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Abstract

In this paper, we present splitting schemes for the two-level Bloch
model. After proposing two ways to split the Bloch equation, we show
that it is possible in each case to generate exact numerical solutions of
the obtained sub-equations. These exact solutions involve matrix expo-
nentials which can be expensive to compute. Here, for 2 x 2 matrices
we develop equivalent formulations which reduce the computational cost.
These splitting schemes are nonstandard ones and conserve all the phys-
ical properties (Hermicity, positiveness and trace) of Bloch equations. In
addition, they are explicit, making effective their implementation when
coupled with the Maxwell equations.

Keywords: Bloch equation, Exponential of a matrix, Exact finite difference
schemes, Nonstandard finite difference schemes, Splitting method.

1 Introduction

Bloch equation describes the time evolution of the density matrix. It is derived
from the Schrodinger equation or the Heisenberg formalism, see for example
[4, 5, 6, 9, 15]. The density matrix is a quantum observable (unlike the wave
function) and is used to describe the probability of presence of electrons in
the quantized energy levels (diagonal entries of the matrix) and the coherence
between these levels (off-diagonal entries). Its size depends on the number of
considered atom energy levels. In many references, the derivation of the Bloch
equation is presented only in the case of two-level atoms. Coherent control of
a quantum mechanical two-level system is at the heart of magnetic resonance
imaging, quantum information processing, and quantum optics [8].

The analytical and exact numerical solutions of the Bloch equation involve
the calculation of matrix exponentials, which would be very time consuming,
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thus leading to the search for approximate numerical solutions. It takes two
forms [4]: either generic robust schemes or dedicated schemes to this equation.
In the context of two-level atoms, the approach of the generic scheme was tested
for the first time by R.W. Ziolkowski et al. at the University of Tucson [17, 18,
19]. They use a Crank—Nicolson scheme, which is second order. This scheme
theoretically preserves all the physical properties (Hermicity, positiveness and
trace), but in practice, it accumulates fixed point errors. This defect does
not appear explicitly in [17], because the choice of modified variables used to
implement the scheme does not enable to detect this problem. However, due to
the accumulation of errors, the Crank—Nicolson scheme does not preserve the
physical properties of the Bloch equation.

To overcome this problem, Bidégaray et al. introduced in [3] a splitting
scheme of order two, named after Strang, based on the decomposition of the
Bloch equation into a relaxation—nutation equation and an equation describing
the interaction with an electromagnetic field (which is a Liouville equation).
These two sub-equations have exact solutions, which are then combined by the
splitting method. The resulting scheme is explicit and preserves all the physical
properties of the Bloch equation. An essential feature of this scheme is that
the calculation of matrix exponentials is approximated by a Crank—Nicolson
method. Moreover, its explicitness makes effective the implementation when
coupled with the Maxwell equations. We can find the same ingredients but with
a different centering of variables in [1, 2], thus allowing a weak coupling, which
is therefore algorithmically less expensive. Following these studies, Uwizeye
presented in her Master thesis [14], a fourth-order Runge-Kutta method, which
also preserves some physical properties.

The aim of this article is to improve the splitting schemes for the two-level
Bloch model by incorporating exact numerical solutions of sub-equations. To
this aim, we explore two different ways to split the Bloch equation, and then
follow the same approach as in Bidégaray et al. [3], except that the calculations
of matrix exponentials in the exact numerical solution of the Liouville equation
are given by equivalent formulations and not approximations. In each case, it
leads to numerical models that are consistent with the methodology of nonstand-
ard finite difference (NSFD) schemes developed by Mickens [10]. Moreover, the
obtained NSFD schemes are of variable time step-size.

The sequel of this paper is organized as follows: we present the Bloch model
in Section 2. Section 3 provides the construction rules of NSFD schemes. Section
4 presents the various sub-equations, their explicit solutions and the principle
of splitting. T'wo decompositions of the Bloch model are discussed in Section 5
and 6. Section 7 treats optical Bloch equations. Finally, numerical simulations
applied to self-induced transparency are gathered in Section 8.



