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This paper presents an LPV method for Fault Estimation, considering Electro-Rheological dampers of automotive suspension systems. Faults upon the dampers are modelled as Loss of Effectiveness multiplicative factors, which are estimated with the proposed approach. This framework is based upon an LPV extendedstate observer, whose gain is derived from the mixed H 2 /H ∞ norm minimization. The method is discussed through simulation and validation tests are realized in a real vehicle test-bench in order to demonstrate the truthfulness and capability of the framework to identify faults on Electro-Rheological dampers.

Introduction

Advanced technological processes present evermore an increase on complexity and become more vulnerable to faults due to instrumentation issue. For this, the highlights have been given to Fault Tolerant Control (FTC ) schemes, that offer increased process availability by avoiding breakdowns from simple faults, as described by [START_REF] Blanke | Fault-tolerant control systems -a holistic view[END_REF].

Active FTC requires an accurate online Fault Detection/Estimation (FD/FE ) strategy, so that the control scheme knows real-time information about the state of the controlled plant (faulty or healthy) to compute, if necessary, an adequate reconfiguration mechanism, these concepts can be found in (Zhang & In terms of the recent development considering FE methods, some important references must be remembered. Some nonlinear methodologies have been proposed through literature, as those by: De [START_REF] Chen | Robust fault estimation using an LPV reference model: ADDSAFE benchmark case study[END_REF], that propose a geometric approach to detect and isolate faults; [START_REF] Ducard | Efficient nonlinear actuator fault detection and isolation system for unmanned aerial vehicles[END_REF], that propose a multiple-model adaptive estimation method for unmanned aerial vehicles; [START_REF] Zhang | Fast adaptive fault estimation and accommodation for nonlinear time-varying delay systems[END_REF], that conceive a fast adaptive fault estimation (FAFE ) method for nonlinear plants; [START_REF] Gao | Actuator fault robust estimation and faulttolerant control for a class of nonlinear descriptor systems[END_REF], that suggest a robust actuator FE method for a class of descriptor systems.

Anyhow, a great deal of works suppose linear time-invariance (LTI ) system characteristics and resort to parity-space and residual analysis, [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF][START_REF] Henry | Design of fault diagnosis filters: A multiobjective approach[END_REF][START_REF] Isermann | Supervision, fault-detection and fault-diagnosis methodsan introduction[END_REF][START_REF] Gertler | Fault detection and isolation using parity relations[END_REF]. The classical LTI, model-based FE design usually faces problems when dealing with changes upon the observed plant's operational point. Whenever these changes occur, there should not appear (false) fault alarms or the necessity for further observer reconfiguration, which is not always true with these design methods. Still, one key issue that has to be remarked is that most of the mentioned works (both nonlinear and LTI ) make use of the redundant availability of sensors in order to conclude about faults. This problem can be overlapped, for instance, with the use of observer-based FE, as it has been deeply discussed in [START_REF] Zhang | Observer-based fault estimation and accomodation for dynamic systems[END_REF].

Linear Parameter Varying FE Methods

From the beginning of the 2000's, the Control Systems Community has worked to overcome these problems, proposing gain-scheduling frameworks to extend the scope of the linear FE methods to nonlinear systems. The main idea behind these work is to consider the extension of LTI systems to Linear Parameter Varying (LPV ) systems in order to model the monitored system. Such models can be used to accurately describe some complex nonlinear plants, see [START_REF] Mohammadpour | Control of linear parameter varying systems with applications[END_REF].

LPV systems can be understood as a range of systems with known, bounded parametrical variations. An LPV FE scheme, thus, is able to autonomously adjust and schedule observer or detection filter gains. This is a suitable trade-off between full scaled nonlinear designs and LTI methods based on a fixed operating condition, since LPV -based FE methods provide most of the conveniencies of LTI design and still guarantees good performance and stability conditions over a wider operating set.

A few of these works have presented strong results, that also include some experimental validation. These are:

FE for Automotive Dampers

This article focuses on the use of LPV -based FE methods, specifically, for the case of actuator faults, considering the application to automotive suspension plants.

In terms of theses vehicle systems, the use of Semi-Active suspensions is ever more present in modern cars. More specifically, the use of Electro-Rheological (ER) Dampers provides continuously variable damping forces, which can enhance driving performances. In terms of modelling and further details on ER dampers, please refer to [START_REF] Savaresi | Identification of semiphysical and black-box non-linear models: the case of MR-dampers for vehicles control[END_REF][START_REF] Guo | Robust h ∞ control of active vehicle suspension under non-stationary running[END_REF][START_REF] Do | An LPV control approach for semi-active suspension control with actuator constraints[END_REF][START_REF] Nguyen | A new approach for dynamic modeling of an electrorheological damper using a lumped parameter method[END_REF].

