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Abstract

In this paper we consider networks which are governed by external controls.
The internal nodes of the network are composed of linear dynamic systems,
in such a way that the network graph is a static structure, while the life of
the system is located in the nodes. Moreover, we assume that each node is a
linear structured system with a single ingoing state vertex and a single outgoing
state vertex. Recall that structured systems are dynamic systems where the
entries of the corresponding state space matrices are independent parameters.
To such structured systems, one can associate a directed graph that allows to
study a lot of generic properties of the system. Combining the network graph
with the node graphs provides with a global graph which will allow the study
of the structural controllability of the global system. We give necessary and
sufficient controllability conditions for the global system, with respect to the
controllability of the nodes and to the properties of the network graph. The
conditions are expressed in terms of an auxiliary graph which has the same size
as the network graph, but takes into account important features of the node
graphs. These conditions are particularly simple in the case where all the nodes
have the same structure, and therefore the same graph. Besides its interest in
terms of insight in the controllability of networks with dynamical nodes, this
approach is also much more efficient computationally than a direct checking of
the controllability of the global graph.

Keywords: Network controllability, structured system theory, graph theory.

1. Introduction

1.1. Context

Networks and communications are present at almost any instant of our life.
They may correspond to real devices as in power networks or railway networks,
but also to virtual links as in social networks. They show up both in large scale
communications as in satellite networks and in the microscopic world as in blood
cells or in brain connections. All fields of science (physics, biology, computer
science, engineering) are impacted by these communication issues. As a result,
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in the last decades, emerged a scientific network community, who developed
which is now called Network Science [1]. In the last ten years, the network
community showed a real, and increasing, interest in the controllability issues
[2, 3]. Some very famous papers contributed to spread out the concepts and
tools of control theory in a very wide scientific audience [4, 5]. These papers,
and those who followed, make use of the graph interpretation of controllability
in so-called structured systems, and apply it to networks. This application was
questioned in [6], where it was argued that the graph of a network is mainly
a static interconnection structure while the dynamics are hidden in the nodes.
Notice that some recent works consider also the possibility of having dynamic
edges [7, 8].
On another hand, in control theory, there has been a constant interest in the
control of so-called composite systems. The study of such composite systems is
an old field of research in control theory [9, 10, 11], which is is still very active
[12, 13, 14, 15] and related to the notion of network of network [16]. Although
networks and composite systems may lead to similar models, they correspond
to different philosophies. In network theory, the main object of study is the
network scheme itself, which means that the living part of the network which is
contained in the nodes, should be as simple as possible.

1.2. Contributions

With the latter remark in mind, the present paper is an attempt to com-
plete the ideas of [6] by considering that each node of the network is made
of linear dynamic system with single ingoing state and single outgoing state.
Since the corresponding dynamic models have generally loosely defined entries,
we assume that we deal with parameterized systems, called structured systems.
A structured system is a usual state space linear representation, where all the
entries of the corresponding matrices are zeros or free parameters. To such
a structured system, one can associate a graph whose vertices correspond to
the variables, and whose edges represent their interactions, i.e. correspond to
matrices’ non-zero entries. The graph allows to get simple conditions for some
generic properties of the system, generic properties being properties that are
true for almost any value of the parameters [17, 18, 19]. Recall that the struc-
tural controllability of a system can be checked through two sub-properties of
the associated graph [17]:

1. a control connection condition, which means that each state vertex can be
reached from an input,

2. a so-called no-dilation condition, which corresponds to a full generic rank
for the composite matrix [A,B].

In this paper, we will indeed work with three graphs.

• The directed graph of the network, with control nodes describing external
signals acting on the network, and internal nodes which are connected
according to the interconnection scheme. We call it the network graph.
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• A directed graph of each node corresponding to its structured model, with
a unique ingoing vertex and a unique outgoing vertex. We call it the node
graph.

• The graph obtained from the network graph by expanding each node ac-
cording to the corresponding node graph. We call it the global graph.

Our aim will be to study the controllability of the global system/graph with
respect to the properties of the network graph and of the node graphs.
The main contributions of the paper are the following:

• The definition of a simple model of a network with dynamical nodes, for
which each node is defined by a graph with a single in-vertex (a unique
state vertex receiving the signals coming from the control and from the
other nodes) and a single out-vertex (which value is the only information
that can be transmitted from this node to the other nodes).

• The definition of node graphs having specific properties, those which can
be covered by a disjoint set of cycles (called CY C), and those which can
be covered by a disjoint in-out path and a set of cycles (called IOP ).

• The definition of an auxiliary graph which is simply constructed from the
network graph using the properties CY C and/or IOP of the correspond-
ing node graphs.

• Very simple and intuitive necessary and sufficient conditions for struc-
tural controllability of the global graph in terms of the auxiliary graph.
This characterization leads to a noticeable gain in terms of complexity
for the controllability analysis, compared with a direct application of the
structural controllability conditions on the global graph.

• The possibility to extend the famous Minimal Controllability Problem to
this framework.

In this paper there is a deliberate choice to start with a very simple (but not
trivial) model for the node dynamics in order to get controllability conditions
which are simple, easy to interpret and to check algorithmically.

