is proposed,
considering an approximate description of constraints and dependent on the use
of a camera to preview future disturbances, which might not be practically im-
plementable due to costly expenses. On the other hand, in [I6], a full vehicle
semi-active suspension MPC' control is formulated and solved using Mixed In-
teger constraints and optimization, where simulation results show the interest
of this control approach. A more detailed version, presented in [24], shows that
practical implementation on a vehicle testbed is could not be achieved, since
that the computational time of the MPC is much greater than the sampling
period. It is a known fact that the computation requirements of predictive
controllers (MPC') are usually high, due to the complex optimization problem

which has to be solved online, at every sampling period.

1.8. Why a Linear Parameter Varying System Approach?

Thus, in this work, we will develop a practically implementable semi-active
suspension MPC' controller for a full vehicle with 4 semi-active dampers, de-
signed in an LPV framework.

Indeed, an LPV system representation is used in this work in order to adapt
the nonlinear input constraints of the dampers (dissipativity constraints) into

linear constraints dependent on the scheduling parameters.
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1.4. Paper’s Contributions

The paper’s contributions are summarized below:

e A Fast LPV-MPC suspension control is presented by solving a subop-
timal quadratic minimization problem with polyhedral constraints, with
explicit mathematical methods. The theoretical innovations of this topic
reside in the proposition of a linear parameter varying (fast) predictive
controller that can solve the suspension control problem in a sufficiently
small computational time, allowing possible real-time application, which

has not been seen previously in literature.

e An H, extended state observer is presented in order to estimate system
states and disturbances. It is also used to predict future road profile dis-
turbances. Notice that the performances of MPC' controllers are improved
with the use of accurate future disturbance information, as clearly seen
in a class of applications, e.g. in [25] 26]. This is a also novel practical

contribution.

e All theoretical formulation, simulation results and observer validation are
presented with details, showing the interest of the proposed control ap-
proach. Comparisons with other simpler control approaches are provided

in simulation, considering a full realistic nonlinear model.

The structure of this article is given as follows: Section [2] describes the LPV
full vertical vehicle model with 4 semi-active suspensions, Section [3| presents
the proposed fast LPV MPC controller for the semi-active suspension problem,
Section [4] is devoted to the practical implementation of the control scheme,
considering an extended Hy state-observer to estimate future disturbances and
system states, validated with the aid of experimental results. In Section
results of the global control scheme are presented and analysed in a thorough

discussion. Finally, conclusions are drawn in Section [6]
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2. Full LPV Vehicle Model

Firstly, this Section presents the dynamical model of a vehicle’s vertical
behaviour. This is a classic 7 degrees of freedom (DOF') suspension model,
as seen in Figure [1] and adapted from [27]; it will be used for control design
purposes. This model involves the chassis dynamics (vertical displacement (z;),
roll angle () and pitch angle (¢)) and the vertical displacements of the wheels
(2us;;) at the front/rear - left/right corners (i = (f,7) and j = (l,r)). This

7 — DOF model is governed by the following equations:

MsZs = —Fgp1 — Fspr — Fopg — Fopr
L6 = (=Fupr+ Fop)ts + (Fort — Farp)t, Q
L = (Fspr + Fsp)le — (Fspr + Fspi)ly

Musi; Zusy; = Fyiy = Fizy

where I, and I, represent the moments of inertia of the sprung mass around
the longitudinal and lateral axis, respectively, h represents the height of the
center of gravity (COG). Iy, I, ty and t, are the COG-front, rear, left and right
distances, respectively.

The vertical tire forces, Fy.,, , are given by:
thij = kti]‘ (ZUSij - ZT’z‘j) (2)

where k;,; are the stiffness coefficients of the tires and z,.; are the road profile
disturbances that the vehicle is subject to.

Each vertical suspension force (at 4 corners of the vehicle) is represented by
Fs,, and, in this study, will be modeled by a spring and a damper with linear

and nonlinear characteristics, respectively. This is:

kij(zsi]‘ - Zusij) + Fdi]‘ (3)

Sij

kljzdef” + Fd”

Sij

where k;; represents the nominal spring stiffness coefficient, zgey,; the deflec-

tion displacement (thus, Zg.y,; the deflection velocity) and Fy,; the semi-active
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Figure 1: Full Vehicle Model with 4 Semi-Active Suspensions

the controlled damper force. This damper force is given by @, where ¢;;(-)
represents controlled damping coefficient. The dissipativity constraints of each
semi-active damper are formulated in @ The feasible set within which the

semi-active damper force can be applied is also illustrated by Figure

Fdij = Cij(.)(’ésij - Zusij) = Cij(.)édefij (4)
Fé:bjm < Fdij < F(;"Zjam (5)
0 < cming < cij(1) < Cmaz; (6)

The first step of the proposed LPV approach consists in rewriting the
damper forces as given by , where u;; is an incremental damping coefficient