2 The Bloch model

We consider the Bloch equation [4, 5, 6, 9, 15]

i

h[H’ plik + Q(p) jk (1)

5t,0jk =
where p is the density matrix, H the Hamiltonian of the system, and [H, p|] =
Hp — pH is the commutator of H and p.
We can give an interpretation of the coefficients of the matrix p. Its diagonal
entries are called populations. The population of level j, denoted pj;, is the
occupancy probability of the quantum state j. Off-diagonal entries are called
coherences. The coherence p;;, between levels j and & is a complex number which
modulus can be interpreted as a conditional probability of transition between
levels j and k.
The Hamiltonian H can be decomposed into H(t) = Hy + V(t) where Hy is
the free electron Hamiltonian and V(t) = —FE(t)p expresses the (Hermitian)
potential resulting from the interaction with an electromagnetic wave E(t). The
polarizability matrix p has a zero diagonal and transmits this property to V (¢).
The Hamiltonian Hj is a diagonal matrix diag(fiw;)j=1,...n.
The relaxation terms @Q(p);, take into account phenomena like spontaneous
emission, collisions, vibrations in a crystal lattice, etc.

2.1 Relaxation

One distinguishes the terms that affect the coherences, called transverse re-
laxations, Q(p),r with j # k, from terms affecting populations, Q(p);;, called
longitudinal relaxations.

For longitudinal relaxations, we choose the Pauli master equation

Q(p)ij = D_[Wikprr(t) — Wijpj; (1)), (2)
oy

where Wy;p;;(t) expresses the transition from level j to level k. The model
chosen for transverse relaxations is more phenomenological and therefore simpler
than for longitudinal relaxations. We introduce the relaxation rate v, > 0, for
j # k, and we have

QP)jk = —VikPik; (3)

where 7, = i; is necessary to ensure the Hermicity of the density matrix.
This relaxation model and others are compared in Bidégaray et al. [3] from the
point of view of the preservation of some symmetry and positivity properties of
the density matrix. In particular,

1. Hermicity of p;

2. positiveness of p as an operator, which for two-level atoms reduces to
conditions



(d) [pjkl* < pjjpr-

3. trace conservation, Tr(p) = >_, pj; = 1, which ensures that the number
of electron is conserved through time evolution.

Conditions on the transverse and longitudinal relaxation coefficients can be
found in [3] to ensure these properties. A sufficient and often fulfilled condition
is 26 > D>, Wi + >, Wi

2.2 Dimensionless equations

We want to use dimensionless equations for two reasons, first this leads to
simpler equations and second this allows to exhibit the Rabi frequency which
drives the behavior of the system. We introduce the following characteristic
quantities:

e the characteristic frequency we,
e the characteristic electric field E.,
e the characteristic polarizability p..

Rescaling variables and matrices as follows:
- 1. . ~ o
Ho = hweHo, t = —t, £ = EE, p=pcp, Q=wQ, V=Ep

and defining the dimensionless Rabi frequency

E.p.

QR: tha

we can rewrite equation (1) in the dimensionless form:

dip = —i[Ho, p] — iQr[V, p] + Q(p).

From now on we drop the tilde signs and can consider without loss of generality
for the description of numerical methods that Qr = 1:

Op = —i[Ho, p] — i[V, p] + Q(p). (4)

2.3 The two-level case
In this study, we restrict ourselves to the case of matrices of order 2 for which

Hy = (“Bl f) and V(t) = ( 0 ”1%(“), (5)

2 v12(t)

where v12(t) is the conjugate of vy2(t).



3 NSFD methodology

In this section, we present the rules for the construction of NSFD schemes as
proposed by Mickens [10].

Rule 1. The order of the discrete derivatives must be exactly equal to the order
of the corresponding derivatives of the differential equations.

Rule 2. Denominator functions for the discrete derivatives must, in general,
be expressed in terms of more complicated functions of the step-sizes than those
conventionally used. For example,

dl N un+1 _ @(At)u"
at — o(At)

where ¢ and ¢ are the functions of the step-size At and have the properties:
o(At) = 1+ O(At?) and ¢(At) = At + O(A?) when At — 0.

Rule 3. Nonlinear terms must, in general, be modeled non-locally on the com-
putational grid or lattice.

Rule 4. Special solutions of the differential equations should also be special
(discrete) solutions of the finite difference models.

Rule 5. The finite difference equations should not have solutions that do not
correspond exactly to solutions of the differential equations.

Definition 3.1. [12] A nonstandard finite difference scheme is any discrete
representation of a system of differential equations that is constructed based on
the above rules.

In addition to these five usual rules, Mickens stated a sixth rule in [11], which
applies only to complex equations.

Rule 6. For differential equations having N (> 3) terms, it is generally useful
to construct finite difference schemes for various sub-equations composed of M
terms, where M < N, and then combine all the schemes together in an overall
consistent finite difference model.