1.3. Comparison with related works

The literature on networks with dynamical nodes is mainly divided in two
parts, depending on the nature of the model chosen for the nodes. This model is
either a classical one, i.e. with fixed state space matrices, or a structured model.
The advantages and limitations of these two models have been discussed in a lot
of papers, see for example [19]. These two points of view should not be opposed,
but rather be seen as complementary. Our choice of a structured system model
is based on the desire to have a complete graph framework and to get an insight
in the system not related to particular values of the entries of the state space
model matrices.
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As mentioned in Subsection 1.1, there is a plentiful of literature dealing with
the controllability of interconnected linear systems defined by usual state space
interconnected models. They were first called composite systems [9, 10] and are
now more often called networks [20, 13, 14] or systems of systems [16]. The con-
trollability of these systems is closely related with the eigenstructure of the com-
ponents, therefore their analysis is mainly based on the Popov-Belevich-Hautus
(PBH) controllability criterion. Most of these works consider very general inter-
connection schemes, consequently, they give only either necessary or sufficient
conditions, or very hard to check controllability conditions. As an illustration,
in a recent paper [21], the authors use node systems with one-dimensional com-
munications, as in the present paper. It is interesting to note that, although
they assume that all nodes are identical, the obtained necessary and sufficient
controllability conditions remain complex and difficult to interpret.
When the components of the network are supposed to be structured systems,
and then associated with a graph, the analysis was generally based on a char-
acterization of controllability by particular graph objects called cacti [17]. The
covering of the graph by cacti is another way to test the structural controllabil-
ity. The problem is then formulated as: given components that are covered by
cacti, how must be the connections in the network in order to cover the global
graph by cacti [11, 12] or generalized cacti [22]? The difficulty comes from the
fact that there is no systematic way to characterize all the cacti covering a given
graph. As a consequence, these papers only provide with sufficient conditions
for structural controllability. In a recent paper [15], the authors refine these
sufficient conditions, in particular for so-called serial systems. Moreover, they
put a particular emphasis on possible distributed computations.
The outline of this paper is as follows. In Section 2, we state the controllability
problem for networks with dynamic nodes. In Section 3, structured systems
are recalled, together with some known results on structural controllability. In
Section 4, some preliminary simple results and observations are presented. In
Section 5, we study the case where all the nodes have the same structure, and
therefore the same graph. The general case is treated in Section 6 where we
provide with a necessary and sufficient controllability condition. In this Section,
we also examine how the Minimal Controllability Problems can be dealt with
in our context. In Section 7 we provide with a complexity analysis which shows
the efficiency of our method. In Section 8, a brief conclusion ends the paper.

2. Problem statement

2.1. The network and his graph

We consider a network N , composed of N internal nodes communicating
through directed links. A set of m control nodes allows to inject some external
scalar signals into the network to control his behaviour. The whole network
can be represented by an directed graph G(N ) = (VN , EN ), called the network
graph. The vertex set is VN = {z1, . . . , zN} ∪ {u1, . . . , um}, where the zi’s
represent the internal nodes and the ui’s represent the control nodes. The edge
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set represents the directed connections between the nodes. The network graph
indeed corresponds to the static structure of the network. In the following, for
simplicity, but with an abuse of notation, we will call ui(t) the value of the
control signal delivered by node ui. The context will avoid ambiguity. The
network graph will be given edge weights to quantify the interactions between
the nodes of the network in a way which will be made precise later.

2.2. The node dynamic system

The node zi is associated with a dynamic system Σi, which is a SISO linear
state space model with ni states, a scalar control γi and scalar output yi. The
control acts on a given state xik called in-state. A particular state xij , called
out-state, transmits his value to the other nodes according to the network graph.
The system is represented as

Σi :
ẋi(t) = Aixi(t) +Biγi(t)

yi(t) = Cixi(t).
(1)

Ai is a ni × ni matrix. Bi is a column vector with all entries at zero except
for the k-th entry which is 1, and corresponds with the in-state xik. Ci is a
row vector with all entries at zero except for the j-th entry which is 1, and
corresponds with the out-state xij .

2.3. The connection scheme

Composing the network structure with the state space model in each node
results in a global system Σ of state dimension n =

∑N
i=1 ni. The control signal

for the system Σi is the weighted combination of network control signals and
output node signals in accordance with the network graph.

γi(t) =
∑N
i=1 wijyj(t) +

∑m
l=1 w

′
ilul(t), (2)

where wij is the weight of the link from node zj to node zi, w
′
il is the weight of

the link from control node ul to node zi, these weights are zero when there is no
edge in the network graph between the corresponding nodes. Recall that, from
equation (1), yj(t) is indeed the value of the out-state of node zj . In summary,
the states of the global system Σ are the states of the different node systems,
and the controls of the global system are the controls of the network.
The aim of this paper is the study of the controllability of the global system Σ,
with respect to the controllability of the node systems Σi and to the structure
of the network appearing in the network graph G(N ). We will assume that the
node systems are structured, in the sense that only their zero/non-zero structure
is known. The context of our study will then be the structured system framework
that we recall now.
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3. Structured systems

3.1. Linear structured systems

We consider a linear system with parameterized entries and denoted by ΣΛ.

ΣΛ : ẋ(t) = AΛx(t) +BΛu(t), (3)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the control vector, and AΛ and
BΛ are matrices of appropriate dimensions. The system is called a linear struc-
tured system if the entries of the composite matrix JΛ = [AΛ, BΛ] are either fixed
zeros or independent parameters [18, 19]. The vector Λ = (λ1, λ2, . . . , λk)> ∈
Rk, with > indicating transposition, denotes the vector of independent param-
eters of the composite matrix JΛ.

For linear structured systems one can study generic properties. i.e., proper-
ties which are true for almost all values of the parameters collected in Λ. More
precisely a property is said to be generic (or structural) if it is true for all values
of the parameter vector Λ, outside a proper algebraic variety in the parameter
space Rk. Recall that a proper algebraic variety is the zero set of some non-
trivial polynomial with real coefficients in the k parameters of the system. A
proper algebraic variety has Lebesgue measure zero.
For a structured matrix MΛ, the rank of MΛ for almost any value of Λ, in the
previous sense, is called its generic rank and denoted as g-rankMΛ. Notice that
g-rankMΛ is also the maximum value of rankMΛ for any value of Λ, for more
details see [18].