. (cmam;; +Cming ;)
(used as control input) and cpom,; = ——ds——

is the nominal damping
coefficient. Then, the suspension force given in equation can be given stated
as . This will be useful in order to write the dissipativity constraints solely

in terms of the contro inputs wu;;, as details Section@
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Force A
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Deflection
speed

Controlled damper
(characteristic set)

Figure 2: Semi-Active Damper: Feasible Force Region

passive controlled
Fdij = Cnomij (édefi]-) +uij X (73def¢j)
Fsij = kij (Zdefij) + Cnom; (2(161‘5‘]') +

X(édefij)

control input

(7)
(8)

Remark 1. The position (and, thus, the velocity) of the sprung mass at each

corner of the vehicle (z,,) is derived from the vehicle equations of motion, and

considering the roll and pitch angles as small enough, they can be linearized as

in:

ZSfl
Zsfr
Zs'rl

237‘7‘

9)



2.1. The Proposed LPV State-Space Representation

A major stride of this work in order to reduce the computational time costs
150 of the control laws is to consider an LPV model of the full vehicle, instead of
a nonlinear one. In terms of the MPC approach, this model will be considered
fixed through the prediction horizon, for a given scheduling parameter, in order
to compute the optimal control law. This reduces computational costs since
an LPV model with a fixed scheduling parameter is, basically, Linear Time-

155 Invariant (LTT).
To formalize the LPV parameter-dependency of the full vehicle model pre-

sented next, the following assumption is made:

Assumption 2.1. The suspension’s deflections velocities Z4ey,; are bounded,
due to physical limits, and can be measured or, a least, accurately estimated. As
wo  of Equation (@), one has:
i . Fiar
maz{es; () S Rdefiy S (10)

min{ci;(-)}

Then, these variables can be considered (together) as a scheduling vector ©:

O(t) = diag{Zaey,;(t)} (11)
Zdefs (1) 0 0 0
B 0 agt) O 0
B 0 0 ap,t) 0
0 0 0 Zaes, ()

So, taking Assumption [2.1] as true, one obtains the following state-space

representation of the Full Car model, by injecting and into . This is:

#(t) = Az(t) + Bw(t) + By(0(t)u(t)

> = (12)

Full y(t) = Cz(t) + Diw(t) + D2O(t))ult)

where the system states are given by 7 the control inputs are given by
s and the unmeasured inputs (disturbances) by The measured outputs will



be detailed in Section Matrices By and Dy are LPV and dependent on O,

whereas A, By, C and D; are constant.

o= [z 0 ¢ Zusy Zus; - (13)

Zusy  Pusy. Zs 0

O Zusp Fusp Fusw Fuse |
T
u = [ Ufr Ufr Ul Upr :| (14)
T
wo = [zrﬂ Zrp. Zrgy zm} (15)

Since a Model Predictive Control approach is considered, an optimization
problem will be solved at each sampling period (7s). The continuous-time model
170 is discretized as presented in . Note that the matrices Ay, B14, Cq and

D14 are constant and matrices By and Doy are LPV.

i:: dh 1l = Asll + Buel] + BEPVE©uH |
LPV ylk] = Cazlk] + Digwlk] + D5V (O)ulk]

The parameter-dependency of matrices BV and DITV is affine in the

scheduling vector ©, this is:

By;V(©) = Baux© (17)
D5;V(©) = Dayx© (18)
2.2. Input Constraints
175 Now, the dissipativity conditions of the semi-active suspension systems are

described with more details, to cope with the MPC approach. From equations

(6l7), it follows:

Cring; "édefij < |Fdij < Cmaax;; 2d€f¢j | (19)
. (cmaz;; TCming;) .
Since Cnom,, = ——<5——, the controller will ensure:
(Cminij - Cmamij) (Cmadh;j - Cminij)
2 * 2

10
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3. A Fast LPV Model Predictive Control Solution for Semi-Active

Suspension Control

The main objective of the semi-active automotive suspensions is to isolate
the body from the road disturbances, without deteriorating road handling, [5].
These two objectives can be referred to as comfort performance and handling
performance, respectively, and can be described through the vehicle’s COG ac-
celeration (given by Z5) and roll angle (given by 6), as seen in [28].

For control design purposes, two perfomance indexes, with respect to each

control objective, are considered:

Jeomport = / 22 (t)dt (21)
0

and
Jroll = / 02(t)dt (22)
0

where T represents a given time interval. Let us recall that it is well-known that
(physically) these two objectives are conflicting. For this reason, the control
method must take into account a suitable trade-off between these performance
indexes, subject to with the input constraints given in equation . Moreover,
one may consider a possible minimization of the chassis’ displacement (z(t)),
for other control purposes (this can help in terms of comfort perfomances for
some road profiles).