Given this last rule, it is first necessary to fragment the equation (4) into two
sub-equations, then solve sub-equations by exact methods, and finally, connect
solutions of sub-equations through a single consistent solution. In this way, we
will split equation (4) in two ways: the pure relaxation equation and the raw
Bloch equation in a first place; and the evolution of relaxation—nutation and
the evolution with interaction of electromagnetic field in a second place. And
in each case, we will see how to construct consistent finite difference model by
using Strang splitting method.



4 Splitting and exact solutions

4.1 Linear operators on matrix entries

The Bloch equation is linear in the entries of the density matrix. However we
want to treat the density matrix as a matrix and not its single entries. From
this point of view the Bloch equation contains three types of linear operators.

4.1.1 The Liouville equation

Part of the equation is in Liouville form, i.e.

dip = [A(), .

This equation can be solved analytically in

p(t) = exp < /O t A(T)dT) p(0) exp <_ /0 t A(T)dT) .

The computation of these exponentials is at the core of this paper.

4.1.2 Hadamard exponentials

The transverse relaxations are in the form

Opjk = BikPijk, (6)

which solution is of course simply p;x(t) = exp(8;xt)p;x(0). These entry-wise
exponentials are gathered in a single operator, the Hadamard exponential. Let
B = (Bjr);jr where we have extended the definition to 5;; = 0, then the solution
to equation (6) is denoted

p(t) = P 0 p(0).

Remark 1. The nutation part of the equation can be considered in two ways.
Either as a Liouville equation, using —iHy as matriz A, or as linear equation
on single entries taking Bjr = —i(w; — wg). They each lead to one of the
decomposition considered in this paper.

4.1.3 The master equation

The longitudinal relaxation induce a master equation on populations which are
easy to solve exactly in the two-level context. The equations read

Op11 = Wizpaa — Waipr,
O¢p22 Wa1p11 — Wizpaz.



Denoting Wy = Wio + Woy, after straightforward calculations
1 1

pult) = 5+3 (e (p11(0) = p22(0)) + (1 — e~ "+ )W),
palt) = =5 (€ (1a(0) — pa(0) + (1 — e W)

To be able to denote this solution, which would be described by an order 4
tensor if applied to the whole matrix, we define the linear application M((t)
which is applied to the whole matrix p but only involve diagonal elements:

p(t) = M(D)p(0).

4.2 Some results for 2 x 2 matrix exponentials
Theorem 4.1. Let A € Ms(C). Its annihilator polynomial is

A% — Tr(A)A + det(A)] =0 (7)
and its eigenvalues are roots of this polynomial

Moy — Tr(A) £ /(Tr(A))? - 4det(A).
' 2

Due to the existence of this annihilator polynomial of degree 2, any analytic

function of A can be written as a linear combination of A and I. In particular

exp(A) = 04(/\1, /\2)[ + ﬁ(/\l, )\Q)A,

where
A A2) — A A
Oé()‘la)@) = 1exp( 2) 2exp( 1)7
A1 — A2
exp(A1) — exp(A2)
A1 — A2 '
Proof. Suppose that the linear combination is written as

exp(4) = al + A

B(A1,A2) =

and A has two distinct eigenvalues. Defining D = diag(\1, A2), we can write
D = P71 AP and diagonalize the system:

P~ lexp(A)P = al + PT'BAP,
exp(D) =al + 8D,
exp(A1) 0 _ 1 0 A 0
( 0 ' exp()\g)> _a(O 1) +B<Ol Ag)'

Therefore we have the system

exp(A1) = a + B,
exp()‘Q) =a+ 6)\27

which solution is o = (A1, A2) and 8 = B(A1, \2). O



Remark 2. For any complex v € C, applying the same argument to yA which
eigenvalues are yA;

exp(vA) = oy (A1, A2)] + By (A1, A2) A,

with
ar () = AR eewlih),
e A1) —e A
By(A,A2) = xp(y )1\) /\Xp(’y 2).
1— A2

Remark 3. Such an approach is only possible if \y # Ao, which is not a case
we have to deal with for our application.

4.3 Strang splitting

We define a regular time step At and discretize the equations at times t,, = nAt.
We will decompose the Bloch equation into a sum of two contributions

Orp = Mip + Map,

where M; and My are order 4 tensors. To each tensor is associated evolution
operators M, (t) and Maz(t). The solution is approximated thanks to a com-
bination of these two evolution operators on subintervals of length At. Strang
splitting [13] is chosen in order to achieve second order precision. It consists in
approximating p(t,) = (M1 (t,) + Ma(t,))p(0) by

. (M1<A;>M2<Atw1<it>) p(0).