A directed graph G(ΣΛ) = (V,E) can be associated with the linear struc-
tured system ΣΛ in Equation (3):

• the vertex set is V = X ∪ U , where X and U are the state and control
vertex sets given by {x1, x2, . . . , xn} and {u1, u2, . . . , um}, respectively,

• the edge set is E = {(xi, xj)|AΛji 6= 0} ∪ {(ui, xj)|BΛji 6= 0}, where AΛji

(resp. BΛji) denotes the entry (j, i) of the matrix AΛ (resp. BΛ).

Recall that a path in G(ΣΛ) from a vertex vi0 to a vertex viq , is a sequence
of edges (vi0 , vi1), (vi1 , vi2), . . . , (viq−1

, viq ), such that vit ∈ V for t = 0, 1, . . . , q
and (vit−1 , vit) ∈ E for t = 1, 2, . . . , q. The vertices v1, . . . , vp are then said to be
covered by the path. If vi0 ∈ U and, viq ∈ X, the path is called a control-state
path. A path for which vi0 = viq is called a circuit. A stem is a control-state
path which does not meet twice the same vertex. A system is said to be control-
connected if any state vertex is the end vertex of a stem. A cycle is a circuit
which does not meet twice the same vertex, except for the initial/end vertex.
Two paths are disjoint when they cover disjoint sets of vertices. When some
stems and cycles are mutually disjoint, they constitute a disjoint set of stems
and cycles.
The notion of structural controllability was introduced by Lin, who proved a
necessary and sufficient condition for structural controllability of single-control
systems in terms of graph-theoretic objects called cacti, see [17]. The following
result can be proved to be equivalent to Lin’s result, see for instance [23, 24].
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Theorem 1. Let ΣΛ be the linear structured system defined by (3) with associ-
ated graph G(ΣΛ). The system is structurally controllable if and only if

• The system ΣΛ is control-connected,

• The state vertices of G(ΣΛ) can be covered by a disjoint set of stems and
cycles.

The verification of the first condition can be done using a simple labelling al-
gorithm [25]. The second condition is less intuitive and a bit more complex to
check numerically, this will be detailed in the next Subsection.

3.2. Efficient test of the second controllability condition

The second condition of Theorem 1 is indeed equivalent to g-rank[AΛ, BΛ] =
n. It is also equivalent to the existence of a maximum matching of size n in
the bipartite graph associated with the matrix [AΛ, BΛ], which provides with
an efficient way to check the condition. Let us now be more precise.
The bipartite graph H(ΣΛ) = (H+, H−;W ) associated with ΣΛ (or equiva-
lently associated with G(ΣΛ)) is defined as follows. The vertex set H+ is given
by X+∪U , the vertex set H− is given by X−, with X+ = {x+

1 , . . . , x
+
n } the first

set of state vertices, X− = {x−1 , . . . , x−n } the second set of state vertices and
U = {u1, . . . , um} the set of input vertices. The edge set is W = WA∪WB with
WA = {(x+

j , x
−
i )|AΛij 6= 0} and WB = {(uj , x−i )|BΛij 6= 0}. In the former, for

instance AΛij 6= 0 means that the (i, j)-th entry of the matrix AΛ is a parameter
(structurally non-zero).
A matching in a bipartite graph H(ΣΛ) = (H+, H−;W ) is an edge set M ⊆W
such that the edges in M have no common vertex. A matching M is called
maximum if its cardinality is maximum, in general, a maximum matching is
not unique. The maximum matching problem is the problem of finding such a
matching of maximal cardinality. This is a classical problem in combinatorial
optimisation, for which polynomial algorithms are available, see [26] for a clas-
sical reference and [27, 28] for more recent and high-performance methods. The
following result summarizes some well known results, see for example [29, 18].

Proposition 1. Let ΣΛ be the linear structured system defined by (3) with as-
sociated bipartite graph H(ΣΛ). The generic rank of [AΛ, BΛ] is equal to the
cardinality of a maximal matching in H(ΣΛ).
As a result, the following three properties are equivalent:

• The state vertices of G(ΣΛ) can be covered by a disjoint set of stems and
cycles.

• The generic rank of [AΛ, BΛ] is n.

• The cardinality of a maximum matching in H(ΣΛ) is n.

Occasionally, in the following we will also be interested in the dynamic system
without control, therefore only in the AΛ matrix. With the matrix AΛ we can
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associate the graph G(AΛ) and the bipartite graph H(AΛ), these graphs being
sub-graphs of G(ΣΛ) and H(ΣΛ) respectively. We can then get the following
Corollary.

Corollary 1. Let H(AΛ) be the bipartite graph associated with the AΛ matrix.
The following three properties are equivalent:

• The state vertices of G(AΛ) can be covered by a disjoint set of cycles.

• The generic rank of AΛ is n.

• The size of a maximum matching in H(AΛ) is n.

3.3. Application to the network context

Let us now come back to the networks with dynamical nodes introduced in
Section 2. When the system Σi of node zi is structured, it can be associated
with a node graph G(ΣΛ,i). In G(ΣΛ,i), the vertex corresponding to the in-state
(out-state) is called the in-vertex (out-vertex). A path from the in-vertex to the
out-vertex is called an in-out path. We call internal node cycle, a cycle which
covers vertices belonging to G(ΣΛ,i). To study the controllability of a node
G(ΣΛ,i), we consider that the state vertices are associated with a dummy input
γi(t) as in Equation 1 which is connected with the in-sate vertex.
Assume that the node systems are structured systems with independent pa-
rameters, and that the weight of links in the network graph which appear in
Equation (2) are also independent parameters. The global system ΣΛ obtained
from the network graph, the node systems of type (1) and the connection Equa-
tion (2), is then a structured system. The parameter set Λ of this global system
is the union of parameter sets of the node systems and of the weights wij and
w′il of Equation (2) considered as parameters. The graph of this global system
is G(ΣΛ) = (V,E). This graph can easily be obtained from G(N ) and from
the graphs G(ΣΛ,i) associated with the node systems, as described in Subsec-
tion 3.1. The vertex set V of G(ΣΛ) is composed of the state vertices of the
node graphs and of the control nodes of G(N ). For consistency, in the global
graph the control nodes will be called control vertices. The edge set E of G(ΣΛ)
contains the edges of node graphs G(ΣΛ,i). Moreover, for each edge (zi, zj) of
G(N ), there is an edge in G(ΣΛ), from the out-vertex of G(ΣΛ,i) to the in-vertex
of G(ΣΛ,j) and for each edge (uk, zl) of G(N ), there is an edge from the control
vertex uk to the in-vertex of G(ΣΛ,l).
From this point, we have a graph associated with the global structured system,
therefore the controllability of ΣΛ could be studied thanks to Theorem 1. How-
ever, G(ΣΛ) is generally high-dimensional, and it is then of interest to study its
controllability using properties of the nodes and of the network graph.