Thus, this control problem can be solved by a well-posed constrained opti-
mization problem, formulated within the Model Predictive Control framework.
The MPC' control approach to the semi-active suspension problem consists in
minimizing the following cost function at every discrete-time step k£ in a com-

putational time smaller than the sampling period T5:

J(U, z[k], w, N,) = (23)
NP .. . .
> e SR e g
Skl NS e .
+ D l&(Z P D T [k lkIQuulk + (]
j=1 s 7=0

11
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where N, is the given prediction horizon, ulk + j|k|, Zs[k + jlk|, zs[k + j|k]
and 0]k + j|k] denote, respectively, the control efforts, the chassis acceleration,
the chassis displacement and roll angle predicted for instant k + j at instant k,
using the LPV prediction model and considering the initial states z[k] and

disturbance information w.
T
U = | kb ulk+ 18] ... ulk+ N, - 1]k | (24)

represents the vector of control efforts inside the prediction horizon (to be op-
timized). @, is a weighting matrix and &, £2 and &3 are weighting coefficients
that influence the trade-off between handling and comfort performances.

Remark 2. For this application to be scale-wise correct, the control inputs u,

max
S ’

Zs, 25 and @ are normalized with the use of z Zmax and 0™2* - these values

are retrieved from experimentation each vehicles.

As already stated, the scheduling vector © is considered (for simplicity) to
remain constant at ©( during the prediction horizon, from the MPC’s point-
of-view. This reduces computational efforts while maintaining good control

performances. Thus, finally, the LPV-MPC design can be defined as:

ming J(U, &[K], @, Np, O)
&k + 1] = Aqi[k] + Bigwl[k] + BETY (60)ulk] (25)
dissipativity constraints in

s.t.

So, the two following assumptions must be satisfied.

Assumption 3.1. The states are measurable or, at least, accurately esti-

mated.

Assumption 3.2. The information on the road profile disturbances, given by
wlk], is available to the controller at every measurement instant k. This in-
formation can come from preview structures or adaptive schemes, like the one
presented in [29]. Herein, this information will come from an extended observer,

as presented later in Section[{.3

12
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Remark 3. In this work, an extended observer will be used in order to estimate
system states and future disturbances. This observer will be detailed next, in
Section [l Obviously, the computation of the estimated states and disturbances
by this Hs extended observer has to be done before the MPC computation in a

fast-enough response time.

Considering the MPC' control approach, the problem is solved at every
iteration k£ and the control effort to be applied to the real system corresponds to
the first entry of the minimized control effort vector U, given in , solution
to the problem . In Figure 3| the proposed control approach is summarized,
considering the LPV-MPC'" approach.

road
(LPV) Model Reconfiguration  ¢ontrol l
- inputs

Scheduling Vector n\n \de _ ‘
measure
Rosdinto, | prooosle Vehicle | "oupute

Sys. States Control _Enpanoe_} ST

e

Figure 3: Proposed Predictive Control Scheme

3.0.1. Computational Time Constraints

This test-bench is able to interpret Matlab and SimulLink control laws, oper-
ating on a fixed sampling frequency of fs = 200 Hz. This condition is restrictive
in terms of computational response time of proposed control laws, but mimics
conditions of digital control systems implemented on real vehicles. Obviously,
this condition implies that the available working time within which the proposed
control scheme has to compute the control law is fixed and has to be smaller
than 0.005s[1

Through simulation, the online computation an MPC-based controller, as

proposed in [16], was tested, with the use of Matlab, Yalmip toolbox tools [31],

INote that this sampling rate is realistic and adequate for actual top-cars, see [30].

13
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and Gurobi solver [32]. The mean computational time, considering these soft-
ware packages, is around 0.0295s. These results come from simulation on a
2.4GHz, 8 GB RAM Macintosh computer, although similar values were ob-
tained using different (top) PCs (running Windows and Uniz); different solvers
were also (unsuccessfully) tried. Modern automotive application make use of
even tighter sampling periods, such as 1 ms, which would never be achieved with
such application, as discussed in [24]. Obviously, faster approaches had to

be proposed and this is the goal of this article.

3.1. Sub-Optimal Fast Implementation

The detailed LPV-MPC approach will be solved with approximate sub-
optimal methods, in order to fit with the maximal computing time constraint
of 5ms, and be able to be implemented in real-time with a microcontroller
for semi-active suspension systems. This is necessary as the full constrained
optimization solution overlaps the maximal allowed time, as discussed in section
of this paper. The approximate method that is used herein, named Fast
Model Predictive Control (FMPC'), was firstly introduced in [33]. Here, this
method is slightly adapted to cope with the LPV model and its assumptions.

This method can compute an optimal control law, minimizing cost function
(23), at every sampled instant k, even for time-varying input disturbances and
space-state representation matrices - which is the case of this work, for Bgy(O)
and Dyy(0) are time-varying, as well as w(¢). This approach is also interesting
since it has been proved (in [33]) to work with a system with even 12 states,
3 control inputs and a horizon of 30 samples, computing the control actions in
around 5 ms - the problem studied herein is of similar size and time constraints.
The LPV model reconfiguration is described by the pseudo-code 1.

The FMPC method can greatly speed up the computational time of the con-
trol action. It consists in exploiting the special structure of the MPC quadratic
problem and solving the problem approximately with the use of an early ter-
minated primal barrier interior-point method combined with warm-start tech-

niques. The quality of the achieved control is very high, as demonstrated in [33].