While some works have been dedicated to the control of such dampers, the study of faults, failures and monitoring of dampers is quite novel throughout literature, up to the authors' knowledge. Only some few works have dealt with the issue of faulty dampers:

• [START_REF] Moradi | Adaptive PID-sliding-mode fault-tolerant control approach for vehicle suspension systems subject to actuator faults[END_REF] proposed a sliding-mode, PID-based, fault tolerant control of vehicle suspensions, considering actuator (damper) faults;

• [START_REF] Fergani | A LPV/h ∞ fault tolerant control of vehicle roll dynamics under semi-active damper malfunction[END_REF] discussed the issue of re-designing control laws of semi-active suspensions, with LPV /H ∞ design, in the case of damper malfunctions;

• LPV accommodation for damper faults was also studied in [START_REF] Tudon-Martinez | Fault tolerant strategy for semi-active suspensions with LPV accommodation?[END_REF][START_REF] Sename | LPV methods for fault-tolerant vehicle dynamic control[END_REF][START_REF] Tudón-Martínez | Fault tolerant strategy for semi-active suspensions with LPV accommodation?[END_REF].

Contributions Presented

While FE for automotive ER dampers has been studied in [START_REF] Nguyen | A switched LPV observer for actuator fault estimation[END_REF], as far as the authors know, no work has presented experimental validation or applied results of these FE techniques to the vehicle suspension problem. Thus, this is the main motivation of this work. The main contributions, in respect to what has been discussed, are listed below: (i) Firstly, a novel approach to estimate faults on Electro-Rheological (ER) suspension dampers is developed, based on a Polytopic LPV Extended-Observer design;

(ii) Then, simulation and experimental validation results are shown, highlighting the accuracy and the success of the proposed technique, that can be implemented in practice with simple micro-controllers, without the need for additional sensors.

The paper is organized as follows: Section 2 introduces Semi-Active suspension systems with Electro-Rheological dampers, depicting dynamic models and introducing the used experimental platform. In section 3, the faulty ER damper problem is discussed and the used multiplicative fault representation is detailed. Section 4 presents the proposed FE scheme, based on an LPV extended-observer. Section 5 gives and discusses some results in terms of simulation and shows the experimental validation. Finally, conclusions are drawn in Section 6.

Electro-Rheological Semi-Active Suspension System

Presentation

In this paper, a Semi-Active vehicle suspension system with four Electro-Rheological dampers is studied. A good trade-off between vehicle's road handling performance and ride confort is strictly related to the vehicle's suspension system. Ever more present in the automotive industry, the Semi-Active suspension systems are to be highlighted, being efficient and at the same time, less energy-consuming and less expensive than purely active suspensions. The use of semi-active suspension systems provides a good balance between costs and performance requirements. This type of suspension is present on new state-ofthe-art top-cars and a good deal of academic and industrial research is focused on this topic, as seen in [START_REF] Hrovat | Survey of advanced suspension developments and related optimal control applications[END_REF][START_REF] Tseng | State of the art survey: active and semiactive suspension control[END_REF] and others. Further details on semi-active suspension systems are thoroughly discussed in [START_REF] Patten | Suppression of vehicle induced bridge vibration via hydraulic semi-active vibration dampers[END_REF][START_REF] Poussot-Vassal | Survey and performance evaluation on some automotive semi-active suspension control methods: A comparative study on a single-corner model[END_REF][START_REF] Fischer | Mechatronic semi-active and active vehicle suspensions[END_REF][START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF].

Experimental Platform

This works consideres a real mechatronic test-bench is considered as a tool for validation of the proposed methodology. This testbed is the INOVE Soben-Car, a 1 5 -scaled vehicle, which allows testing several configurations and use-cases can be tested (refer to full details in (Vivas-Lopez, Alcántara, [START_REF] Vivas-Lopez | INOVE: a testbench for the analysis and control of automotive vertical dynamics[END_REF]Fergani, Menhour, Sename, Dugard & Novel, 2014a) and on the website (Vivas-Lopez, Alcántara, [START_REF] Vivas-Lopez | INOVE: Integrated approach for observation and control of vehicle dynamics[END_REF]). This plant, seen in Figure 1, involves four Semi-Active suspension systems using Electro-Rheological dampers that have a force range of ± 50 N. Moreover, the user can mimic faulty situations and then, estime faults using an online FE scheme on collected data. 

Vehicle Dynamics: Modelling

A semi-active suspension comprises, basically, a spring and a controlled damper. Several modelling approaches can be considered to describe the vertical dynamics of each corner of a vehicle. In this work, a control-oriented Quarter of a Vehicle (QoV ) model will be used. This model can be used to analyse the behaviour of a single corner of an automotive vehicle independently and does not take into consideration the coupling between the four corners.

A QoV model usually analyses the dynamics of the chassis and the axle of a vehicle, as detailed in [START_REF] Hrovat | A comparison between jerk optimal and acceleration optimal vibration isolation[END_REF]. These dynamics are the vertical motion of the chassis (given by z s ) and the vertical motion of the axle (given by z us ). The suspension system is set between the axle (unsprung mass) and the chassis (sprung mass). The tire is, simply, represented by a linear spring, with k t coefficient. As detailed in [START_REF] Sammier | Skyhook and h ∞ control of semi-active suspensions: some practical aspects[END_REF], the damping coefficient of the tire is small and may be omitted for control purposes. In terms of notation, k s represents the suspensions spring coefficient, m s and m us the sprung and unsprung masses, respectively, z r the road profile, z s and z us the relative displacements of the sprung and unsprung masses, respectively. The suspension system's deflection is given by z def (t) = z s (t) -z us (t).