3.4. About the terminology used in this paper

• In classical graph theory, the terms vertex and node are used interchange-
ably. In this paper they are used with distinct meanings. Nodes are
associated with the network graph and are in some sense ”super vertices”.
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Vertices are associated with the node graphs and then with the global
graph. In figures, nodes will be represented by large circles and vertices
by smaller ones.

• Here, in and out vertices are indeed distinguished state vertices of a given
node. They correspond to the only ingoing and outgoing possible commu-
nications with the other nodes. They should not be confused with inputs
and outputs which appear in most of works in control theory, where in-
puts and outputs are external variables. Consequently, the in-out paths
as they appear here are different from input-output paths which are used
for solving a lot of classical control problems for structured systems [19].

• As mentioned before, the network graph (and the to be defined later auxil-
iary network graph) does not correspond to a dynamical system and there-
fore speaking about its controllability does not make sense. However, we
will need to check the two conditions of Theorem 1 on the network graph.
The notions which were defined for the graph of a structured dynamical
system (stem, control-connection, cycles) will also be used in a similar way
for the graph G(N ). In particular, we will say that the network graph is
control connected if there is path from a control node to any internal node.
In order to check the second condition of Theorem 1, we will also associate
a bipartite graph with the auxiliary graph as in Subsection 3.2.

Example 1. The construction of the global graph can be illustrated on the fol-
lowing example. The network has five nodes and two controls. The graph of the
network, the graph of the node systems and the resulting global graph are given
in Figure 1. The in-vertices of the node graphs are in green, the out-vertices of
the node graphs are in red and the control vertices of the network graph are in
blue. Notice that, in order to lighten the figures, we do not name the vertices of
the node graphs.

Remark 1. In practice, we will be interested in large scale networks, say with
hundreds or thousands of nodes, while the node graphs will be of a modest di-
mension, often with less than ten vertices. A particular, and interesting, case is
when a node contains only one state. Then the in-state (in-vertex) and out-state
(out-vertex) are the same state (vertex).

4. Preliminary results

From the definition of the global graph and from Theorem 1, some simple
results can be established on the structural controllability of the global system.

Proposition 2. The global system is control connected if and only if the net-
work graph and the node graphs are control connected

Proof:
The simple proof is left to the reader. �
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Node graph z4, z5Network graph

u2 z3 z4

Node graph z1u1 z1 z2

z5

Node graph z2, z3

Global graph

Figure 1: Example 1

Proposition 3. The global system is structurally controllable only if the node
systems are structurally controllable.

Proof:
Assume that the global system is structurally controllable. First, from Proposi-
tion 2, the node graphs G(ΣΛ,i) must be control connected. Moreover, the state
vertices of the global graph G(ΣΛ) can be covered by a disjoint set of stems and
cycles, see Theorem 1. From the construction of the global graph, these stems
and cycles can be categorized as follows:

• Internal node cycles.

• Cycles resulting of cycles of the network graph, in which case the cycle
contains an in-out path in the graph of the nodes it passes through. In
such a node, the vertices of the node which are not on the in-out path
must be covered by internal cycles.

• Stems of the global graph. When it passes through a node, the stem
contains an in-out path in the node graph. For the terminal node, the
global stem contains an in-state vertex path in the node graph. In both
cases, the vertices of the node which are not on the in-out path or stem
must be covered by internal cycles.

To summarize, a disjoint set of stems and cycles covering all state vertices in the
global graph G(ΣΛ) induces a disjoint set of stems and cycles covering all state
vertices in each node graph G(ΣΛ,i). Therefore, the structural controllability of
each node graph is a necessary condition for the structural controllability of the
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global graph. �
The previous result may seem to be very natural. However, using more sophis-
ticated connection schemes, the global system may be controllable while some
subsystems are uncontrollable in the usual sense. But, in such cases, the node
controllability condition shows up provided virtual inputs corresponding to the
connecting inputs are added to the usual controls [11, 12, 15].

Proposition 4. The global system is structurally controllable if the node graphs
and the network graph are control connected, and the state vertices of each node
graph can be covered by a disjoint set of internal node cycles.

Proof:
From Proposition 2, the control connection for the node graphs and for the
network graph, imply the control connection of the global graph.
The collection of the disjoint cycles covering all the state vertices in the node
graphs G(ΣΛ,i) constitutes a set of disjoint cycles covering all the state vertices
in the global graph G(ΣΛ). So, the global graph satisfies the conditions of Lin’s
Theorem and the global system is structurally controllable. �

Remark 2. To complete Proposition 4, it appears that the second condition of
Theorem 1 need not be satisfied by the network graph, to get the global control-
lability. This is illustrated by the example in Figure 2. In this example, the two
nodes have the same graph where all vertices can be covered by a cycle. It can
be seen that the global graph is structurally controllable while the network graph
does not satisfy condition 2 of Theorem 1, indeed the network graph is a dilation
in the sense of [17].