This method is consistent (see [7], for details) according to Rule 6. So, if M; and
M preserve properties of the density matrix, then these iterations of both op-
erators will also preserve naturally the same properties. Here the Liouville equa-
tion and the combination of transverse and longitudinal relaxations (provided
some conditions on the v;; and W), are fulfilled, see [3]) both preserve the
Hermicity of the density matrix, its positiveness as an operator and its trace.
This will therefore also be true for the derived splitting scheme.

5 Relaxation/raw Bloch decomposition

We decompose equation (4) into a pure relaxation equation:

Depix = Q(p)jk; (8)

and the raw Bloch equation

Oipjr = —i[H, pljk- (9)



5.1 Exact discretization of the raw Bloch equation

Let V"t1/2 be the average of the interaction Hamiltonian V on the interval
[tnvtn-i-l]:

yrtl/2 — i /thrl V(r)dr.

On this time interval an exact evolution of the Liouville equation is given by
Pt = exp(—iAt(Hy + VHY2)) pm exp(iAt(Hy 4+ VHY2)).

We can use the results of Section 4.2 to compute the matrix exponentials. Let
)\?;1/2 be the eigenvalues of the matrix H"+1/2 = Hy + V"+1/2 then

exp(iAtHn-i-l/?) — ontl/27 4 ﬂn+l/2Hn+l/27 (10)

where with the notations of remark 2,

a2 = o (AT AT,
B2 = A (AT AT,

Therefore
(an+1/21 + ﬁn+1/2Hn+1/2)pn+l _ pn(an+1/21 + ﬁ"+1/2Hn+1/2).
We can rewrite this in an explicit form

pn+1 _ (an+1/2I +6’n+1/2]—{n+1/2>71pn(anJrl/2I + 6n+1/2Hﬂ+1/2), (11)

5.2 Non-standard interpretation of the raw Bloch equa-
tion
The scheme (11) can also be written

a7z+1/2(pn+1 _ pn) _ ﬁn+1/2(ann+1/2 _ Hn+1/2pn+1).

If At is small enough, we can ensure that 3"T1/2 is nonzero and

an+1/2
. n+1l pn) _ 7’L'(Hn+1/2,0n+1 _ ann+1/2),

¢ Bnt1/2

or equivalently
((I)n+1/2(At))_1(pn+l _ pn) _ _i(Hn+1/2pn+1 _ ann+1/2)7
n+1/2 (12)
n+1/2 _ 6
In the right-hand side, we recognize a nonlocal discretization of the right-hand
side of the Bloch equation (9) (see Rule 3). In the left-hand side, we have a
nonstandard discretization of the time derivative of p according to Rules 1 and
2, setting
d(At) = d"T/2(AL) and o(At) = 1.

We can check easily that

p(At) = AtT + O(At?) when At — 0.



5.3 Exact discretization of the relaxation equation

An exact finite difference scheme for the equation (8) is straightforwardly derived
from its analytic solution. We can for example first update off-diagonal entries
and then diagonal entries and the solution is exactly

pltni1) = M(AE o p(t,)
where I = (v;1) % and we therefore define

Pt = M(A)e T2 o0 p = R(AL)p™. (13)

5.4 Splitting scheme

We can now generate a splitting scheme from equations (11) and (13), and get

pn+1 _ R(At/Q)(Oén+1/21+5n+1/2Hn+1/2)71R(At/2)pn(Ozn+1/21+5n+1/2Hn+1/2).

(14)
This scheme has a variable time step-size and preserve positiveness, because
both steps (11) and (13) preserve positiveness. The trace is also conserved.

If implemented as (14) this scheme is very expensive. First there is a matrix
inversion. This can be overcome either with a formula deriving from the anni-
hilator polynomial, or with an explicit form mimicking equation (10) for —At.
The second reason is that we have to compute (10) at each time step. This is
one of the reasons why a second decomposition is proposed in the next section.

6 Relaxation—nutation/interaction decomposition
We rewrite Equation (4) in the form
Opjn = —iwjkpix — iV, plix + Q(P)jks

where wj, = w; —wy, is the frequency associated with the transition of the level
k to level j. We decompose this equation into a relaxation—nutation evolution:

= Lp, (15)
where (Lp)jr = —iw;rpjr + Q(p)jr and an evolution with the interaction of
electromagnetic field

dup = iV, p). (16)

The relaxation—nutation equation has exactly the same algebraic structure
as the relaxation equation (8). We can perform the same exact resolution.