Applying and linearizing the equations of motion of the QoV model with a semi-active suspension around a steady-state operation point, one arrives at the following dynamical equations, as describes [START_REF] Fischer | Mechatronic semi-active and active vehicle suspensions[END_REF]:

m s zs (t) = -k s z def (t) + F ER (t)
(1)

m us zus (t) = k s z def (t) -F ER (t) -k t (z us (t) -z r (t))
where F ER (t) represents the force of an Electro-Rheological controlled damper. Now, this work uses a state-space representation of this semi-active suspension of a QoV model with a ER damper that is subject to faults, by using equation ( 1) and by considering system states (x(t)), disturbance input (w(t))

and measured outputs (y(t)), respectively, as:

x(t) = z s (t) żs (t) z us (t) żus (t) T (2) w(t) = z r (t) T (3) y(t) = z def (t) zs (t) T (4) 
Remark 1. This used measurements are, in a certain way, common on vehicular suspension systems. The suspension deflection (z def (t)) measurement can be acquired with the use of relative displacement sensors and the sprung mass acceleration (z s (t)) arises from the use of accelerometers.

Finally, it is taken into account that the control input u(t) is the damper force that acts upon the vehicle system, this is u(t) = F ER (t). Then, one is lead to:

ẋ(t) = Ax(t) + B 1 w(t) + B 2 u(t) y(t) = Cx(t) + D 1 = - → 0 w(t) + D 2 u(t) (5) 
where the matrices in ( 5) are all constant and defined in equations ( 6) to (9).

A =     0 1 0 0 -ks ms 0 k ms 0 0 0 0 1 ks mus 0 -(kt+ks) mus 0     (6) 
B 1 =     0 0 0 kt mus     B 2 =     0 -1 ms 0 1 mus     (7) C = 1 0 -1 0 -ks ms 0 ks ms 0 (8) D 2 = 0 1 ms (9)
The parameter identification of the masses (axle and chassis), spring coefficient, tire (spring) coefficient and nominal damping coefficient of the used experimental plateform has previously been done in (Vivas-Lopez, Alcántara, [START_REF] Vivas-Lopez | INOVE: a testbench for the analysis and control of automotive vertical dynamics[END_REF]. In Table 1, the numerical values for each of the parameters of this vehicle testbed are given, considering only a single-corner of this vehicle (front-right corner). Remark 2. The validation of the Quarter-of-Vehicle model is discussed in [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF] in terms of frequency and time-domain results. Therein, it can be seen that this model can accurately represent the vertical dynamics of a corner of a vehicle.

Assumption 1. In the sequel, it is assumed that some model of the road profile disturbance is known. This can be expressed mathematically by:

w(t) = known model w m (t) + unknown δw(t) (10) ẇm (t) = A mw w m (t) + noise ν(t) (11) 
Such kind of description allows to consider several types of road profiles. It is worth noting that, according to the considered type, the dimension of w m (t) may change.

The above Assumption is not so absurd. Modern cars present cameras and other features than surve to this purpose. This information on the type of road profile (A mw ) may also come from an external adaptive road profile estimator, as proposed in [START_REF] Tudón-Martínez | Adaptive road profile estimation in semiactive car suspensions[END_REF]. Another efficient option to compute the disturbance model is to consider a frequency-wise approach, as proposed by [START_REF] Unger | Application of LQ-based semi-active suspension control in a vehicle[END_REF]. What is referred here as A mw can be understood as the ISO road surface categories (ISO 8608:2016).

The Electro-Rheological Damper

This work is mainly concerned by the study of Electro-Rheological dampers. Considering the use of ER dampers, one may vary the amount of damping by exploiting the physical property of the fluid that flows inside the shockabsorber's chamber. ER fluids can be understood as a mixture of oil and micronsized particles which are sensitive to an electrical field.

In the experimental testbed, a PWM signal changes the electric field present inside the ER damper's chamber and, consequently, is able to control the fluid's resistance to flow and, thus, the force delivered by the damper, represented herein by F ER (t).

When there is no electric field applied to the damper chamber, the ER fluid is almost free to flow and the damper force is considered as purely passive. On the other hand, when an electric field is applied, the particles of the ER fluid act as dipoles and form chains. This implies that the flow of the fluid becomes similar to a visco-plastic and the damping coefficient increases. Synthetically, stronger the electric field present, greater the damping coefficient.

ER Damper Force: Modelling

In this work, the ER damper force is modelled considering a parametric analytical model adapted from [START_REF] Guo | Dynamic modeling of magnetorheological damper behaviors[END_REF], which has already expressed good results.

As shown below, in equations ( 12)-( 16), this force is divided into controlled and passive parts:

τ dF ER dt (t) + F ER (t) = F Static ER (t) (12) 
with

F Static ER (t) = passive F Spring ER (t) + F Purely Passive ER (t) (13) + F Controlled ER (t)sign{ żdef (t)} controlled F Spring ER (t) ≈ k nom z def (t) (14) F Purely Passive ER (t) = c nom żdef (t) (15) F Controlled ER (t) = β 1 d c (t) β2 (16) 
In these equations: τ is the dynamical time constant of the ER damper model; β 1 and β 2 are intrinsic parameters of the ER fluid, linked to the yield stress; k nom and c nom are constant parameters.

