
HAL Id: hal-01721539
https://hal.univ-grenoble-alpes.fr/hal-01721539

Submitted on 2 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding the Needle in the Heap: Combining Static
Analysis and Dynamic Symbolic Execution to Trigger

Use-After-Free
Josselin Feist, Laurent Mounier, Marie-Laure Potet, Sébastien Bardin, Robin

David

To cite this version:
Josselin Feist, Laurent Mounier, Marie-Laure Potet, Sébastien Bardin, Robin David. Finding the
Needle in the Heap: Combining Static Analysis and Dynamic Symbolic Execution to Trigger Use-
After-Free. SSPREW-6 - 6th Software Security, Protection, and Reverse Engineering Workshop, Dec
2016, Los Angeles, United States. pp.1-12. �hal-01721539�

https://hal.univ-grenoble-alpes.fr/hal-01721539
https://hal.archives-ouvertes.fr

Finding the Needle in the Heap: Combining Static Analysis and

Dynamic Symbolic Execution to Trigger Use-After-Free
∗

Josselin Feist
Laurent Mounier

Marie-Laure Potet
Verimag / UGA

Grenoble, France
first.last@imag.fr

Sébastien Bardin
Robin David

CEA LIST
Software Safety and Security Lab
Université Paris-Saclay, France

first.last@cea.fr

ABSTRACT
This paper presents a fully automated technique to find and
trigger Use-After-Free vulnerabilities (UAF) on binary code.
The approach combines a static analyzer and a dynamic
symbolic execution engine. We also introduce several original
heuristics for the dynamic symbolic execution part, speeding
up the exploration and making this combination effective in
practice . The tool we developed is open-source, and it has
successfully been applied on real world vulnerabilities. As an
example, we detail a proof-of-concept exploit triggering a
previously unknown vulnerability on JasPer leading to the
CVE-2015-5221.

CCS Concepts
•Security and privacy→ Formal security models; Soft-
ware security engineering; Vulnerability scanners;

Keywords
binary code analysis; vulnerability detection; use-after-free;
dynamic symbolic execution; automated exploit generation

1. INTRODUCTION
With sustained growth of software complexity, finding

security vulnerabilities has become an important necessity.
Both defenders and attackers are involved in the process of
finding these holes in software, either to improve its security
or to attack it. Nowadays, even large companies propose
bug bounties, rewarding people finding vulnerabilities in
their systems. Source code is not necessarily available; thus,
the need for binary analysis comes naturally. Well known
techniques such as static analysis [29, 11], dynamic analysis
(fuzzing) [53] or Dynamic Symbolic Execution (DSE) [19, 17]
have demonstrated their ability to detect these vulnerabilities,
each with their own strengths and limitations. While static

∗Work partially funded by ANR, grant ANR-12-INSE-0002

analysis allows to evaluate all possible program executions to
detect complex patterns, it also requires to over-approximate
the program behavior, leading to numerous false positives
(i.e. misjudging safe parts of the code as vulnerable), which is
a serious issue in security where feasible vulnerable paths are
required. Note that this problem usually aggravates when
dealing with binary code. Dynamic analysis and fuzzing
techniques give a small number of false positives (if not zero),
but they can explore only a limited amount of program
paths. In particular, vulnerabilities corresponding to complex
patterns can be very hard to trigger without a deep knowledge
of the target code. Dynamic Symbolic Execution is a trade-
off between static and dynamic analysis. This technique
can trigger complex paths, but it comes with a significant
execution overhead and scalability issues.

Challenge and goal. In this paper, we focus on a partic-
ular class of vulnerabilities named Use-After-Free [30]. A
Use-After-Free (UAF) appears when a heap element is used
after having been freed. This pattern is difficult to find and
requires a thorough understanding of the program: on the
one hand UAF are related to heap memory and require rea-
soning about possible aliases, which is known to be difficult in
static analysis [41]; on the other hand, paths triggering UAF
are hard to find, requiring to go through several events (allo-
cation, release, use) possibly distant in the code, penalizing
both dynamic analysis and DSE [36].

The goal of this paper is to show how the combination of
two different techniques, static analysis and dynamic sym-
bolic execution, can be used to detect UAF in a both efficient
and precise manner, i.e. the method detects real vulnerabili-
ties, avoids false positives, and generates proofs-of-concepts
as a set of inputs allowing to effectively trigger these vulner-
abilities.

Contribution.

• The main contribution of this paper is a novel combina-
tion of static analysis and dynamic symbolic execution
geared at detecting Use-After-Free on binary code. This
combination consists in computing a weighted slice from
the static analysis and using it to guide dynamic sym-
bolic execution (WS-Guided DSE).