14
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Algorithm 1 LPV-FMPC

Constants: Ts, A4, Bid, Bad, Ca, Dia, D2a;
for every T, do
Constants:  z[k]
2:  Compute w[k], with model A,,,,
Constants: O[]

Compute B2Ldp v

4. Compute DEPV

Compute U == FMPC(J, z, %, constraints, A4, Big, BLFY, Cy, D14, DEPV)

6:  Apply U(0)

end for

Notice that this approach only considers linear inequality constraints on control
inputs and states, which, for our control problem (using the LPV formulation)
is compatible.

To be synthetic, the FMPC method consists in solving the MPC' problem

approximately (sub-optimal), given the following steps:

1. Rearranging the quadratic program with the use of a Primal-Barrier term,
maintaining the convex optimization problem with linear equality con-
straints structure, where the barrier term is parametrized by factor k;

2. Using an Infeasible Start Newton Method and a fast computation of the
Newton step, considering the use of a residual vector and a search for
increments solved by linear equations;

3. Using a Schur complement and Cholesky factorizations and some other
simplifying techniques;

4. Finally, fixing a maximal iteration limit for the Newton algorithm and us-
ing warm start techniques, i.e. taking the previous plan of control actions

(U[k|k]), shifted in time as the starting point for the next Newton loop.

Remark 4. As summarized by Algorithm [3.1} the FMPC control law obtained at

each sampled instant k depends on the parameter-varying matrices BZFY and

15



295

300

305

310

DZLdP V' affine on the scheduling vector fixed at instant k, noted O (considered

constant throughout the prediction horizon N, as explained beforehand). For
further reading on the stability and optimality issues of this kind of approach,
and in particular on the procedure to determine bounds on the suboptimality

of this FMPC solution, refer to [34].

The proposed LPV-FMPC strategy for the control of semi-active suspension
system is efficiently synthesized using Matlab.

4. Practical Implementation

As stated before, Assumptions [3:1] and [3:2] the proposed LPV-FMPC con-
troller needs to be fed with z[k] and w[k] by some other scheme. To ensure
the feasibility and accuracy of the control objectives, this work considers an
extended observer approach to estimate system states and disturbances. Here-
after, the used experimental testbed is presented and, then, the observer design

methodology.

4.1. Experimental Test-bench

In this work, an experimental platform (see Figure |4) is considered as a tool
for validation in order to retrieve physical and computational constraints to the
control problem, as it mimics all operational aspects of a real car.

This testbed is the INOVE Soben-Car, a reduced-size vehicle where several
configurations and use cases can be tested (see full details in [30], [29] and on the
website [35]). Table [1| gives the numerical values of the modelling parameters

related to the dynamic model of the Soben-car.

16



Figure 4: INOVE Soben-Car Test-Bench, see website [35]

17



Table 1: Vehicle Model Parameters: INOVE Soben-car

Parameter Value Unit
M 9.08 kg
Mus gy 0.32 kg
Mus, 0.32 kg
Mus,, 0.485 kg
Moaus 0.485 kg
I 5 kg.m?
1 2.5 kg.m?
tr 0.23 m
tr 0.23 m
ly 0.2 m
Iy 0.37 m
kep, 18097.60 N/m
ki, 18097.60 N/m
kr,, 20819.40 N/m
kr,, 20819.40 N/m
ks 1396 N/m
kfr 1396 N/m
ki 1396 N/m
krr 1396 N/m
Crmaz gy 111.729  N.s/m
Cming, 31 N.s/m
Cmaz g, 111.729  N.s/m
Cming, 31 N.s/m
Cmaz,, 111.729  N.s/m
Crmin,. 31 N.s/m
Cmaz,y 111.729  N.s/m
Cming, 31 N.s/m

18
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On the INOVE testbed, the semi-active suspension system includes four
Electro-Rheological (ER) dampers, [36], which have a force range of approxi-
mately =20 N. These dampers are adjusted using a controlled voltage inside the
range of [0, 5]kV, generated by amplifier modules. The control input for these
modules are PWM signals at 25 kHz. A real controllable automotive suspension
system has the same structure. Below each wheel lies a linear servomotor that is
used to mimic the desired road profile z,,;. This servomotors have a bandwidth
of 0 — 20 Hz and operate with a maximal velocity of 1.5m/s.

The real nonlinear behaviour of the ER semi-active dampers are seen in Fig-
ure [B] where the Force vs. Deflection Velocity diagram is plotted, as presented
in [24]. These characteristics are related on the input constraints presented on
equation .

This test-bench is equipped with a wide variety of sensors that capture the
vehicle’s behaviour. The available measured outputs (y) are given in equation
(26). These measurements might also be present in a real vehicle, with the use

of accelerometers and relative displacement sensors.

vy = [ ésfl ész ’.Z':Srl ’ésrv— ce (26)
Zdeffl Zdeff,,« Zdefr Zdefr,

Zdeffl Zdeffr Zdefrl Zdefrr ]

4.2. Hy Observer

Considering the presented testbed, the observer design has to take two goals
into account: estimate the system’s states x[k] and disturbances w[k] and predict
the future disturbances w[k + n] and states z[k + n]. This is depicted in Figure
[l where the complete control problem is illustrated.