Analyzing equations ( 12)-( 16), one observes that the damper force has a firstorder dynamical behaviour and depends on three distinctive characteristics: the purely passive damper force, always present, due to the ER fluid flow, named F Purely Passive ER (t) and given by equation ( 15); the spring-like behaviour of the damper, named F Spring ER (t); and the controlled force, due to the presence of the electric field, given by F Controlled ER (t) in equation ( 16).

Parameter Identification

Considering the presented Electro-Rheological damper force modelling, some parameter identification tests were performed. Experiments were conducted on the testbed, using the measurements of the variation of the damper force to different road profiles with the Nonlinear Least Squares method. The estimated values of k nom , c nom , β 1 and β 2 are presented in Table 2. The dynamical time constant was fixed by empirical testing. Considering the scaled-vehicle experimental test-bench described in Section 2.2, an experiment was done with the road profile w(t) of sequential 10 mm bumps. The PWM signal, d c (t), for this validation, was fixed at 10 %.

Figure 3 shows the comparison between the actual damper force (measured in N by a force sensor present in this testbed) and the expected damper force computed with the ER damper model ( 12)-( 16). It presents an overall good estimation of the ER damper force, given the accurate knowledge of the PWM signal (d c (t)), the suspension deflection (z def (t)) and the deflection velocity ( żdef (t)). Note that żdef (t) is computed numerically, with the use of derivative filtering, as the average bandwidth of z def (t) is known. 

The Faulty ER Damper Situation

An Electro-Rheological damper can fail due to, basically, three kinds of faults: oil leakage, physical deformation or presence of air inside the ER fluid, the first being the most common.

Modelling

If the amount of damping fluid decreases, due to leakage, the flow inside the ER damper chamber consequently decreases, which implies a loss of the effectiveness of the damper's force. It is assumed that only a portion of oil leaks from the damper chamber, not all oil. A complete leak would lead to a total failure, which is not the main interest here. Partial faults are much harder to detect.

Firstly, it is assumed that the ER damper force F ER (t), the control input (actuation) to the vehicle's suspension system, is subject to a multiplicative fault.

This multiplicative factor is considered as a Loss of Effectiveness Fault. This multiplicative fault representation has been firstly presented in [START_REF] Sename | LPV methods for fault-tolerant vehicle dynamic control[END_REF] Generally speaking, the real actuation upon the suspension system, given by u f (t), depends proportionally to the damper force u(t) = F ER (t). Thus, whenever there is a fault in an ER damper, the suspension system's representation, given by equation ( 5), should be re-written as:

ẋ(t) = Ax(t) + B 1 w(t) + B 2 u f (t) y(t) = Cx(t) + D 1 w(t) + D 2 u f (t) (17) 
The faulty control input u f (t) should then be taken as:

u f (t) = α Fault! ×F ER (t) (18) 
Remark 3. Once again, F ER (t) represents the damper force in a faultless scenario. In this case, one has α = 1 and, in the worst scenario (where the damper completely fails and is rigid), one has

α = 0. So, α(t) ∈ [0 , 1]. As α(t) is a
time-function, it can be used to represent any kind of faulty situation.

As stated by [START_REF] Nguyen | A switched LPV observer for actuator fault estimation[END_REF], it is worth noting also that even if α(t) is assumed to be constant, the corresponding additive fault magnitude on the faulty damper is given by f (t) = (α -1)F ER (t), which is a time varying signal that depends on the value of the expected damper force F ER (t). Thanks to the multiplicative representation, the information on the actuator fault α(t) is considered as constant or slow-varying and, thus, it is assumed that α(t) = 0.

Experimental Simulation of the Faulty Damper

In order to illustrate the effect of an oil leakage, the INOVE Soben-Car experimental platform is used to mimic the effects of a faulty situation. For this, the PWM signal d c (t) is taken as a function of the desired mimicked faulty (or fault-free) PWM input (d c (t)):

d c (t) = F(d c (t), α desired (t)) (19) 
The function F(•) is taken as the inverse of the damper force model depicted in Section 2.5. As a result, the actual force provided by the ER damper is given by u f (t) = α desired (t) × F ER (t). Figure 4 shows how a fault can be mimicked in the experimental test-bench. Such an experimental simulation of a fault is coherent with the work presented by Hernández-Alcántara, Tudón-Martínez, Amézquita-Brooks, Vivas-López & Morales-Menéndez (2016). 

Proposed Fault Estimation Scheme

The main goal of this Section is to answer the question highlighted by this work: how can these (already modelled) damper faults be identified and diagnosed ?

This Section firstly presents a polytopic state-space representation of the studied automotive suspension, then an extended observer is designed and the proposed FE solution is thoroughly developed.

Polytopic LPV Representation

Firstly, as of Assumption 1, some model on the type of road disturbance is known. This has been described by equations ( 10)-(11).

Assumption 2. It is also assumed that the measured outputs y(t) are also subject to some additive noise ν(t). This is typical in any real instrumented; so, one has:

y(t) = Cx(t) + D 1 w(t) + D 2 u f (t) + D ν ν(t) (20) 
where D ν is a noise distribution matrix.

Assumption 3. Last but not least, it is also assumed (and reaffirmed) that the fault factor α(t) is slow-varying, with α(t) ≈ 0.