• The second contribution is a running example of a real
vulnerability found by our approach on the JasPer ap-
plication (CVE-2015-5221), and practical comparison
with standard DSE and fuzzing.

• Finally, we detail in depth aspects of our implementa-
tion – especially a novel correct and complete monitor

for UAF detection as well as library-driven tuning of
search heuristics for DSE, and provide all tools and
examples for the sake of reproducibility. By sharing
tools and experiments1, we hope to participate actively
in the opening of the vulnerability detection activity
and promoting better access to such techniques.

Discussion. Our work shows that static analysis can be
fruitfully coupled with DSE for complex security purposes
such as UAF detection, while most industrial approaches
focus only on fuzzing techniques. In particular, the key issues
which make our proposed approach effective are:

• a lightweight and dedicated static analysis, unsound
and incomplete but scalable and precise enough to high-
light a reasonable number of suspicious program slices
with potential vulnerabilities.

• a dedicated DSE approach geared at exploring these
suspicious slices in order to report only real vulnera-
bilities, together with original guidance heuristics for
drastically reducing path exploration.

Our first experiments (Section 8) show that the approach
already improves over basic DSE (which is not really adapted
to single-goal coverage or safety properties), and that it may
also beat fuzzing in some situations, typically when no good
initial seed is available.

Yet, the presented work is still at an early stage. Especially,
more experiments should be conducted, and the number of
suspicious slices should be reduced. Possible mitigation
measures are discussed in Section 8.4.

Outline. The paper is organized as follows. First, we give
a motivating example. Then we provide an overview of our
approach and give some background on both static analysis
and DSE used in this work. Section 5 details the core of
our approach: the guided DSE. Afterward, we describe our
Oracle detecting UAF and explain some specificities of our
symbolic engine. We present the Jasper case-study in Section
8. Finally, we discuss related work and future improvements.

2. MOTIVATING EXAMPLE
A motivating example is presented in Figures 1 and 2,

respectively showing the source code of the example and its
graph representation. Line 11 represents potentially large
part of the program not relevant for the UAF detection. At
first, a memory block is allocated and put in p and p_alias

(lines 1 and 2). Then a file is read at line 4, and its content
is placed in the buffer buf. If the file starts with the string
"BAD\n" the condition at line 6 is evaluated to true. In this
branch, the pointer p is freed (line 7); however, there is a
missing call to exit (line 8). This behavior simulates a part
of the program reached in case of error but with a missing
exit statement. Forgetting a call to exit or a return statement
is, unfortunately, a common mistake (e.g.: CVE-2013-4232,
CVE-2014-8714, CVE-2014-9296, CVE-2015-7199, etc.). In
this case, p and p_alias become dangling pointers. Then
another comparison is made at line 14, if it is evaluated to
true, p points to a newly allocated memory block at line 15,
but p_alias is still a dangling pointer. In the second case,
both p and p_alias point to a newly allocated block. p and

1Note for reviewers: all tools and detailed experiments will
be publicly available for the conference

p_alias are used at line 22 and 23. While p is always pointing
to a valid address, p_alias can be a dangling pointer, leading
to a UAF. To summarize, we got three types of path:

• P1: line 6 is false → no UAF;

• P2: line 6 is true, and line 14 is true → UAF in 23;

• P3: line 6 is true, and line 14 is false → no UAF.

The interesting point is that paths of type P2 and P3 contain
the allocation, the free, and the use sites of the UAF, but
only paths of type P2 contain the vulnerability.

1 p=malloc(sizeof(int));
2 p_alias=p; // p and p_alias points
3 // to the same addr
4 read(f,buf ,255); // buf is tainted
5
6 if(strncmp(buf ,"BAD\n" ,4)==0){
7 free(p);
8 // exit() is missing
9 }
10 else{
11 .. // some computation
12 }
13
14 if(strncmp (&buf[4],"is a uaf\n" ,9)==0)

{
15 p=malloc(sizeof(int));
16 }
17 else{
18 p=malloc(sizeof(int));
19 p_alias=p;
20 }
21
22 *p=42 ; // not a uaf
23 *p_alias =43 ; // uaf if 6 and 14 =

true

Figure 1: Motivating example

Limitations of standard approaches. This example il-
lustrates the limitation of standard vulnerability detection
methods for UAF detection:

• static analysis can be used to detect UAF, however, as
we discussed previously, reasoning with heap and aliases
makes such analysis less precise [41] and dramatically
increase the number of false positives;

• standard fuzzing techniques have difficulties to find the
right input needed because of calls to strncmp. Some
fuzzers may even not be able to trigger the desired
path;

• DSE can find the right path; however, it can be lost
during the exploration in irrelevant parts of the code,
such as line 11; moreover it also brings a significant
overhead, and can take a long time to trigger the UAF.

