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Abstract—Capturing and storing samples only when needed is a
way to ensure a drastic reduction of the data to be processed,
which is a crucial issue in many applications, such as autonomous
and communicating smart devices (Internet of Things). This leads
to nonuniform data for which specific processing chains have to
be designed. In this paper, we discuss the issues to be address
to generalize Infinite Impulse Response filters to the nonuniform
case. We illustrate the performance of the constructed filters on an
electrocardiogram signal, for two ways to obtain the nonuniform
samples, and select linear decimation and the bilinear scheme as
a good combination for this application.

Keywords–Nonuniform sampling; Infinite Impulse Response
Filters; Asynchronous and Event-Driven Systems; Electro-
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I. INTRODUCTION

For many applications, a way to drastically reduce the
number of data in order to make their processing tractable
with light platforms such as autonomous and communicating
smart devices (often named Internet of Things) is to only
capture and store samples when needed. For instance, analog-
to-digital converters capture samples only when events occur
or signals vary significantly. This induces data that are sampled
irregularly in time, also called nonuniform data. The subject
on how to sample the right data for a target application is out
of the scope of this paper, but is an active research subject [1]
[2].

Usual signal processing chains strongly rely on the fact
that samples are taken regularly in time, or are the output of
decimated regular data. When addressing genuine nonuniform
data, we need to rethink the whole processing chain, in
particular filtering devices.

Two main directions have been explored for constructing
nonuniform filters: 1. the use of existing filters, originally
designed for uniform signal and adapted to nonuniform signal
[3]–[7]; 2. the design of specific filters [8]. Here we explore the
first direction, and more specifically Infinite Impulse Response
(IIR) filters. The case of finite impulse filters is somewhat
simpler since the coefficients of the filter in the time domain
can be directly used and there is only the need to interpolate
correctly both the signal and the filter [3]. As will be shown
in this paper, IIR filtering has to stem from a continuous
representation of the filters in the Laplace domain, then in
the time domain, eventually discretized at the sampling times.
Other approaches in processing nonuniform sampled signals
may also be found, e.g., in [9] or [10].

The design flow presented here has already been studied in
[11] and its performances illustrated on a toy signal, namely a
superposition of two sine signals. In particular, stability proofs
can be found there. In this paper, we are more precise on the

strategies to implement IIR filters on nonuniform data and give
a more realistic numerical illustration.

The outline is as follows. In Section II, we describe the
filter and the signal representation, and define most of the
useful notations for the sequel. We particularly justify the
choice of the state equation representation. In Section III, we
show various ways to discretize the state equation and recall
existing results on stability issues. In Section IV, we explore
the filtering of an electrocardiogram (ECG) signal, using two
types of sampling, level-crossing and linear decimation.

II. SIGNAL AND FILTER REPRESENTATIONS

In the usual uniform world, an IIR filter is often represented
thanks to a difference equation that links the new output sample
to previous samples of both the input and output signals. The
coefficients in this difference equation are the feedforward and
feedback filter coefficients. This representation of the filter
strongly relies on the fact that samples are uniformly spaced.
Another representation directly stems from the difference
equation using the Z-transform. Both these representations
are not possible to extend to a nonuniform context. A third
possible representation is the state representation, which makes
use of the representation of the filter in the Laplace domain. In
this representation the output signal Y is simply the product
of the filter transfer function H and the input signal I:
Y (s) = H(s)I(s). The filter transfer function can be written
as a rational function of the Laplace variable s:

H(s) =

∑N
j=0 αjs

j∑N
j=0 βjs

j
,

where N is the filter order.
Coming back to the time domain, this is classically cast as

a system of ordinary differential equations

dx(t)

dt
= Ax(t) +Bi(t), (1)

y(t) = Cx(t) +Di(t), (2)

where the state matrix A, the command vector B, the observa-
tion vector C, and the direct link coefficient D are expressed
in terms of the αj and βj , j = 0, . . . , N . The advantage of
this formulation is that it addresses a priori a continuous time,
and can be considered at equally spaced time instants, in the
case of classical uniform signal, or at irregularly spaced time
instants in the nonuniform case, which we consider in this
paper.