10



6.1 Exact discretization of the interaction equation

We can reuse the computation of the raw equation. This time we have a zero
diagonal and we can give a simple formula for the eigenvalues. Indeed

n+1/2
yntl/2 0 V12 /
Un+1/2 0

12

and its eigenvalues are )\?7;1/2 = i|v?2+1/2\. Setting 9" +1/2 = At|v?2+1/2\, we
have

|v?2+1/2\ exp (—i9”+1/2) + \v?;l/ﬂ exp (i9”+1/2)

n+1/2 _ n+1/2
e 2|v"+1/2| = cos(f ),
12
on+1/2) _ _ipn+1/2 ;
gtz = P (& ) nfj;l;( o ) = ni1/2 sin(6"1/?).
2[vyy 7 vy |
e +1/2 prt? At +1/2
o (At) = _Zan—H/QI = Jurifz tan(d ).
Since V"*1/2 is a Hermitian matrix
n+1/2
exp (ﬁ:iAtV”“/Q) = Teos(0™/2) i) sin(9"1/2). (17)

+1/2
logy 2|

Dividing this expression by cos(6™*1/2) (which is nonzero for sufficiently small
At), we get

. ) 1 ynti/2 1/ ynt1/2 1
Pt = cos? (") | 1 - ZT/Z‘ tan(9"F1/2) | p» I—I—iT/Q‘ tan(0"+1/2) | .
V12 V12

(18)
This is an exact scheme for the evolution equation with the electromagnetic
field.

6.2 NSFD schemes for the Liouville equation
Scheme 1. The scheme (18) can be cast as
. Vn+1/2 . N . 'Vn+1/2 N
<I+Zn+1/2tan(9 R o= ot i tan (672 )
V12 vy |
After some algebraic manipulations, we get

@71(9n+1/2,At)(pn+1 _ pn) _ 7i(vn+1/2pn+1 . pn‘/nJrl/Q)7

At
n+1/2 _ n+1/2
B2 At) = grri2 tan(0" /)1,

(19)

where @ is the renormalization matrix.
Remark 4. The function ® has the following property:
S(O"TY2 At) = ALl + O(AL?) when At — 0.

11



Scheme 2. The scheme (18) can also be written as
L ) Vn+1/2 Lo . Vn+1/2 Lo
PN i tan(67Y?) | = ([ — i tan(9" T2 | o7,
vy vy |
then

@71(9n+1/2,At)(pn+1 _ pn) — _Z-(Vn+1/2pn _ anrl‘/nJrl/Q)7

At
n+1/2 _ n+1/2
DO At) = vz tan(0 1

(20)

and we notice that ® is the same renormalization matrix as for Scheme 1.

Crank—Nicolson scheme. Combining schemes (19) and (20), we obtain the
following Crank—Nicolson-type scheme:

n n+1
<I>_1(97L+1/2,At)(pn+1 _ pn) _ _Z’[VTL+1/27 P +2P ] (21)
This scheme is also exact (since (19) and (20) are). We can then establish the
following explicit Crank—Nicolson model:

pn+1 _ Mn+1/2pnNn+1/2

. -1
M2 = <1 - ;®(9”+1/2,At)V”“/2) (1 + ;@(9"+1/2,At)vn+1/2> )

. —1
Nn+1/2 _ <I + E(I)(on+l/2 At)anrl/Z) (I o 3@(0n+1/2 At)vn+1/2>
2 ) 2 i )

DO At) = tan(6" /)1

9n+1/2
(22)

6.3 Splitting scheme

From the outset it should be noted that the form of the exact discrete model
(18) (and therefore (22)) for equation of evolution with the electromagnetic
field ensures the preservation of quantitative and qualitative properties such as
the trace conservation, the Hermitian character and positivity of p as operator.
To construct the splitting scheme, we use the Strang formula [13], because the
coupling with the electromagnetic field is of order two [4]. Thus, by using the
exact model (18) for the Liouville equation we propose the following scheme for
the Bloch model for two-level atoms:

Pt = cos? (0" 2) L(AL/2) M2 L(AL/2)p N2
M’n+1/2 — I _ i©(0n+1/27At)Vn+l/27

N2 I+Z~@(9n+1/2’At)Vn+1/27 (23)
At
@(97%9—1/2’ At) = W tan(9"+1/2).