To satisfy these two design goals, this work must firstly consider a distur-

bance model. As exploited and discussed thoroughly in [37] and [38], and since

19
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the system model has no integrating modes (considering input/output dy-
namics), the control perfomances can already be improved with the use of a

simple constant model for disturbances. This is, considering:
wlk+n] = wlk] for n=1...N, (27)

where N, stands for the prediction horizon.

Remark 5. Unlike [23], this method does not add any complexity in terms
of sensors (no need for cameras or added structures to the plant). If some

prior knowledge of the road profile is available, a more accurate model can be
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computed, as seen in [I] and [29], but, for this study, it will be considered that

there is no information on the type of road profile.

From this point, joining equations , and , we can consider an

augmented state-space representation of the system, as follows:

Aobs Bops
z[k + 1] _ Aaq Bia (k] n IAMCH)) FK]
= [ ou ]|+ pwvennm

Remark 6. Herein F,(t) stands for the controlled part of the damper force. This
is computed, for each corner of the vehicle, as a function of the control input
uj(t) and the suspension deflection z4cf,, (t) at given computation instant ko,

as details the following equation:

F

Cij

(K] = wi[k] X 2gep, (29)

The complete vector is given by:

T

Fk] = | FuplM Fu, k] Fu,[¥ F, [k (30)

trr

Remark 7. Once again, ©( stands for the scheduling vector at the instant of

measurement. zJ, fir stands for the suspension deflection at the same instant.
Let consider that the measured outputs y[k] are corrupted by some measure-
ment noises v[k], giving:

yk] = [ Cy D | + DEE[ + Fwl (3D)

wlk]

Assumption 4.1. In this work, it is considered that there is one measurement

noise for every measured output (F, =lg and v € R8).
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Then, one wishes to design an observer to estimate the extended states with

the following structure:

@[k +1] (k] .
= Ay +  BasFelk] + L(ylk] — glk])
W[k +1] wl[k]
(32)
~ _ i‘[k‘] fixed
y[k:] = Cobs + D2d Fe Uf]
w[k]

where L € R'8*%8 ig the observer matrix gain to be defined.

To compute this gain, this work considers a classic Hs filtering observer, with
pole placement definition, as in [39]. This is an appropriate method to reduce
the effect of noise on the estimations. Remark that the Ho norm is related to
the impulse to energy gain.

The estimation error dynamics of the observer are presented below:
elk + 1] = (Aops — LCops)elk] — LF,v[k] (33)

Definition 4.2. The (discrete-time) Hy observer problem (detailed in [39]), is,

to find L in order to minimize 7 such that:
|Ter(2)]]2 <~ under elk=0]=0 (34)
under
limg o0 e[k] = 0 for v[k]=0 (35)

where T.,(z) stands for the (z-domain) transfer function that represents the

effects of v(z) upon the estimation error:

x(z Z(z
e(z) = ) — =) (36)
w(z) w(z)
In order to improve the convergence performances of the observer, this work
considers an additional constraint concerning the poles of the computed observer
which are to be placed inside a parameterized region R,(u, o) (circle centered

at p with radius p), smaller than the unit circle (being fast enough for the

semi-active suspension problem’s goals), as depicted in Figure
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Im(C)

Figure 7: H2 Observer: Pole Placement Region

Lemma 4.3. Consider the system’s model @ and with observer @
As seen in [{0], the problem solution is minimize v such that there exists two
positive definite symmetric matrices P and R and a block matriz Y so that the

following Linear Matrixz Inequalities hold:

P p(Awauly _yCo:  _y
o o

* P 0 > 0,

* * I

(37)

From this, the observer matriz gain L is computed as L = P~'Y.

Now, let present the numerical values of the Hs filtering observer design: for
the studied control application, the computation of the LMIs yields v = 0.6602,
which leads to a good observer, considering ¢ = 0.03 and ¢ = 0.0067. This
solution was obtained with the use of MATLAB, and the solver SeDuMi [41].

4.8. Experimental Results

Some experimental validation results are presented below, depicting states
() and road profile (disturbances, w) estimation by the designed H filtering
observer. These results represent a validation of the described Hsy observer,

for they use real measurement data (y) retrieved from the INOVE Soben-Car
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mechatronic testbed, considering a sequence of bumps road profile scenario z,

at each corner. The measurement noise is, naturally, present for each measured
output (y).

Remark 8. There is a trade-off between the convergence speed of this Hs
observer (given by the pole placement region R, (1, ¢)) and the noise-attenuation
goals.

To further reject high-frequency noises, the measured outputs y(t) are nu-
merically filtered. The continuous-time transfer function of the used filter is

given by:

1

Wels) = Goots 11 %

Ii2 (38)

The validation scenario is that of a vehicle running at 120 km /h in a straight
line on a dry road, when it encounters a sequence of 1 cm sinusoidal bumps.