3. OVERVIEW OF OUR APPROACH
Instead of seeing static analysis and dynamic symbolic

execution as opposite, we propose to combine them:

Figure 2: Motivating example: control-flow graph

• We use the strength of static analysis to detect some
interesting sections of the code and discard other parts,
thanks to a dedicated approach, scalable and precise
enough, yet incomplete and unsound;

• Then, we focus the Dynamic Symbolic Execution (DSE)
only on those interesting parts, with specific search
heuristics reducing the path explosion. Note that DSE
enforces correctness: a vulnerability reported is a real
UAF, and we even get a proof-of-concept as an input
able to trigger it.

Workflow. Figure 3 represents our tool-chain. The static
analysis part relies on the GUEB [30, 37] tool. DSE is per-
formed on the Binsec/se platform [26]. From a binary, the
static analysis detects a UAF and extracts a slice containing
it. We weight this slice and use it to guide the DSE explo-
ration. Then, once a UAF is validated, a proof-of-concept

(PoC) is generated.

Novelty. The main contribution of this work is to show how
the combination of static analysis and DSE can efficiently
be used on UAF vulnerabilities. UAF found by our analysis
are true positives, and both local (execution trace) and
global (slice representation) information give a clear and
deep understanding of root cause of the defect.

4. BACKGROUND

Figure 3: Combining static analysis and DSE

We detail in this section the static analysis step of our
approach, and recall some basis about dynamic symbolic ex-
ecution. While these techniques are not a novel contribution,
they are needed to understand the remainder of this paper
thoroughly.

4.1 Static Analysis
First we recall the main principle and design choices of

GUEB, the static analysis tool we use for UAF detection.
Then, we give some information about its implementation
and some vulnerability examples we got using this tool.

Principle and design choices. GUEB performs a dedi-
cated value-analysis [4] on binary code to provide, at each
program location, an approximation of the set of values
contained in each register and memory address. Knowing
heap allocation and release functions (e.g., malloc and free),
this analysis allows to retrieve an abstraction of the current
heap state as two sets containing respectively the addresses
of the allocated and freed heap memory chunks. From
this information, GUEB identifies static paths in the pro-
gram control-flow graph (CFG) able to successively allocate,
free, and use the same memory chunk, corresponding to a
(potential) UAF.

Static analysis on binary code raises specific issues. In
particular the Call Graph and CFG produced by disassem-
blers are usually both incorrect and incomplete, due either
to dynamic jumps or difficulties to retrieve function bounds.
Since GUEB targets potentially large codes, several design
choices are required to make it scalable and precise enough,
at the price of soundness and completeness.

• First, since correct and precise recovery of both CFG
and Call Graph is a big challenge of binary-level static
analysis [10], we rely on scalable syntactic recovery
methods, as provided for example by IDAPro [39]. De-
spite being incorrect in principle, these techniques are
the de facto standard in disassembly and reverse activi-
ties, and they perform reasonably well on non-protected
code. We then consider as program entry points each
functions without any predecessor in the Call Graph.

• Second, loop behaviors are under-approximated through
bounded loop unrolling. Indeed, using fix-point com-
putations to get precise enough over-approximations
of a loop behaviors at the binary level is currently not
tractable on large binary codes, while on the other
hand, according to our experiments, a UAF does not
depend that much on loop behaviors. Unrolling loops
a few time happens to be sufficient in practice.

• Finally, functions are inlined with a bound on the
depth of the call stack, in order to get a precise but
limited (context-sensitive) analysis. Indeed, precise
inter-procedural reasoning is required since allocation,
release and use operations of a same memory chunk
are usually distant from each other in the code.

The output produced by GUEB is a set of CFG slices,
one per UAF found. Each slice is a sub-graph of the ini-
tial program CFG, starting from the entry point of a root
function, and containing all the paths exercising a given
UAF. More formally, S = (V,E, nalloc, nfree, nuse) represent
the slice S, where V denotes its nodes, E its edges, and
nalloc, nfree, nuse ∈ V and are the allocation / free / use
node representing the UAF. Each node refers to a basic block.
As GUEB works on the inlined representation of the pro-
gram, we represent a node by a pair (addr ∗ cs) where addr
is the instruction address and cs the call string. The slice
obtained for the motivating example is depicted in Figure 4.

Due to the approximations made in the analysis, UAF
paths in the extracted slice are not always feasible (false
positives). As a result, all the potential vulnerabilities found
by GUEB have to be confirmed by providing some concrete
inputs. This work objective is precisely to show how a guided
dynamic symbolic execution can be used for this purpose.