12



To demonstrate the performance of our splitting scheme compared to that
presented in [3]:

pn,+1 _ £(At/2)M7'+1/2£(At/2)pnNﬂ+1/2,

. —1
n+1/2 _ _ ! n+1/2 * n+1/2
M = <I 2AtV > <I+ 2AtV > , (24)

NH/2 = <I + ;AtV”+1/2> (I - ;AtV"“/2>

we renormalise the step-size such that the discrete model for the Liouville equa-
tion becomes exact, which leads to the scheme:

p" T = L(At/2)M™TY2L(AL/2)pn N /2,

. —1
Mn+1/2 _ <I o ;@(9n+1/2,At)Vn+1/2) <I+ ;@(9n+1/2,At)Vn+l/2> 7

) -1
NntL/2 <I+ ;¢(9n+1/2’At)Vn+1/2) <I . ;©(0n+1/2’At)Vn+1/2> 7

At
n+1/2 o n+1/2
DO At) = g1z tan(0"+1/2).

(25)
Schemes (23) and (25) have a variable time step-size and preserve positiveness,
because the solutions of sub-equations are positive. This property is still con-
served when relaxation terms satisfy the conditions given in Section 2. The
trace is also conserved.

We can already see that these two schemes are theoretically equivalent, be-
cause they use exact solutions of sub-equations. However, the scheme (23) is
algorithmically less expensive because it uses only matrix products, whereas the
scheme (25) needs a matrix inversion or an iterative method. Moreover, this
last scheme is more complex than that presented in [3], because it implies to
recalculate the discretization time step-size at each iteration.

The scheme (23) is of the same type than (14), because both use the exact
expansion of the matrix exponential for the exact discretization of the Liouville
equation. One of the advantages of (23) is that it simplifies the computations
of parameters a and [, thus giving for the matrix exponential an expression
that is easy to invert analytically, which effectively reduces the computational
cost. Indeed, one can calculate once and for all the coherence moduli of the elec-
tric dipole matrix and recalculate at each step the eigenvalues of the electrical
potential matrix by a simple multiplication.

7 Optical Bloch equations

We consider the exact scheme (19) for the evolution of interaction with the
electromagnetic field and write explicitly the evolution of each entry of the

13



density matrix:

n+1

P67 172 At)

P11 — P11 . n+1/2 1 +1/2
¢(9n+1/2 At) = _Z(U?z / ngr —0?271?2 / )s
+1 ’ n
Plz - — Pia s n+1/2 1 +1/2
2 = —i(viy / S S / )s

n+1 n - -
14 —p . n+1/2 n n n+l/2
¢(9271L+1/2 2Alt) = (v / Pt — iy / )s (26)
n+1 ’ n -
14 —p on+1/2 p n ,n+l/2
¢(9272L+1/2 2Azt) = vy / P12+1 — P21V12 / )
¢(9n+1/2, At) = W tan(9n+l/2).

We now want to transform the complex variables of the Bloch equation into real
variables. To do so, we use the following change of variable

ut = pn t Pl
uy = i(ply — ), (27)
uz = Pl — Py
System (26) becomes
wt ey —2Tm(v}y /%) u! g :
(0172, A) 2
n+1 n n+1 n
71624_ — Y = -2 Re(v?;lp) 7u3+ + s ,
¢(9n+1/2’ At) 2
upt 2Re(v}y /%) T+ (28)
G(OmF1/2, At) 1 2
n+1 n
+2Im(vf5 /%) (ul ; o ) 7
POTTVE A = G tan (@),

Note that System (28) is an exact scheme for the evolution of interaction with
the electromagnetic field in which the same variable changes are made, i.e.,

8tu1 = —21111(1/12)113,
8tu2 = =2 Re(vlg)u;g, (29)
3tu3 = 2R€('U12)U2 + 2:[111(’[)12)11,1.

Moreover, this scheme satisfies the Mickens rules and can be seen as a nonstand-
ard Crank—Nicolson scheme. This justifies why the Crank—Nicolson scheme for
the two-level model has good mathematical properties.

If we transform the scheme (20), which is also exact, then we get a system
similar to (28) but in which the right-hand sides are opposite from (28). This
means that if we transform the Crank—Nicolson scheme (21) (which is also ex-
act), then we get a system in which the right-hand sides are zero. We can also
notice that the discrete nonlocal models (20) and (21) cannot be used for the

14



raw equation. This shows that the nonlocal discretization used in (19) is the
only valid nonlocal discrete representation for the Liouville equation (for any N-
level model). However, the exact numerical model for the raw equation cannot
be transformed into an exact scheme for the optical Bloch equations, because
of nonlocal discretization. In this case, it will be interesting to first apply the
nonlocal discretization to the optical Bloch equations and then to renormalize
the discretization step-size. But such an approach goes beyond the scope of this

paper.