Node graphNetwork graph

Global graph

Figure 2: Example 2

Remark 3. Although the node graphs and the network graph satisfy the con-
trollability conditions of Theorem 1, the global system may be uncontrollable.
This can be seen from the example in Figure 3, with again two identical node
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graphs. In this example the two conditions of Lin’s Theorem are satisfied for
the node graphs and for the network graph, but the system is not structurally
controllable.

Node graph
Network graph

Global graph

Figure 3: Example 3

From Remarks 2 and 3, it follows that the satisfaction of Lin’s controllability
conditions by the network, and by the node graphs, is neither a necessary, nor
a sufficient condition, for the structural controllability of the global system.

5. Controllability of networks with identically structured nodes

In this Section, we particularize our study to the case where all nodes of the
network have the same structure, and therefore the same graph. Such networks
are sometimes called homogeneous in the literature [15]. Notice that this does
not mean that the nodes are dynamically the same. In the case of truly identical
nodes, some controllability problems may arise from symmetry considerations
[30, 21]. For example, it is clear that if in the example of Figure 2, the two nodes
have identical parameter values, the global system would not be controllable.

5.1. Main result for identically structured nodes

We can now state a simple necessary and sufficient condition for the con-
trollability of a network with identically structured nodes.

Theorem 2. Consider a network N with N internal nodes, m control nodes
with N > m, and its graph G(N ). Assume that all nodes are identically struc-
tured systems Σ̄Λ with associated graph G(Σ̄Λ).
The global system is structurally controllable if and only if the following three
conditions hold.

1. The graph G(N ) of the network is control connected.
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2. The node system Σ̄Λ is structurally controllable.

3. And
a) either the vertices of the node graph G(Σ̄Λ) can be covered by a disjoint
set of cycles.
b) or the vertices of the node graph G(Σ̄Λ) can be covered by a disjoint set
of cycles and an in-out path, and the nodes of the network graph G(N )
can be covered by a disjoint set of stems and cycles.

Proof:
⇒ Suppose that the global system is controllable. From Proposition 2, condi-
tion 1 must be satisfied, and from Proposition 3, condition 2 must be satisfied.
Now suppose that condition 3-a is not satisfied, i.e. the global graph cannot be
covered by a disjoint set of internal node cycles. On another hand, the global
graph is covered by a disjoint set of stems and cycles. The assumption N > m
implies that the network graph cannot be covered by a set of stems of length
one. Therefore a covering set of the global graph contains either cycles or stems
of length at least two in G(N ), i.e. stems passing at least through one node.
For such a cycle or stem passing through a node, the part of the stem, or of the
cycle, which is contained in a node is an in-out path, and the other vertices of
the node graph must be covered by internal node cycles, then the node graph
G(Σ̄Λ) can be covered by a disjoint set of cycles and an in-out path. Moreover,
the disjoint set of stems and cycles covering the vertices of the global graph
induces a disjoint set of stems and cycles covering the vertices of the network
graph. Therefore, condition 3-b is satisfied.
Conversely, if condition condition 3-b is not satisfied, there cannot exist non
purely node internal cycles, or stems of length at least two in the network
graph, covering the vertices of the global graph. Therefore, the vertices of the
global graph can be covered only by a disjoint set of node internal cycles and
condition 3-a is satisfied.
⇐ Suppose that conditions 1 and 2 are satisfied. The control connection of the
global graph follows from Proposition 2. If condition 3-a is also satisfied, then
the conditions of Lin’s Theorem are satisfied and the global system is struc-
turally controllable, see Proposition 4.
If, besides conditions 1 and 2, condition 3-b is satisfied, one can transform the
disjoint set of stems and cycles covering the nodes of the network graph, into
a disjoint set of stems and cycles covering the vertices of the global graph by
using the in-out path to pass through each node and by adding the internal
node cycles.
Then conditions 1, 2 and 3-a or 3-b, are sufficient for the structural controlla-
bility of the global graph. �
The theorem simply says that, either the node graph can be covered by a dis-
joint set of node internal cycles, which insures the satisfaction of the second
condition of Lin’s Theorem for the global graph, or the covering of the global
graph needs the use of the cycles and stems of the network graph. In the latter
case, the node graph must ”open the way to pass through it”, by using an in-out
path, while preserving the covering of other vertices by internal node cycles.
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Remark 4. The hypothesis of equality for the node graphs is mainly motivated
by the simplicity of the formulation of Theorem 2. The result would remain
valid if the vertices of all the node graphs can be covered either by a disjoint set
of cycles, or by a disjoint set of cycles plus an in-out path. The extension to the
general case is more complex and will be treated in the next Section.

Remark 5. The (reasonable) assumption N > m, was made for avoiding the
situation where all the nodes can be covered by a stem of length one. In this
case, the necessity of crossing the nodes which shows up in condition 3-b of
Theorem 2 is no longer valid. This is illustrated by the example of Figure 4
where N = m = 1. It can then be seen that none of conditions 3-a and 3-b of
Theorem 2 is satisfied, but the global system is controllable.

Node graph z1

Network graph

u1 z1

Global graph

Figure 4: Example 4

Remark 6. Although there is no particular hierarchy between conditions 3-a
and 3-b of Theorem 2, it is clear that conditions 3-a is easier to check. Therefore,
it is reasonable to check first conditions 3-a and, only if it is not satisfied, to
check conditions 3-b. This is the sequence which will be developed in the next
Subsection.