A uniform signal is described by a series of amplitudes, and
the time delay between two samples is implicit, or even more
usually renormalized to 1. In the case of nonuniform samples,



time cannot clearly remain implicit and the samples consist
of amplitude–delay couples (an, dtn), where the delay dtn is
the time elapsed since the previous sample was taken (see
Figure 1). This choice, compared to the choice of amplitude–
time couples has two reasons. First, it has been applied
to systems in which the samples are captured on the fly
thanks to an asynchronous technology where no global clock
synchronizes the whole system but where the synchronization
is implemented with local handshakes [12]. Second, as we will
see, the stability of the scheme depends on the values of the
delays and not the time instants themselves.

time

amplitude

a(t)

tn−1

an−1

tn

an

dtn

Figure 1. Non-uniform data.

In [11], the samples were collected using a level crossing
algorithm. This gives extra information on the signal, but this
is not an important feature for the application of a filtering
scheme. In the world of nonuniform signals, we have to assume
at some point that the right samples have been taken for the
targeted application. In view of (2), it seems natural to define
and compute the state signal x(t) and the output signal y(t) at
the same time instants as the input signal. Another choice could
be made, but this would necessitate the interpolation of signals
and introduce interpolation errors. Hence, to an input signal
(xn, dtn) will naturally correspond an output signal (yn, dtn)
with the same time delays.

III. DISCRETIZATION OF THE STATE EQUATION AND
STABILITY ISSUES

Once the filter is chosen and written in the state representa-
tion, there are various ways to discretize the system. Stability
is the main issue to address, as well as the ability to implement
efficiently the algorithm in an autonomous device.

A. Principle
The stability of the IIR filter depends on two choices: the

choice of the filter and the choice of the scheme to discretize
it. The impact of the choice of the filter is already present in
the continuous time domain. The criterion is the following:
the eigenvalues of the state matrix A should have a negative
real value. These eigenvalues are solution to the characteristic
polynomial of A which only depends on the feedback filter
coefficients:

det(λId−A) = λN + βN−1λ
N−1 + · · ·+ β1λ+ β0,

where Id is the N ×N identity matrix.
In the time discretization of the state equation (1), the N

eigenvalues λ are transformed in the complex plane into a
set of N other eigenvalues µn = Tn(λ). For a constant time
delay, the new eigenvalues are the same for the whole filtering

process. In the nonuniform case, the set of eigenvalues varies
through time, since it depends on dtn. Therefore, we have to
find a scheme which is uniformly stable for a range of time
delays.

For the discretized scheme, the condition is that the eigen-
values lie in the unit circle of the complex plane. This can
be easily understood from the integral representation of the
solution to (1), namely

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bi(τ)dτ. (3)

Indeed, the eigenvalues of A lie in the left half plane, if and
only if the eigenvalues of eAt lie in the unit circle.

B. A simple example: the Euler scheme
The simplest example to illustrate this principle is the Euler

scheme, although it will not prove to be a ”good” scheme. The
Euler scheme reads

xn − xn−1

dtn
= Axn−1 +Bin−1, (4)

or equivalently

xn = (Id + dtnA)xn−1 +Bdtnin−1.

If we compare to the integral form, we see that eAdtn is
simply approximated by (Id + dtnA), and even by Id in the
integral which is calculated with a left rectangle method. Here,
Tn(λ) = 1 + dtnλ.

We have two ways to discuss this. If we want to address
with this scheme all possible IIR filtering methods, with all
possible eigenvalues in the left half-plane. Then, we can only
say that Tn maps the left half-plane in an other half-plane (see
Figure 2) and certainly the Euler scheme will not lead to a
stable digital filter.

<(λ)

=(λ)
Tn

1
<(µn)

=(µn)

Figure 2. Action of the Tn transform for the Euler scheme. Eigenvalues λ
(left) and eigenvalues µn (right).

An other point of view is to compute the inverse transform
of the unit circle, which is also a circle for the Euler scheme,
as shown on Figure 3. If it contains all the eigenvalues λ of the
original filter, the discrete filter will be stable. This has to be
valid for all the values of dtn, i.e., for the maximum value of
dtn which yields the smallest inverse image of the unit circle.
This leads to give a maximal bound for the time delay, that is
to integrate these issues in the sampling procedure in a global
signal processing chain.

C. Review of other schemes
The discretization of the state equation is either made on

its integral form (3) or on the differential equation (1).
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Figure 3. Backward action of the Tn transform for the Euler scheme.
Eigenvalues λ (left) and eigenvalues µn (right).

1) Discretization of the integral form: Some of schemes
are directly based on the integral formulation of the solutions.
This is the case in [5], where the only approximation consists
in replacing the continuous signal i(t) by a sample-hold or
piecewise linear interpolation on the time interval [tn−1, tn],
and compute exactly the integral. For example, for sample-hold
interpolation

xn = eAdtnxn−1 −A−1(Id− eAdtn)Bin−1. (5)

Since eAdtn is not approximated, this leads by construction
to stable schemes. Another feature in this reference is the use
of cascading filters, splitting the original filter into second-
(or first-) order filters. This leads to a simpler calculation of
exp(Adtn) and make possible the implementation on asyn-
chronous architectures [3] [13].