8 Numerical Simulations

In this section we present numerical simulations applied to Self-Induced Trans-
parency (SIT) for testing the reliability of theoretical results.

8.1 Self-induced transparency

SIT is a phenomenon that can be described very well with much simpler models
than the nonlinear Schrodinger equation. It is also relatively simple because it
involves only two levels, and allows to quantify the performance of a scheme
without being polluted by positiveness problems that occur for more than two
levels. This is the test case used by Ziolkowski et al. [17] to test the first Bloch
code. For our study, this test case qualitatively and quantitatively validates the
discrete models we have derived.

SIT consists to light a matter with a wave which profile corresponds to the
soliton of the cubic Schrodinger equation. This wave should transmit energy
to the matter which should give it back exactly. The wave thus leaves matter
unchanged, while matter experiences an integer number of inversions.
Consider the propagating field given by

E(t,z) = E(t, 2) sin(wo (t — z/v)),

where wy is the frequency of the pulse and £(¢, z) is the envelope of the wave,

which equals to
E(t, z) = Eysech (t — z/v) ,

Tp
where & = 2/m7, is the maximum amplitude of the wave, 7, is the pulse
duration, m = ||p||s with p the dipolar moment associated to the transition.

At the initial moment, all the atoms are in the ground state.

8.2 Comparison

In the following, we compare various schemes for the Bloch model without re-
laxation, since the relaxation terms does not have a major impact on the phe-
nomenon we are studying and would destroy the SIT phenomenon. Therefore
we consider

Op = —’i[HQ +V, p].
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We perform the numerical simulations for six schemes (described below):
Crank—Nicolson method, NSFD FEuler method 1, RK4 method, NSFD Euler
method 2, NSFD Crank—Nicolson method, and SFD Crank—Nicolson method.
All these schemes are consistent. They preserve the qualitative properties of
Bloch equations, except the generic methods for differential equations, namely
Crank—Nicolson and RK4 methods.

All these methods give qualitatively good results for small values of the time
step. To measure the time step we give an equivalent of the CFL condition
based on the wave frequency wg, such that the schemes preserving the density
matrix perform well for a CFL smaller than 1.

Then we test the robustness of the methods when the time step becomes
larger, through its ability to preserve the main features of the SIT phenomenon.
On the various figures we plot the population of the excited level p11(t) (red)
and the real part of the coherence p1a(t) (blue).

8.3 Schemes without splitting

Crank—Nicolson. The first scheme to be considered for this equation is the
Crank—Nicolson approach which is of order two, tested for the first time on the
Bloch equation by R.W. Ziolkowski et al. [17]:

n+1 n
pn+1 =" — iAt[HO + Vn-|—1/27 %] (30)

This method is resolved by a fixed point procedure.

NSFD FEuler method 1. We consider in the second place the exact scheme
that should be written in the form of a NSFD model:

pn—i-l — (I+i¢n+1/2(H()+Vn+1/2))_1pn<l+i¢n+1/2(H0+Vn+1/2)),
'ﬁn+1/2
—1

¢n+1/2 —
an+l/2 .

(31)
We observe that if ¢"+1/2 = At, then we get the first order Euler approximation
of the matrix exponential, so this method will be called NSFD FEuler method 1.

RK/. To construct the fourth-order Runge-Kutta scheme (RK4), we rewrite
the Bloch equation in the form:

op = f(p).
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We define regular time step At and discretize the equation at times t,, = nAt.
The RK4 method is written [14]:

At
Pt = p o T (K 2Ky + 2K + Ka),

Kl - f(tnapnkt At
K2:f(tn+77pn+7K1)7 (32)

At

KS = f(tn + 7;P” + 7K2)7
Ky = f(tn + At, p" + ALK;).

By construction all the methods perform relatively well for a CFL less than
1 as shows Figure 1. The divergence from the correct SIT phenomenon first
shows small ripples in the coherence after the interaction the the wave (already
visible for the Crank—Nicolson scheme at CFL=0.5) and these small ripples
become a thick queue when the time step grows. Then an effect on the final
value of the population is visible, at CFL=2. for the Crank—Nicolson and RK4
schemes, and CFL=5. for the NSFD Euler method 1. For CFL=7. the Crank-
Nicolson methods is even unstable and does not produce a plotable result. We
can conclude that none of these methods really perform well for large values of
At. We are able to overcome this using splitting.