From this point, then, Equations ( 18), ( 10), ( 11) and ( 20) are coupled together with Equation ( 17) and the following extended state-space representation of the studied system is obtained:

ẋa(t)   ẋ(t) α(t) ẇm (t)   = A     A B 2 F ER (t) Bα B 1 0 0 0 0 0 A mw     a xa(t)   x(t) α(t) w m (t)   + Bw   B 1 0 0   δw(t) + Bν   0 0 I   ν(t) y(t) = C Dα D 2 F ER D 1 Ca x a (t) + D 1 δw(t) + D ν ν(t) (21) 
It is important to notice that the matrices A a and C a are affine on F ER (t), due (respectively) to the terms B α and D α .

Assuming that the desired damper force signal F ER (t) is a known variable, computed with the ER damper force model ( 12)-( 16), and bounded, due to physical saturation constraints of the platform's semi-active dampers, an LPV approach can be used to represent this system (21). This is:

F ER (t) ∈ U sat = {u min = -21 N ≤ F ER (t) ≤ 21 N = u max } (22)
Thus, this study considers F ER (t) as a scheduling parameter ρ, which satisfies:

0 < ρ min ≤ ρ ≤ ρ max (23) 
Then, taking ρ = F ER (t), the matrices B α and D α can be re-written, respectively, as B α = B 2 ρ and D α = D 2 ρ. From this point, matrices A a and C a become affine in ρ and the augmented system (21) is LPV.

A polytopic LPV representation of ( 21) is presented below, considering a polytope P defined by ρ at its vertices ρ = ρ min and ρ = ρ max .

2 k=1 β k (ρ) A k a B w B ν C k a D 1 D ν (24) with 2 k=1 β k (ρ) = 1 , β k (ρ) > 0 (25)
where each system

A k a B w B ν C k a D 1 D ν
is an individual LTI system frozen at the vertex k of the polytope P defined by the boundaries of U sat .

Extended Observer

As the faulty system is represented through an augmented framework with states x a (t), the estimation of α(t) can be achieved with an accurate tracking of these augmented states.

Synthetically: the problem is to identify the fault term α(t) only through the available measurements of y(t). This is done here by an observer-based approach. Figure 5 represents the complete fault detection and diagnosis problem proposed in this paper, considering the real test-bench. In this Figure, the "ER Damper Model " block stands for the model given by equations ( 12)-( 16). As seen in [START_REF] Rodrigues | Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems[END_REF][START_REF] Grenaille | A method for designing fault diagnosis filters for LPV polytopic systems[END_REF], a polytopic LPV observer to asymptotically track the states x a (t) can be defined as follows:

ẋa (t) = A a (ρ)x a (t) + L(ρ).[y(t) -C a (ρ) xa (t)] (26) α(t) = 0 size(x) I size(α) 0 size(w) E xa (t)
where xa (t) and α(t) stand, respectively, for the estimation of the augmented states and the loss of effectiveness fault term.

The dynamics of the estimation error (e(t) = x a (t) -xa (t)) and fault estimation error (e α (t) = α(t) -α(t)) are given by:

ė(t) = [A a (ρ) -L(ρ)C a (ρ)]e(t) (27) +(B w -L(ρ)D 1 )δw(t) +(B ν -L(ρ)D ν )ν(t) e α = Ee(t) (28) 
Given the polytopic representation used throughout this work, the system ( 27)-( 28) can be also expressed as:

2 k=1 β e k(ρ) (A k a -L k C k a ) (B w -L k D 1 ) (B ν -L k D ν ) E 0 0 (29) with 2 k=1 β k e (ρ) = 1 , β e k(ρ) > 0 ( 30 
)
where each system

(A k a -L k C k a ) (B w -L k D 1 ) (B ν -L k D ν ) E 0 0
is an individual LTI system, frozen at the vertex k of the polytope P defined by the boundaries of U sat .

Remark 4. Note that, as this work opts for a (decoupled) QoV model, four separate FE observers on the form ( 26) can be designed, individually, for each corner of the vehicle. This provides simplicity and a straightforward implementation that could be done on simple microcontrollers embedded to each ER damper, as it deals with sum of two simple linear models and there is no need for optimization procedure. A full vehicle model could have been considered, but this would only enlarge the computational burden without actually leading to better results, given that the effect of the damper faults can be entirely felt by the QoV model.

Specific Problem

As seen in equation ( 27), the stability of the estimation error depends on the gain matrix L(ρ). So, the following specific problem is traced, adapted from [START_REF] Karimi | Observer-based mixed h2/h control design for linear systems with time-varying delays: An lmi approach[END_REF][START_REF] Scherer | Multiobjective output-feedback control via lmi optimization[END_REF][START_REF] Khosrowjerdi | A mixed h2/h approach to simultaneous fault detection and control[END_REF].