2) Discretization of the differential equation: The first
example of this approach can be found in [6] [7] where they
use the bilinear method to approximate the time derivative in
(1):

xn − xn−1

dtn
= A

xn + xn−1

2
+B

in + in−1

2
. (6)

For this scheme, the eigenvalue transform is the homographic
function

Tn(λ) =
1 + dtnλ/2

1− dtnλ/2
,

which is well known to map the left half-plane in the unit
circle.

Other schemes have been reviewed in [11], backward Euler,
various Runge-Kutta schemes. The results are well-known
results when using difference methods to discretize ordinary
differential systems of equations. In particular it is possible
to construct unconditionaly stable implicit or semi-implicit
schemes, i.e., schemes that are stable whatever the value of
dtn. This is the case of the backward Euler and bilinear
methods. Explicit schemes, such as Runge-Kutta methods, can
be easier to implement but they will always have a stability
condition, and as for the Euler scheme an upper bound has
to be set on the intersample time. This has to be integrated
in the processing chain or, if no control on the input data is
possible, extra data has to be interpolated in very quiescent
parts of the signal. Practical implementations have shown that
the bound on dtn is not a crucial point and is not also a
practical technical issue for the asynchronous systems [14].
In [11], the complexities of the various schemes are also
compared. This proves not to be a crucial point either, if the
filters are decomposed in one- or two- order filters, to avoid
the computation of matrix exponentials.

TABLE I. COMPRESSION OF THE ECG SIGNAL VIA
LEVEL-CROSSING.

number of levels 4 8 16
number of samples 584 1377 2414
compression 2% 4.8% 8.5%

IV. FILTERING AN ECG SIGNAL

To study the stability performances of the IIR filters in
[11] sine signals were chosen. These signals are always active
and no gain in the number of samples can be hoped since
even with a non-uniform sampling the Nyquist rate should be
ensured at last in average [15] [16]. If the signal frequency-
range is constant over the signal duration, no reduction of the
number of samples can be obtained, and since the processing
of the samples could be more complex when nonuniform,
the overall performances would be lower than with classical
uniform sampling and classical filtering techniques. Notice that
this point is not obvious and the processing is not always more
costly such as in [17].

Here we consider an ECG signal. Such a signal is interest-
ing to address with nonuniform sampling, since it has quiescent
parts and for applications, such as pacemakers or disease
diagnosis, we very often want to isolate specific patterns in
the signal and not process the signal as a whole. The signal
shown in the next experiments has a 14.27 s duration which
corresponds to about 22 cardiac cycles. The initial signal,
sampled at 2000 Hz, has 28548 samples.

All the computations have been performed using the
SPASS Matlab toolbox [18].

A. Nonuniform sampling of the input signal
Two types of nonuniform sampling are explored, a level-

crossing sampling scheme and linear decimation, which can
be more or less assimilated to a slope crossing scheme.

1) Level-crossing: A simple and widely used way of
nonuniformly sampling signals is level-crossing sampling [19]
[20] [10]. It consists in defining levels within the range of the
input signal. These levels can be either equally spaced, for
simplicity or implementations reasons [3], or on the contrary
very carefully chosen in order to capture the important features
of the signal for a specific application [21].

Figure 4 displays the samples obtained of our ECG sample.
Here 8 equally-spaced levels have been chosen, which leads to
1377 samples, and hence 4.8% of the initial samples. To have
an idea of the compression obtained with this technique, we
give in Table I the number of samples and compression for 4,
8 and 16 levels.

2) Linear decimation: We propose here another way to
decimate the initial samples, which can be performed on the
fly, which is of practical interest for hardware implementations.
The principle of this decimation is shown in Figure 5.

It consists in defining a tolerance on the surface of the
polygon between the curve with all the initial samples and the
kept samples. Let us suppose that we begin with sample S1. If
the surface of the triangle S1S2S3 is above threshold, then we
keep S2 and explore the next samples taking S2 as new initial
sample. If this surface is below threshold, then we consider
the surface of the polygon S1S2S3S4, if it is above threshold,
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Figure 4. 8-level-crossing sampling of an ECG signal.
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Figure 5. Principle of linear decimation.

we keep S3 and take it a new initial sample, otherwise we go
on exploring S5, etc.