Figure[§]shows an accurate estimation of the road profile at each corner of the
vehicle. A zoom of the road profile estimation for the front-left corner is showed
in details in Figure [0} the effect of the measurement noise is still present, but
the main trend is followed by the estimated augmented states, which is enough
from the FMPC controller’s point-of-view.

Figure[10] displays the (sufficiently) accurate estimation of some (important)
system states (pitch ¢(¢) and roll 6(¢)). Once again, the effect of v(t) is still
present (but diminished) and the main trend is followed by the estimated states.

Show by the previous Figures, the proposed Hs filtering extended observer
approach can serve well in order to provide the design controller information on

states and disturbances.

5. Results, Analysis and Discussion

Simulation results are presented and discussed, considering the problem of
controlling a Full Vehicle’s Semi-Active Suspension, within the Model Predictive

Control framework.
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Figure 8: Road Profile Estimation by Ha Observer

In order to improve to truthfulness of the simulations, bringing them closer
to realistic conditions, the following simulation results consider a full nonlinear
vehicle model, as described in [27,[42]. This model includes nonlinear suspension
forces and has been validated with a real car. In order to mimic measurement
noise, a high-frequency signal (v(t)) is added to each component of y(t).

Considering the use of the ER dampers, the semi-active damper forces, given
by Fy,;(t), will be treated with the use of a parametric model, adapted from

[43], once again divided into passive and controlled parts:

controlled

Fdij (t) = deCi]‘ (t)tanh(alz.defij (t) + A2Zdef; ; (t)) (39)

+ Cnomij édefij
e
passive
where d.(t) is a controlled PWM signal (duty-cycle), given inside the set [10, 35] %.
This model considers the effect of hysteresis as well as the main nonlinearities

from the FR dampers (characteristics given by Figure .

In terms of simulation, each d.,;(t) is computed as a function of zgey,, (t),

Zdey;; () and the computed control law u;;(t), with the use of a statical three-
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10 dimensional map. This map is, obviously, given by an inverse function of ,
that depends on zgey,; and Zgey,;, as represented below, in equation .The
parameters used in equation are given in Table

dcij (t) = f(uij (t)a Zdefij» 'édfifq‘,j) (40)

In Figure a block scheme details how the simulation of a realistic vehicle
model is implemented in this work. Notice how the MPC controller computes
s the control law wu[k], which is converted into PWM signals d.(t) to be, then,

applied to the ER damper model and the nonlinear vehicle plant.
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Figure 11: Complete Realistic Simulation Scheme

Table 2: Semi-Active ER Damper Parameters

Parameter | Value Unit
fe 6.5137 N
a1 27.7154 s/ m?
as 1.3297 1/m

5.1. Computational Time

Before presenting practical results, let mention that the computational time
constraints of the problem (as exposed on subsection are strictly sat-
isfied with the described Fast MPC solution. Through simulation, the online
computation of the FMPC approach was tested, with the aid of software pack-
ages Matlab and Yalmip toolbox, [31]. Considering that the computational
time of the Hs extended observer is embedded into the controller’s computa-
tional time, the average computational time was of 2.975 ms, which is, obviously,

much smaller than the fixed sampling period (5 ms).

5.2. Simulation Results

In the following subsections, two different simulation results will be pre-
sented, in order to demonstrate that the trade-off between handling and comfort
performances of the vehicle (given by cost functions and , respectively)
is efficiently achieved with the proposed Linear Parameter Varying Fast Model
Predictive Control (LPV-FMPC) design framework.
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For both simulations, the FMPC synthesis considered 17 as the maximal
number of Newton iteration steps and the parameter x, related to the primal-
barrier term, is taken as 0.01. The prediction horizon is fixed at IV, = 10
samples for all the controllers; several different prediction horizons were tested
by authors and these values were found to give a sufficiently good trade-off
between computational time and accuracy of computed control law.

In order to compare the effectiveness of this work’s propositions, the follow-

ing results compare three different behaviours:
e The proposed LPV-FMPC approach;
e The purely passive, uncontrolled damper (u;; = 0);
e A clipped analytical MPC (AMPC') scheme, as discussed similarly in [19].

This AMPC stands for the analytical, offline solution of quadratic problem
, without taking into account the dissipativity constraints and considering
the scheduling parameter O[k] as fixed through the horizon. The resulting
control law is clipped (saturation) inside the feasible region (determined by the
dampers’ dissipativity constraints) and then applied to the vehicle. The use of
an Anti- Windup gain (K 4y ) is considered in order to unload excessive integral
action. This control method is a good comparison to the LPV-FMPC method
for it can be, also, implemented in real-time, given that the control law at each
instant k is a simple clipped state-feedback law u[k] = clip{—K,&[k] — K, w[k]}
(anti-windup action is omitted). The matrices Kaw, K, and K,, are constant
and were computed offline. This approach is more robust than a simple state-

feedback action because it considers the feasible region of w.