Problem 1. The mixed H 2 /H ∞ LPV observer problem is defined as follows: Find a gain matrix L(ρ), affine in the scheduling parameter ρ and defined within the polytope P so that the fault estimation error dynamics, given by system ( 27)-( 28), are exponentially stable when ν(t) and δw(t) are null, and, such that the two following objective functions are minimized:

J H2 = || eα ν || 2 ≤ γ H2 under e(t)| t=0 = 0 and δw(t) ≡ 0 (31) J H∞ = || eα δw || ∞ ≤ γ H∞ under e(t)| t=0 = 0 and ν(t) ≡ 0 (32)
Notice that this H 2 /H ∞ criterion is a suitable choice in order to compute the matrix gain L(ρ) of the proposed extended observer and to guarantee the stability of ( 27), as it represents a noise filtering, disturbance attenuation framework and, specifically, for the following reasons:

• The H 2 norm of a system, from a stochastic point-of-view, is equal to the square root of the asymptotic variance of the output when the input is a white noise, which means that the measurement noise effect will be diminished when estimating the loss of effectiveness fault term α(t) (impulse-to-energy gain minimization), taking the measurement noise as the input to the fault estimation error system ( 27)-( 28);

• The H ∞ norm of a system is understood as the induced energy-to-energy gain, being the worst case attenuation level of a system to a given input, which means that the influence of the additive disturbance uncertainty δw(t) on the estimation of α will be minimized, taking δw(t) as the input to the fault estimation error system ( 27)-( 28). Mathematically, the H ∞ norm definition of the error system (taking δw(t) as input) is given below:

||T eαδw || ∞ = sup δw ∈ H2 ||e α || 2 ||δw|| 2 (33) 4.4 

. Problem Solution

In this article, the solution to this polytopic LPV observer with a H 2 /H ∞ criterion is given by the following lemma. This solution provides the FE scheme to be applied to ER dampers.

Lemma 1. Considering the system (21) and observer (26). Problem 1 is solved if, given β, there exist positive definite matrices P and N and a rectangular matrix Q(ρ), affine in ρ, such that the following LMIs are satisfied for all ρ ∈ P. The maximal variance of the estimation error, due to the presence of measurement noise ν(t) is given by Trace(N) = γ H2 and the maximal amplification of the estimation error due to the presence of the uncertain disturbance δw(t) is given by γ H∞ . The scalar β is an exponential stability decay-rate condition imposed on the eigenvalues of (A a (ρ) -L(ρ)C a (ρ)): these must be greater, in module, than β, inside region R p of complex plane C.

Trace(N) ≤ γ H2 (34) M 1 11 M 1 12 M 1 22 < 0 (35) M 2 < 0 (36) M 3 11 M 3 12 M 3 22 > 0 (37)   M 4 11 M 4 12 M 4 13 -Iγ H∞ 0 -Iγ H∞   < 0 (38) M 1 11 = A T a (ρ)P + PA a (ρ) (39) -C T a (ρ)Q T (ρ) -Q(ρ)C a (ρ) M 1 12 = -Q(ρ) (40) M 1 22 = -(E T E) (41) 
M 2 = 2βP + A T a (ρ)P + PA a (ρ) (42) -C T a (ρ)Q T (ρ) -Q(ρ)C a (ρ) M 3 11 = N (43) M 3 12 = B T ν P T (ρ) -D T ν Q T (ρ) (44) 
M 3 22 = P (45)

M 4 11 = A T a (ρ)P T (ρ) + PA a (ρ) (46) -C T a (ρ)Q T (ρ) -Q(ρ)C a (ρ) M 4 12 = PB w -Q(ρ)D 1 (47) M 4 13 = diag{E} (48) 
Therefore, the observer gain matrix L(ρ) is taken as

L(ρ) = P -1 Q(ρ).
Proof. Proof is straightforward and immediate from what is presented in Khosrowjerdi, Nikoukhah & Safari-Shad ( 2004)

Remark 5. The following remarks are relevant for the proposed Lemma:

1. This is a non-convex problem. In order to solve it, γ H∞ is fixed, whereas γ H2 is minimized. This is detailed in [START_REF] Poussot-Vassal | Robust LPV multivariable Automotive Global Chassis Control[END_REF]. If a tradeoff between H 2 and H ∞ performances is sought, an adequate approach would be to solve the LMI s minimizing the convex sum S(γ H2 , γ H∞ ) = θγ H2 + (1 -θ)γ H∞ with θ ∈ [0 , 1], as detailed in Yamamoto, Koenig, [START_REF] Yamamoto | Driver torque estimation in electric power steering system using an h ∞ /h 2 proportional integral observer[END_REF]. This compromise, well known in economy, game theory and engineering, is also called the Pareto optimality. For more details on this matter, the reader is invited to refer to [START_REF] Pardalos | Pareto optimality, game theory and equilibria[END_REF];

2. This approach can be easily modified to set the H 2 and H ∞ conditions to all estimated states, taking E = I;

3. A weighting function can be appropriately introduced to specify the frequency range in which sensor noises should be attenuated. Besides, (obviously) sensor noise is considered as a high frequency signal.

The interest of this polytopic LPV approach is that the LMI s (34)-( 37) are computed offline, considering each vertex of the polytope P with the same mixed H 2 /H ∞ criterion. As there is only one scheduling parameter ρ = F ER (t), this work is concerned only in solving the given LMI problem at ρ = u max , finding L max , and at ρ = u min , finding L min .

Finally, the gain matrix L(ρ) given by equation ( 49), is affine in the scheduling parameter ρ and guarantees the exponential stability of the estimation error dynamics of the proposed LPV observer. This means that, in finite time, the fault terms will be accurately determined and α → α.

L(ρ) = ρ max -ρ ρ max -ρ min .L min + (49) ρ -ρ min ρ max -ρ min L max

Frequency-Domain Analysis

Given the solution of the LMI problem ( 34)-( 38) in Lemma 1, let some frequency-domain analysis of the estimation error dynamics, e(t), be presented.