Figure 6 displays the samples obtained for our ECG signal.
Here we chose a tolerance equal to twice the width of the range
of the signal, which leads to 916 samples, and hence 3.2% of
the initial samples. Again, a few other choices for the tolerance
and the associated compression are given in Table II.

With less samples than with 8-level-crossing the descrip-
tion of the signal seems better. This will be confirmed by
the filtering results. Of course there is a drawback, although
possible, the hardware implementation of this type of sampling
is much harder.

B. Filtering results
We use an order-10 Butterworth filter with a cut-off

frequency at 200 Hz. We have tested the various methods
described in [11] but only plot results for the backward Euler
scheme

xn − xn−1

dtn
= Axn +Bin, (7)

TABLE II. COMPRESSION OF THE ECG SIGNAL VIA LINEAR
DECIMATION.

tolerance 2*range range range/2
number of samples 916 1548 2341
compression 3.2% 5.4% 8.2%
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Figure 6. Linear decimation sampling of a ECG signal. range criterion, 916
vs. 284548 samples.

and the bilinear scheme (6). For this test case, both the Euler
scheme (4) and the Runge-Kutta 4 scheme are unstable and
do not yield any result. Other Runge-Kutta schemes, such as
RK23, are not unstable but give very distorted results.

Figure 7 displays the filtering of the ECG signal after
level-crossing sampling with the backward Euler discretization
of the state equation (7). For the sake of clarity, we have
windowed the plot to see a small sequence of the signal.
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Figure 7. Backward Euler Butterworth filtering of ECG signal after
level-crossing sampling.

We can notice two unwanted features: first, the filtered
signal keeps the memory of the sampling levels; second, the
P pattern is not captured. Indeed, physicians who read ECGs
want to spot specific patterns in the ECG signal to diagnose
diseases. These patterns are designated by the letters PQRST,
see Figure 8. The reason why P has not been captured is not
due to filtering but to sampling since no point has been set
in this part of the signal. This can typically be corrected by a
cleverer choice of the levels.
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Figure 8. Patterns in a normal heart sinus rhythm.

Figure 9 displays the filtering of the ECG signal after the
same level-crossing sampling but with the bilinear discretiza-
tion. The previous bad features are always there because they
were mainly due to sampling. They are present for all the
(stable) schemes, the worst one from this point of view being
the integral form (5). This is not due to the integral form itself
which is exact, but to the sample-hold interpolation. You have
to use piecewise linear or nearest neighbor interpolation for
this application.

The bilinear discretization does nonetheless a little better
than the backward Euler scheme. Indeed, the amplitude of the
R pattern is much better captured.
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Figure 9. Bilinear Butterworth filtering of ECG signal after level-crossing
sampling.

Now, we explore the simulations performed with a linear
decimated sampled signal. Figures 10 and 11 yield the results
for the backward Euler and bilinear discretizations of the
Butterworth filter. The unwanted features of the level-crossing
sampling are of course not present and the filtered result much
resembles the theoretical pattern of Figure 8. The bilinear
scheme is once more better than the backward Euler scheme,
since it captures better the amplitude and times of the points
of interest.

V. CONCLUSION AND FUTURE WORK

We have discussed various issues which are important
when having to generalize IIR filters to the nonuniform case:
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Figure 10. Backward Euler Butterworth filtering of ECG signal after linear
decimation sampling.
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Figure 11. Bilinear Butterworth filtering of ECG signal after linear
decimation sampling.

which representation of such filters is the more adapted to this
generalization?

We illustrate the performance of the constructed filters
on an electrocardiogram signal, for two ways to obtain the
nonuniform samples. We select linear decimation and the
bilinear scheme as a good combination for this application.
This discretization of the equation gives stable and accurate
results. We have seen on an ECG example that if the choice
of the discrete filtering method is important, the way the
nonuniform samples have been chosen is also a very crucial
issue. The method, we call linear decimation, seems to be
adapted to the ECG case, but there is clearly a lot of work to
be done in this direction to reduce more drastically the number
of samples and therefore the computational cost.
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[4] B. Bidégaray-Fesquet and L. Fesquet, “A fully non-uniform approach to
FIR filtering,” in 8th International Conference on Sampling Theory and
Applications (SampTa’09), L. Fesquet and B. Torrésani, Eds., Marseille,
France, May 2009, pp. 129:1–4.

[5] L. Fontaine and J. Ragot, “Filtrage de signaux à échantillonnage
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