5.2. Covering by cycles and an in-out path

In Theorem 2, condition 3-a, we are looking for a covering of the state
vertices by a disjoint set of cycles. This can be tested by checking that there
is a maximum matching of size n (called perfect matching in this case) in the
bipartite graph H(ĀΛ) associated with matrix ĀΛ, see Corollary 1. Following
Remark 6, we will examine Condition 3-b, assuming that Condition 3-a is not
satisfied. Condition 3-b of Theorem 2, implies to find a covering by a disjoint set
of cycles and an in-out path, which is more restrictive than finding a covering
set of disjoint cycles and a stem. Moreover, there is no direct algorithmic way
to check this condition. Indeed, a simple trick allows to check the condition
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using a maximum matching algorithm. Consider the matrix ĀΛ together with
its graph G(ĀΛ). Call xi the in-vertex and xj the out-vertex in G(ĀΛ), if the
edge (xj , xi) does not exist in G(ĀΛ), let us transform the graph by adding an
edge (xj , xi) to the graph G(ĀΛ). This corresponds to adding a parameter in
position (i, j) of the structured matrix ĀΛ transforming it in ĀΛe, then we will
call this modified graph G(ĀΛe). This simple transformation allows to translate
the covering by cycles and an in-out path into a standard problem of covering
by cycles, which in turn can be checked by Corollary 1. This technique was
frequently used in Reinschke’s book [24].

Lemma 1. Assume that the graph G(ĀΛ) cannot be covered by a disjoint set
of cycles. Then, the graph G(ĀΛ) can be covered by a disjoint set of cycles and
an in-out path, if and only if the graph G(ĀΛe) can be covered by a disjoint set
of cycles.

Proof:
Notice first that if the edge (xj , xi) exists in G(ĀΛ), and if the graph G(ĀΛ) can
be covered by a disjoint set of cycles and an in-out path, joining the in-out path
and the edge (xj , xi) would create a new cycle in G(ĀΛ), which contradicts our
assumption.
Assume that G(ĀΛ) cannot be covered by a disjoint set of cycles, but G(ĀΛe)
can be covered by a disjoint set of cycles. The disjoint set of cycles covering
G(ĀΛe) must contain a cycle including the out-in edge (xj , xi). The other part
of this cycle is an in-out path. Then, the graph G(ĀΛ) can be covered by a
disjoint set of cycles and an in-out path.
Conversely, if the graph G(ĀΛ) can be covered by a disjoint set of cycles and
an in-out path, adding the edge (xj , xi) provides with a a disjoint set of cycles
covering G(ĀΛe). �

6. Controllability of networks, the general case

In Section 5 we dealt with the situation where all nodes have the same
structure. This assumption allowed to give a simple closed-form necessary and
sufficient condition for controllability. We will see next that, using the same
ideas and tools, the general case can be solved by the introduction of an auxiliary
graph.

6.1. Node classification in the network graph

From the previous sections, we know that some properties of the node graphs
are crucial in controllability issues. Recall first that, from Proposition 3, the
controllability of each node system is a necessary condition for the controllabil-
ity of the global graph. This means that each node graph must be covered by
a disjoint set of cycles and possibly a stem. A node graph is said to be of type
CY C, if all the state vertices can be covered by a disjoint set of node internal
cycles, otherwise it is said to be of type CY C. A node graph is said to be of
type IOP , if the state vertices can be covered by a disjoint set of cycles and an
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in-out path, otherwise it is said to be of type IOP . Notice that for the IOP
condition, the presence of an in-out path (possibly of length zero, when the in-
vertex and the out-vertex are the same vertex) in the covering set is obligatory.
The CY C and IOP nodes correspond to two particular situations for the second
condition of Theorem 1. For CY C nodes, the covering of state vertices can be
done without using a stem, while for IOP nodes the covering uses a particular
stem which is an in-out path.
Since the properties CY C and IOP are not mutually exclusive, we can en-
counter all the possible combinations, i.e. CY C.IOP , CY C.IOP , CY C.IOP
and CY C.IOP . As an illustration, it can be seen that in Example 1, the node
z1 is CY C.IOP , the node z2 is CY C.IOP and the node z4 is CY C.IOP .
From the results of the previous sections, one can make the following observa-
tion. When a node is IOP , it can be used in an object of the global graph (stem
or cycle) which is also composed of edges of G(N ), the vertices which are not
on the in-out path being covered by internal cycles. More precisely, a cycle of
the network graph can be translated into a cycle of the global graph if and only
if crosses IOP nodes of G(N ). A stem of the network graph can be translated
into a stem of the global graph if and only if it crosses IOP nodes of G(N ).
Notice that the terminal node of the stem need not be IOP . The use of IOP
nodes is illustrated on Figure 5 with a stem (u1, z1, z2) and a cycle (z3, z4) of
the network graph which are transformed in a stem and a cycle of the global
graph.

CCCC

z4z2

z4z2

CC

Global graph

z3

u1

z1

CC

z3

z1

u1

Network

graph

Figure 5: Illustration of the use of IOP nodes

6.2. The auxiliary network graph

Now, starting with a network N , with associated graph G(N ) and using the
properties of the node graphs, we will define a network auxiliary graph G(Na)
as follows.

1. Initialize G(Na) as G(N ).
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2. For each node zi of type IOP , delete from G(N ) the edges (zi, zj) for
j = 1 . . . , N . This operation visualizes the fact that a cycle or a stem of
the global graph cannot ”cross the node zi”.

3. For any node zi of type CY C, add a self-loop to zi in the graph G(N ).
Such a self-loop is called a node self-loop, which should not be confused
with a network self-loop which could pre-exist in G(N ).

Notice that for an IOP node, the network self-loops are eliminated in step 2. If
a node with a network self-loop is both CY C and IOP , this node would have
two self-loops after steps 2 and 3, but, for simplicity, we will only keep one
self-loop in G(Na).

6.3. The main result

With this definition of the auxiliary graph G(Na), we can now state the
main result of the paper.

Theorem 3. Consider a network N with N internal nodes, m control nodes,
and its graph G(N ); each internal node zi of N being defined by a structured
system ΣΛ,i, for i = 1 . . . , N .
The global system ΣΛ is structurally controllable if and only if the following three
conditions hold.