In Table 3, the achieved values for γ H2 and γ H∞ are presented, considering the use of the following softwares: MATLAB (Mathworks, 2017), Yalmip [START_REF] Lofberg | yalmip: A toolbox for modeling and optimization in matlab[END_REF] and SDP 3 [START_REF] Toh | Sdpt3a matlab software package for semidefinite programming, version 1.3[END_REF]. 

Disturbance Effect

In Figure 6, a frequency Bode plot for e α (t) is given, taking δw(t) as an input, frozen at different regions of the polytope P, considering:

ρ = {ρ min , -10 , 0 , 10 , ρ max } (50) 
The solution presents good results in terms of disturbance attenuation, as the upper H ∞ bound is quite sufficient (around -12 dB) considering that the order of magnitude of δw(t) is of some millimeters.

Noise Effect

In Figure 7, a frequency Bode plot for e α (t) is seen, taking ν(t) as an input, frozen at different regions of the polytope given by Equation ( 50). The solution presents good results in terms of noise rejection, taking in consideration that ν(t) represents instrumentation noise, which is intrinsically of high frequencies, wherein the upper bound on the singular values rapidly decreases (low-pass filter behaviour). 

Results: Simulation and Experimental Validation

In this Section, validation results are presented, considering the problem of estimating and identifying faults on a semi-active ER dampers.

Simulation Results

In order to provide truthful, realistic tests, the following simulation results consider a full nonlinear vehicle model, as described in [START_REF] Poussot-Vassal | Attitude and handling improvements through gain-scheduled suspensions and brakes control[END_REF][START_REF] Fergani | Integrated vehicle control through the coordination of longitudinal/lateral and vertical dynamics controllers: Flatness and LPV/h ∞ -based design[END_REF]. This model includes nonlinear suspension forces and has been validated with a real car. In order to mimic measurement noise, a high-frequency signal (ν(t)) is added to each component of y(t).

A sinusoidal road profile disturbance w(t), that could represent a series of bumps for a vehicle running on a dry road at constant speed, is used [START_REF] Doumiati | Road profile estimation using an adaptive youla-kučera parametric observer: Comparison to real profilers[END_REF]. Also the PWM control signal d c (t), responsible for changing the damping force, is taken as a series of steps to imitate some control law issued to guarantee vehicle performances. The suspension ER damper is initially fault-less (α(0) = 1). This described scenario is summarized in Figure 8, where d c (t) and w(t) are given. & Dugard (2015), some information about the dynamics of each road profile disturbance is assumed to be provided by a road identification scheme, prior to the proposed Fault Estimation structure. This information (w m (t)) contains some part of w(t), but some unknown disturbance (δw(t)) is still present. For the following simulation results, the known disturbance model A mw (refer to Equation ( 11)) is different from the real disturbance's dynamic behaviour, in average of 15 % (plus some additive noise). This induces a modelling error that should be overlapped by the robustness of the mixed H 2 /H ∞ extended observer approach.

Note that on a real test-bench, the variation of the loss of effectiveness faults α are not instantaneous, due to internal dynamics of the damper and other instrumentation contraints. These faults are better represented by slower ramps or first-order responses.

The following simulation case represents a trustworthy representation of an oil leakage fault, considering that a fault occurs at t = 25 s, when α(t) slowly starts to decrease to 0.5, finally stabilizing at t = 55 s. This is more realistic and closer to what will be presented as experimental results.

In Figure 9, one sees the expected (fault-less) damper force F ER (t) compared to the faulty u f (t) = α(t)F ER (t), according to the measured outputs y(t), see Equation ( 4). These measured outputs y(t) (z def (t) and zs (t)) and the (numerically computed) deflection velocity żdef (t) are given in Figure 10. Finally, the estimation of α(t) by the proposed scheme is presented in Figure 11, compared to the actual value of the fault term α(t). Once again, one can observe a very accurate result in terms of simulation. Remark 6. In terms of comparisons, [START_REF] Nguyen | Comparison of observer approaches for actuator fault estimation in semi-active suspension systems[END_REF] has already discussed that LPV observer-based FE schemes for suspension dampers present better results than the FAFE method or even parametric adaptive observers. Still, readers are invited to refer to Appendix Appendix A, wherein a simulation example is given comparing the proposed approach with a wellknown sliding-mode technique.

Experimental Validation

Now, in order to thoroughly validate the approach for damper fault identification, some experimental tests on the vehicle testbed are presented. This is of most importance as it is a proof of the efficiency, reliability and feasibility of the proposed fault detection method.

The scenario considers a full vehicle running at 120 km/h in a straight line on a dry road, with a sequence of sinusoidal bumps (20 mm peak to peak).

Figure 12 shows this road profile on the front-left corner of the vehicle. The information on this disturbance model A mw is somewhat accurate, although there exist some modelling errors (δw) and noise because the real road profile is slightly different from the desired one due to the inner motor control system. For the explained validation goals, a fault is mimicked at t = 45 s as a single decreasing step from α = 1 to α = 0.5. This could represent an oil leakage or even the effect of extremely high temperatures upon the damper. Figure 13 shows the expected (faultless) damper force compared with the real (faulty) damper fault. The expected damper force u(t) = F ER (t) is computed with the use of equations ( 12)-( 16) taking a constant PWM signal at 30 %, whereas the actual damper force comes from a force sensor present on the used vehicle testbench (see Figure 2). As it can be seen, the effect of the mimicked fault is not instantaneous, and there is a decreasing dynamic before α stabilizes.