Remark 9. Although the goal of this work is not to demonstrate that the pro-
posed LPV-FMPC method for Semi-Active suspensions presents better results
than when using purely passive suspensions, this is illustrated by the ”uncon-

trolled damper” results, in the following Figures.
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5.2.1. Simulation Scenario 1
480 For the first simulation, the vehicle is running at 120 km/h in a straight line
on a dry road, when a first 5c¢m bump occurs simultaneously on all wheels, at
time ¢t = 0.2s to excite the bounce motion and chassis vibration, a second 5cm
bump occurs, at time ¢ = 2, but only on the left wheels, to cause a roll motion
and, finally, a third bump occurs at time t = 7s, at both front wheels, causing
w5 a pitch motion. To use a sequence of bumps is a classical way to deal with the
analysis vertical suspension systems, given that one is able distinguish bound,
pitch and roll motion, as suggests [44].
This road profile and its estimation by the Hy observer are shown in Figure
Let remember that a high-frequency measurement noise was added to each

w0 measured output (y): its effect is, clearly, diminished.
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Figure 12: Road Profile and its Estimation

The scalar weighting coefficients used for the predictive controller are given
in Table[3l These are settled so that the minimization of the chassis’ acceleration
is prioritized, while not neglecting the minimization of the roll angle, which gives

a suitable trade-off, leading mainly to comfort performances of the vehicle.
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Table 3: MPC Synthesis Parameters

Parameter Value
&1 0.975
&2 0.025
&3 0.00001
[ 0.975 0 0 0 ]

0. 0 0.975 0 0

0 0 0.975 0

0 0 0 0.975

495 The chassis’ displacement due to the road profile is displayed in Figure
for both the described control approaches and the nominal damper case. The

minimization of z4(t) is not of great importance for this study, as explained

beforehand.

0.06

= = Nominal Damper
—AMPC
--=-LPV-FMPC

0.04

Chassis Position (m)

Time (s)

Figure 13: Chassis’ Displacement, z(t)

Of uttermost importance for this simulation scenario we can see in Figure[I4]
s the behaviour of the chassis’ acceleration (25(t), key for comfort performances

of a vehicle) due to the road profile, with a comparison between the AMPC,
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LPV-FMPC and the nominal damper case. As expected, in most situations
the response with a controlled damper is more efficient than with a passive
nominal suspension system. In Table 4i the RMS values (root mean square
over simulation time) for these three cases are giverﬂ It is thus clear that the
LPV-FMPC method is the most efficient (specially considering what happens
to the roll angle behaviour with the AMPC approach).

T T |
= = Nominal Damper
. i —— AMPC |
/ - --=-LPV-FMPC

Chassis Accelearation (rn/§)
o 5 &

©
S

o
&
-

245 25 255 26 265 27 275 28 |

&
3

Time (s)

Figure 14: Chassis’ Acceleration, Zs(t)

2The initial stabilization (due to initial conditions) has been neglected for calculus, so the

RMS values were computed from 0.2 s onwards.
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Table 4: RMS Values - Scenario 1

Comfort Performance - Z,(t) | Value Unit
Uncontrolled Damper 2.22066 m/sEus
AMPC 2.11640 m/siys
LPV-FMPC 2.10061 m/sius

Roll Performance - 6(t)

Uncontrolled Damper 0.2571 radrms
AMPC 0.2713 radrms
LPV-FMPC 0.2571 radrms

As expected, the behaviour of the vehicle’s roll angle is enhanced, due to the
sideways bump of the road profile around ¢ = 2. Figure[[5]shows the behaviour
of the roll angle (0(t)) considering the nominal passive damper (uncontrolled,
taking u;; = 0), and a controlled semi-active damper with the AMPC and
LPV-FMPC approaches. In terms of handling performances, the LPV-FMPC
controlled response is, at least, equivalent to the nominal damper, whereas the
AMPC controlled response is much worse, because closed-loop system might
present internal instabilities (marginal stability) due to the saturation effects
(clipping constraints) not taken into account during the design step. This is
confirmed by the RMS values for 0(t), given in in Table

Finally, Figure [16] clearly shows that the dissipativity constraints of all the
four dampers are respected by both Real-Time MPC-based approaches, al-
though, for the AMPC method, the controlled damping coefficient stays most of
the time "forced” at cpaz,; (saturation). Considering the LPV-FMPC method,
a wider range of values of ¢;;(+) is used. Figure emphasizes the respective
PWM signals to be applied to the vehicle, for both control approaches, consid-

ering the three dimensional look-up table method described.
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5.2.2. Simulation Scenario 2

This second simulation scenario is oriented towards roll performances. A
new road profile is used (see Figure , in order to further excite roll motion,
and measurement noise are considered, but the tuning parameters for the MPC

cost function are changed in order to prioritize the minimization of J,..;, as

shows Table Bl
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Figure 18: Simulation Scenario 2: Road Profile and its Estimation
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Table 5: MPC Synthesis Parameters: Second Scenario