8.4 Schemes with splitting

To write the other schemes, we split the Hamiltonian into two matrices, describ-
ing respectively the nutation and the interaction

dp = —i[Ho, p] — i[V, p).

In the following, we present Strang-type schemes which only differ by the method
of calculating the matrix exponential of the exact solution to the Liouville equa-
tion. We systematically end with the nutation step, which is stiffer especially
when the electric field is small.

NSFD FEuler method 2. For this splitting we recover the schemes defined
in Section 6.3

Pt = exp(—iHo%) exp(—iV" T2 At) exp(—iHo%)p"
At I
exp(iH()?) exp(iV" T2 At) exp(iHO?).

It is more convenient to write this scheme as
P = cos?(9711/2) exp(—z’Ho%)M”“‘l/2 exp(—iHU%)p” exp(z'Ho%)N”“‘l/2 exp(iHo%),
MTL+1/2 N i¢<9n+1/2,At)Vn+1/27
Nn+1/2 _ I + ,L'¢(9'n,—i-1/2’At)‘/n—‘rl/Q7

¢(9n+1/2,At) _ Wif/ztan(gn-‘rlﬂ).

(34)
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Figure 1: Methods without splitting for CFL= 0.5, 1., 2., 5., and 7.
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Let us also observe that ¢(8"+1/2, At) = At would give the first order Euler
approximation of the matrix exponential. This scheme will be called NSFD
Euler method 2.

NSFD Crank—Nicolson method. We can use the nonstandard Crank—Nicolson
approximation to evaluate the matrix exponential and write:

n+1 exp

(—i A‘t)M”‘H/Q exp(—iHo5t)p" exp(iHo 5 )N /2 exp(iHo4L),
M2 = <1 5@ (o H1/2 At)V”“/Q) <I+ ;cb(e”“/z,At)V"““)

—1

)

. -1
N2 <I+ ;q) 9n+1/2 At)vn+1/2) < ;@(0”“/2,At)vn+1/2) 7
At)

¢(0n+1/2 9n+1/2 n(9”+1/2).

(35)
This method will be called NSFD Crank—Nicolson method.

SFD Crank-Nicolson method. Replacing ¢(6"+1/2, At) by At in the pre-
vious scheme, we obtain the splitting scheme derived by Bidégaray et al. in [3]
that we call SFD Crank-Nicolson method.

Globally the SIT phenomenon is much well preserved when splitting is ap-
plied. The NSFD methods give very good results. Even for large CFLs the
population are relatively well described. We observe for CFL=7. that the pop-
ulation inversion is complete but slower. The standard Crank-Nicolson method
yields a good final value for the population but the inversion is not complet for
CFLs larger than 2. We also observe ripples in the population.

9 Conclusion

In this paper, we presented splitting schemes for the two-level Bloch model. To
do this, we have proposed two ways to decompose the Bloch equation in sub-
equations. First, into a pure relaxation equation and the raw Bloch equation,
second into a relaxation—nutation evolution and the interaction with an electro-
magnetic field. Having solved exactly sub-equations in each case, we constructed
splitting schemes of order two. These schemes are of variable time step sizes
and satisfy the rules of nonstandard discretization of Mickens. Furthermore,
they preserve the qualitative and quantitative properties of the Bloch equations
(Hermicity, trace, and positiveness) and can be coupled with the Yee method
[16] for the numerical study of the radiation—matter interaction.

At the end of this study, it appears that the splitting schemes are more ro-
bust for large time-steps. High accuracy methods such as RK4 which do not
preserve the physical properties of the Bloch equation are a solution to achieve
this robustness. The two phenomena of nutation and interaction with the wave
are intimately intricate in the SIT experiment but only when the wave is sig-
nificant. To associate them when the nutation term is really stiffer is a bad
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Figure 2: Methods with splitting for CFL= 0.5, 1., 2., 5., and 7. (top to bottom).
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idea and this is why the splitting methods perform better. Despite its complex-
ity compared to the SFD Crank—Nicolson method, the NSFD Crank—Nicolson
method is an interesting choice from the point of view of the conservation of
physical properties whatever the discretization step-size. However, this method
is theoretically equivalent to NSFD Euler method 2 and produces similar nu-
merical simulations. Thus, the simplicity of implementation of the NSFD Euler
method 2 selects it as the best method from every point of view.

The gain related to the two-level Bloch model approximation by the splitting
method allows to consider the numerical resolution of N-level model. It will
then be essential to generalize to the matrices of order N > 3 the equivalent
formulations for matrix exponentials developed for the exact numerical solution
of the Liouville equation. This is the object of our future research.
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