1. The graph G(N ) of the network is control connected.

2. The node system ΣΛ,i is structurally controllable, for i = 1 . . . , N .

3. The auxiliary graph G(Na) can be covered by a disjoint set of cycles and
stems.

Proof:
⇒ Suppose that the global system is controllable, from Proposition 2, condition
1 must be satisfied, and from Proposition 3, condition 2 must be satisfied.
From the controllability of the global system, the graph G(ΣΛ) can be covered
by a disjoint set of cycles and stems. If a subset of the cycles covers all the
vertices of the node graph G(ΣΛ,i), this corresponds to the node self-loop of
zi in the auxiliary graph G(Na). If a cycle of G(ΣΛ) passes through nodes
(zi1 , . . . , zik), the corresponding nodes must be of type IOP . Then these nodes
have conserved their outgoing edges in the second step of the construction of
G(Na), which implies that the cycle of G(ΣΛ) induces a cycle of G(Na).
Let us now consider a stem from the disjoint set of cycles and stems covering
G(ΣΛ). If this stem of G(ΣΛ) visits nodes (uµ, zj1 , . . . , zjl−1

, zjl) of G(N ), the
nodes (zj1 , . . . , zjl−1

) must be of type IOP . Then these nodes have conserved
their outgoing edges in the second step of the construction of G(Na), which
implies that the stem of G(ΣΛ) induces a stem of G(Na). Therefore, the dis-
joint set of cycles and stems covering G(ΣΛ) induces a disjoint set of cycles and
stems covering G(Na).
⇐ Suppose that conditions 1 and 2 are satisfied. The control connection of the
global graph follows from Proposition 2.
Consider a disjoint set of cycles and stems covering G(Na), with a particular
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stem (uµ, zj1 , . . . , zjl−1
, zjl). Each node of this stem can be replaced by the cor-

responding in-out path in the node graph to form a stem of the global graph
G(ΣΛ). Notice that in the end node of the stem, zjl , we can use the stem of the
corresponding node graph to complete the stem of G(ΣΛ). From the definition
of an IOP , all the other vertices of the nodes in the stem are covered by cycles.
The same type of argument works for cycles of G(Na) composed of more than
one node or for network self-loops. If a node self-loop belongs to the disjoint set
of cycles and stems covering G(Na), from the definition of a node self-loop the
vertices of this node are covered by a disjoint set of internal cycles. Therefore,
from the disjoint set of cycles and stems covering G(Na), one can build a dis-
joint set of cycles and stems covering the global graph G(ΣΛ). The structural
controllability of ΣΛ follows. �
Example 1 continued If we consider again Example 1, we can classify the dif-
ferent nodes, and then get the auxiliary graph. Nodes z2 and z3 are controllable
but not IOP , therefore the outgoing edges of these two nodes are deleted from
G(N ). Nodes z4 and z5 are CY C but not IOP , therefore the outgoing edges
of these two nodes are deleted from G(N ) and node self-loops are added to z4

and z5 in G(Na). Node z1 is CY C, therefore a node self-loop is added to z1 in
G(Na). The resulting auxiliary graph G(Na) is given in Figure 6. It is easily
seen that G(Na) can be covered by a disjoint set of cycles and stems (stems
(u1, z1, z2) and (u2, z3), together with the self-cycles on z4 and z5) therefore
the global system is structurally controllable. It is important to note that the
auxiliary graph G(Na) need not be control-connected.

CCu
1

z
1

z
2

CC

CC

u
2 z

3

z
4

z
5

Figure 6: Auxiliary graph for Example 1

6.4. Finding CY C and IOP nodes

Here, the situation is less simple than in the previous Section. In Section
5, it is clear that, when a node graph is CY C, there was no need to check for
the IOP property. Now, both properties may be useful for controllability of the
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global system, and must be tested for each node. For the property CY C, this
needs checking that there is a maximum matching of size ni in the bipartite
graph H(AΛ,i) associated with matrix AΛ,i of node system ΣΛ,i.
For testing the IOP property, we formulate it as a maximum matching with
minimum cost problem [31]. The idea is to force, if possible, the use of an
in-out path in a maximum matching. Consider the matrix AΛ,i with its graph
G(AΛ,i) and bipartite graph H(AΛ,i). Let xk and xl be the in-state and out-
state respectively. If there is no edge (xl, xk) in the graph G(AΛ,i), add a dummy
edge (xl, xk), and do the same operation in the bipartite graph H(AΛ,i). Give
to all edges of H(AΛ,i) a cost one, except for the edge (xl, xk) (real or dummy)
which has cost zero. Call this new weighted bipartite graph H(AwΛ,i) and apply
on it a maximum matching minimum cost algorithm. The characterization of
the IOP nodes then follows.

Lemma 2. The node graph G(ΣΛ,i) has the property IOP if and only if there
exists a size n matching with cost (n− 1) in the graph H(AwΛ,i).

Proof:
If the node graph G(ΣΛ,i) has the property IOP , completing the corresponding
in-out path by the edge (xl, xk), provides with a disjoint set of cycles covering
all state vertices of G(ΣΛ,i), i.e. with a matching of size n in H(AwΛ,i). Moreover
this matching has a minimum cost (n− 1).
Conversely, if there exists a size n matching with cost (n − 1) in the graph
H(AwΛ,i), this set must contain (xl, xk) which is the only edge with cost zero.
Therefore the vertices of G(AΛ,i) can be covered by a disjoint set of cycles and
an in-out path, then ΣΛ,i is IOP . �

6.5. Minimal Controllability Problems

Starting from an autonomous system, and wondering how many (ideally few)
external inputs, and how (ideally not too intrusively) these inputs should act
on the system to make it controllable, is a question that has rised a tremendous
number of works in the recent years. Declining these questions for graph-based
systems has stemmed several variants which are very stimulating combinatorial
problems, and which are known as Minimal Controllability Problems (MCP)
[4, 5, 32, 33, 34, 35, 15, 36, 37].
Let us now summarize how the MCP can apply to our framework.