The measured system outputs for this validation scenario are seen in Figure 14. Real measurements are z def (t) and zs (t), whereas żdef (t) is computed numerically. Obviously, these measurements are corrupted by some noises -always present due to (physical) instrumentation.

Finally and most importantly, in Figure 15, the detection of the fault factor α is presented and compared with the (virtually set) real value. This proves the worthiness of the LPV FE approach proposed in this paper and shows how it can be efficiently used for the identification of faults on real ER dampers of automotive suspension systems. The accuracy on experimental validation is, obviously, not as strong as on simulation, due to physical instrumentation constraints, nonlinearities and noise. Nonetheless, the approach is strong to detect faults on dampers.

Overall Analysis

As showed by simulation results and experimental validation, the proposed fault detection approach is able to efficiently estimate faults on ER dampers of vehicular semi-active suspension systems. The proposed approach is accurate It has to be remarked, still, that the industrial state-of-practice of fault estimation/detection applied to ER dampers is null, inexistent. Thus, as the method proposed herein is simple and easy to implement, it could well be used in the near future by industrial damper manufacturers.

Conclusion

This paper presented the issue of fault estimation for Electro-Rheological dampers of semi-active Automotive Suspension systems, considering a polytopic LPV -based strategy. As evidenced different results, including experimental validation, the proposed scheme is able to collect efficient, accurate and timely information on the possible damper faults, by solely considering the use of a Quarter of Vehicle model, a parametric dynamic damper model and a mixed H 2 /H ∞ LPV observer synthesis, without the need for any additional sensors or physical components.

Such FE scheme could be used for fault tolerant control purposes of suspensions systems in the presence of damper faults, in order to preserve the system stability or some performance specifications, despite the presence of faults. For future works, the authors plan on analyzing and surveying other possible LPV -based fault detection techniques that can be implemented without new components and can be verified experimentally. Hamayun, [START_REF] Hamayun | Design and analysis of an integral sliding mode fault tolerant control scheme[END_REF], the proposed Polytopic LPV scheme yields more efficient and accurate results. Even though the sliding-mode approach is fast, it does not conclude on how much loss does the damper present. An accurate fault estimation scheme can be used for Fault Tolerance goals, to reconfigure the control law in such way that driving performances of the vehicle 

  Figure 2 show the implementation scheme of this system, where a MATLAB interpreted controller defines a duty-cycle of a PWM signal d c (t) (given in percentage). This PWM signal changes the electric field present inside the ER damper's chamber and, consequently, is able to control the fluid's resistance to flow. The PWM signals (d c (t)) at 25 kHz vary a controlled voltage inside the range of [0 , 5] kV, generated by amplifier modules. The controller can also set reference to road profile generator motors, that mimic various road situations.

Figure 1 :

 1 Figure 1: INOVE Soben-Car Test-Bench

Figure 3 :
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  [START_REF] Tudón-Martínez | Fault tolerant strategy for semi-active suspensions with LPV accommodation?[END_REF] and later used in (Hernández-Alcántara, Tudón-Martínez, Amézquita-Brooks, Vivas-López & Morales-Menéndez, 2016), which introduced a solid framework for the modelling of faults.
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 8 Figure 8: Simulation Scenario: PWM signal and Road Profile Disturbance As explained by Tudón-Martínez, Fergani, Sename, Martinez, Morales-Menendez & Dugard (2015), some information about the dynamics of each road profile dis-
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  Figure A.18: Simulation of Fault Estimation Comparison to Sliding-Mode Approach

  

Table 1 :

 1 Vehicle Model Parameters: INOVE Soben-car

	Parameter	Value	Unit
	ms	2.27	kg
	mus	0.25	kg
	kt	12269.81 N/m
	ks	1396.80	N/m

Table 2 :

 2 Other ER Damper Parameters

	Parameter	Value	Unit
	knom	47.2458	N/m
	cnom	59.97	N.s/m 2
	τ	20	ms
	β1	35.8	-
	β2	1	-
	2.7. Validation Results		
	Some validation results are presented, considering this detailed Electro-
	Rheological damper, that demonstrate the accuracy of the model.

Table 3 :

 3 LMI Solutions

	γH 2	0.0659
	γH ∞ 0.2532
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Appendix A. Simulation Comparison

In this Section, the proposed polytopic LPV FE scheme is compared to a Sliding-Mode fault reconstruction approach, as proposed by [START_REF] Alwi | Fault reconstruction using a LPV sliding mode observer for a class of LPV systems[END_REF]. This is once again done with a realistic, nonlinear vehicle model.

For this, a simple single-step scenario is taken, wherein the loss of effectiveness fault α(t) decreases at t = 25 s to 0.85. Once again, the same road profile w(t) and PWM signal d c (t) seen in Figure 8 are used. Compared with the very common sliding-mode fault reconstruction approach, discussed in [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF][START_REF] Xiao | Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[END_REF] are maintained. With the sliding-mode approach, this would not be possible, but with the proposed approach, direct.