Parameter Value
& 0.1
& 0.9
€3 0

Qu

For this second scenario, the chassis’ displacement behaviour is presented in
Figure[I9]and its acceleration in Figure[20] Clearly, once again, the LPV-FMPC
method still outperforms the uncontrolled damper and the AMPC method in

terms of comfort performances; as seen in Table [6]
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40,005 L I L ! L ! | | |
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Time (s)

Figure 19: Chassis’ Displacement - Scenario 2

Finally, as this scenario considers mostly handling performances, one should

carefully analyse the roll angle behaviour, with the AMPC and the LPV-FMPC

36



540

15— T T T T P ——
= = Nominal Damper
— AMPC
--=-LPV-FMPC H
L
E
c
S
£ -
©
8
o
8
<10 —
k-]
2
©
2
O .51 -
20 - —
25 | ,
10t
a0l | | | 1.5 2 25 | 3 35 4 |
0 2 4 6 8 10 12 14 16
Time (s)

Figure 20: Chassis’ Acceleration - Scenario 2

control methods and with an uncontrolled damper, given in Figure 21} Clearly,
the AMPC method presents some internal stability issues due to the saturation
(clipping) effects on the control law, which causes some unwanted oscillations,
bigger than in situations with an uncontrolled damper. The LPV-FMPC ap-
proach, on the other hand, minimizes well (t), compared to the uncontrolled
damper case. Once again, analyzing the RMS values for 6(¢), Table |§| empha-
sizes the efficiency of the LPV-FMPC method.
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Figure 21: Roll Angle 6 - Scenario 2

Table 6: RMS Values - Scenario 2

Comfort Performance - Z,(t) Value Unit
Uncontrolled Damper 1.8985 m/sEus
AMPC 1.9239 m/sEus
LPV-FMPC 1.8980 m/sErs
Roll Performance - 6(t)

Uncontrolled Damper 35.197.107%  radrms
AMPC 35.765.10"%  radrus
LPV-FMPC 35.184.107%  radrwus
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5.3. Final Discussion

After detailing the behaviour of the closed-loop system (as presented in
Figure, the efficiency of the proposed LPV model-based fast predictive control
approach can be discussed more deeply, given that it aims to be implemented
on a real vehicle system, in the near future.

Firstly, remark that the improvements from the new proposed scheme (LPV-
FMPC) are not huge because when compared with the nominal damper because
this is a reduced (small) vehicle. Small changes in Z4 do influence the passager’s
comfort, just as small changes in 6 influence the car’s roll motion. Using a large
vehicle model, the order of magnitude of Z; and 6 would greatly enlarge and the
improvements would be further noticeable.

Also, remark that the AMPC method is essentially used for comparison
goals for it is a feasible way to implement a real-time MPC-based method for
the semi-active suspension control of a full vehicle. Moreover, remark that
there is no guarantee that the closed-loop system would remain stable with this
AMPC approach, since the saturation (clipping) phase might affect the internal
stability. This is seen in terms of handling performances, as the AMPC presents
a behaviour ever worse than that of the uncontrolled damper. In Figure one
can also see that the PWM signal, with this control approach, continues to vary
after the road profile stabilizes, trying to stabilize internal modes.

The trade-off between handling and comfort performances is the main goal of
this work. As it was seen, for the first simulation scenario, the tuning parameters
& were set so that the comfort performances tended to be prioritized and that the
handling performance would be, at least, equivalent to the ones obtained with
a passive damper. For the second simulation scenario, the tuning parameters
were set in a ”"inverse” way, so that handling performance were prioritized.

The proposed LPV-FMPC control approach presents extremely efficient re-
sults, abiding to constraints, guaranteeing internal stability (as expected) and
being able to enhance comfort performances (%5 is well minimized, compared to
the uncontrolled damper behaviour) while maintaining good roll performances

(é is, at least, as small as when the damper is passive). The tuning parameters
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can be adjusted so that an adequate trade-off is achieved, as shown through the

two different simulation scenarios.

6. Conclusion and Future Works

This article presented the control of a semi-active suspension system, con-
sidering a full vertical vehicle model and using a fast model-based predictive
control framework. A fast Linear Parameter Varying MPC control scheme is
developed for a real-time application with a sampling frequency of 200 Hz and
tested through realistic simulation scenarios, considering nonlinearities and mea-
surement noise. An H, observer is designed to estimate the system states and
future road disturbances, considering the attenuation of measurement noise.
Thanks to the MPC-based strategy, a multi-objective problem is considered,
implementing an efficient trade-off between road handling and passenger com-
fort, while ensuring dissipativity constraints, with an adequate choice of tuning
parameters. The performances of the proposed LPV-FMPC have been assessed
using simulation and compared with an analytical, unconstrained MPC, [19].

For further works, an interesting theme is to study different kinds of im-
plementations of this MPC' proposition, considering the use of Mixed Integer

Quadratic Programming in Real-Time MPC controllers.
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