1. Check first that each node graph is controllable, and check if it is of CY C
or IOP type.

2. Construct the auxiliary graph G(Na).
3. On the auxiliary graph G(Na), and its associated bipartite graph H(Na),

the Minimum Inputs Theorem of [4] can then be applied directly. The
technique of [34, 35], which is devoted to the case where an input can
only impact one state vertex, can be applied with a slight subtlety. The
maximum matching technique has to be applied on an extended bipartite
graph composed of H(Na) completed with dummy nodes representing the
critical connection components of G(N ) (not of G(Na)), and the corre-
sponding edges.
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In summary, solving the MCP in our framework induces some preliminary tests
on the node graphs (controllability and determination of their CY C and IOP
properties), but otherwise, it essentially amounts to solve the MCP on an aux-
iliary graph which has the same size as the network graph.

Remark 7. In practice, although there may exist vertices with no self-loop in
a node graph, it will very often happen that the vertices can be covered by a
disjoint set of cycles. This is the case if the nodes have asymptotically stable
dynamics, which will happen for a lot of systems in biology or other fields of
application. Asymptotic stability implies that each AΛ,i has no zero structural
eigenvalue, i.e. that AΛ,i has generic rank ni and therefore that G(AΛ,i) can be
covered by a disjoint set of cycles. In such a situation, all the nodes are CY C
and, as argued in [6], Minimum Input Theorem has a solution with a unique
input.

7. On the complexity aspects

In this Section we study the complexity of our approach. In particular,
we examine to which extent it is preferable to the brute force technique which
consists in directly checking the controllability of the global graph.
Let us first recall that the controllability of a structured system implies checking
the two properties of Theorem 1. The connection property can be checked using
a depth first algorithm whose complexity is in O(n2), where n is the number
of states vertices in the graph G(ΣΛ). Notice that this complexity corresponds
to the worst case and that the algorithm is much more efficient if G(ΣΛ) is
sparse. The second condition, as mentioned in Subsection 3.2, can be checked
by looking for a maximum matching in the associated bipartite graph H(ΣΛ).
Assuming that the number of controls is less than the number of states, i.e.
m < n, the complexity of the maximum matching is in O(n2.5). Notice that
the maximum matching problem is still an active field of research and that the
previous complexity may be improved by taking into account some features of
the graph, see [34, 37] for more discussions on this point. In summary, the
structural controllability can be checked with complexity O(n2.5), where n is
the number of states vertices in the graph G(ΣΛ).
Let us now examine our situation, where the system is a network of size N
defined by its graph G(N ), each node zi of G(N ) being defined by a structured
system with its own graph G(ΣΛ,i). We check the controllability of the global
graph using our approach, i.e. by first studying each node separately and then
by dealing with the auxiliary graph as in Theorem 3. To allow simple complexity
comparisons, assume that each node graph has the same number of state vertices
n̄ (but not necessarily the same graph). For control connection of the global
graph one can use Proposition 2. The connection of each node can be checked in
O(n̄2) and the connection of the network graph G(N ) can be checked in O(N2).
Therefore the global connection can be checked in O(N.n̄2 + N2). Assuming
that the size of a node graph is much lower than the size of the network, it
follows that checking the control connection is made with complexity O(N2).
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The control connection of the global graph (whose dimension is N.n̄) by a direct
method would have complexity O(N2.n̄2).
For checking the second structural controllability condition on the global graph,
we have first to study each node graph. This implies checking the structural
controllability of the node graph and the CY C and IOP properties. As seen
before, the structural controllability of the node graph and the CY C property
can be checked with complexity O(n̄2.5), since they only involve a maximum
matching algorithm. The IOP property, as seen in Lemma 2, needs an algorithm
finding a maximum matching with a minimum cost. This type of algorithm has
complexity O(n̄3) [38]. The complete study of a node has then complexity
O(n̄3). From Theorem 3, the second structural controllability condition of the
global graph implies the study of each node graph and checking the second
structural controllability condition on the network auxiliary graph G(Na). This
globally implies a complexity in O(N.n̄3 +N2.5). With our assumption that the
size of node graph is much lower than the size of the network, it follows that the
second structural controllability condition on the global graph can be checked
with complexity O(N2.5). The second structural controllability condition on
the global graph (whose dimension is N.n̄) by a direct method would have
complexity O(N2.5.n̄2.5).
In summary, we assumed here that all nodes have n̄ vertices, and that n̄ is much
smaller than the number N of nodes in the network graph G(N ). In this case,
checking the structural controllability by the previous method is roughly n̄2.5

times less costly than checking the structural controllability in a classical way on
the global graph. As an example, for a large N and n̄ = 10, the computational
load would be divided by more than 300. Even if the nodes have not the same
number of vertices, our approach remains very efficient as long as n̄ is much
smaller than the number N . Indeed, with our approach the controllability
problem for a size N network has just the complexity of a maximum matching
problem for a size N bipartite graph.

8. Conclusion

In this paper, we addressed the controllability of a network whose nodes are
composed of a single-input, single-output structured system. We have then to
deal with a global graph which is the composition of the network graph and
of the graph of each node. We gave simple necessary and sufficient controlla-
bility conditions in terms of these different graphs. Assuming that the node
graphs have a modest dimension, it appears that the complexity of the associ-
ated computations is only related to the size of the network. Also, the Minimal
Controllability Problems in this framework, are not significantly harder than in
the usual case. This work may be a starting point for the study of more complex
node systems or more sophisticated connection rules.
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