Figure 4: CFG slice produced by GUEB

Implementation and results. GUEB is built upon the
BinNavi framework [58], which offers an assembly level in-
termediate representation (REIL) [28] and a basic API to
prototype data-flow static analysis. Translation from binary
code to assembly code can be provided by IDAPro [39].

GUEB has been first applied on (the already known) CVE-
2013-4232 (tiff2pdf) to validate the approach. It has also
been used to find six previously unknown UAF vulnerabili-
ties (in JasPer: CVE-2015-5221, openjpeg: CVE-2015-
8871, giflib: CVE-2016-3177, inside a debugging tool
of bind, accel-ppp and gnome-nettool). However, each of
these new vulnerabilities has required a manual inspection of
the results of GUEB, to confirm the feasibility of the issue.

4.2 Dynamic Symbolic Execution
Dynamic Symbolic Execution (DSE) [17, 35, 54, 50, 33,

16, 15] is a formal technique for exploring program paths in
a systematic way. For each path p, it computes a symbolic
path predicate Φp as a set of constraints on the program

input leading to follow that path at runtime (path predicates
are conjunctions of all the branching conditions ci encoun-
tered along that path) and assignations. Path exploration is
achieved by iterating on (user-bounded) program paths as
follows (a complete algorithm is given in Section 5):

1. The program is executed from an initial (concrete)
program input i0 to produce a first path p0; its path
predicate Φp0 is added to an (initially empty) working
list WL;

2. A path predicate Φp = c1 ∧ c2 ∧ · · · ∧ cn is extracted
from WL and, in order to try to explore an alternative
branch, one branch condition ci is negated to build a
new path predicate Φ′

p;

3. Φ′
p is then fed to an off-the-shelf SMT solver: a solu-

tion to this predicate is a new test input i allowing to
explore the targeted path p′; Φ′

p is added to WL and
the algorithm resumes at step 2.

The exploration terminates either when WL is empty (the
set of paths being made finite through limiting the size of
the considered paths), or when a path satisfying a given
condition is reached (e.g., a vulnerable path has been found).
The main advantages of the approach are:

Correctness: there is no false positive: a bug reported is a
bug found;

Flexibility: due to concretization [33, 50, 25], it is possible
to decide which data should be considered as symbolic
vs. concrete when building a path predicate; as a
result the approach can handle unsupported features
of the program under analysis – with or without losing
correctness [32];

Easier adaptation to binary code analysis, compared to
other formal methods; many binary-level DSE tools
have been developed [8, 34, 22, 20, 2].

The main drawback of DSE is the so-called path explosion
problem, leading DSE to crawl a giant set of paths blindly in
the hope of finding a buggy one.

The Binsec platform. Binsec [27] is a recent platform for
the formal analysis of binary codes. The platform currently
proposes a front-end from x86 (32bits) to a generic inter-
mediate representation named DBA [9] (including decoding,
disassembling, simplifications), and several semantic analy-
ses, including the Binsec/se DSE engine [26]. Binsec/se
features strongly optimized path predicate generation as well
as highly configurable search heuristics [26, 5] and C/S poli-
cies [25], and a stub mechanism for specifying the behavior
of missing parts of the code (cf. Section 7.2).

5. CORE TECHNIQUE: WS-GUIDED DSE
Designing a good search heuristic is a major concern in

DSE. Search heuristics do not matter for path coverage, how-
ever, they can make a huge difference for instruction (or
branch) coverage. Many heuristics have been proposed in
the literature, starting for example from [16, 44, 34]. Un-
fortunately, it appears that relying on a single heuristic is
often not sufficient and that different programs or different
goals require different heuristics. Typically, DSE engines rely
on a selection mechanism returning the best path candidate

w.r.t. a user-defined score function. Scores are built from
several (predefined or dynamically computed) path charac-
teristics, such as length, instruction call-depth, distance to a
target, etc.

Whereas most DSE strategies focus on exploring as many
paths as possible in a minimum of time, our approach tries
to trigger one particular path as quickly as possible. This
path needs to respect a specific property: containing a UAF.
To find such a path, we guide our exploration with a slice
of the program extracted from the results of static analysis,
i.e. a restriction of the program to a set of paths possibly
leading to the UAF vulnerability. Doing so, we explore only a
small portion of the program and do not suffer from the path

explosion problem as much as standard DSE strategies.
Actually, we go a step further and use a weighted slice, i.e. a
slice enhanced with score information used for guiding the
DSE during the slice exploration.

Weighted Slice. Thanks to the static analysis (Section 4.1),
we have the set of nodes representing the slice leading to a
UAF. Three of them have a particular role: the allocation
(nalloc), the free (nfree) and the use (nuse) nodes. We need to
find an input leading through these three nodes. As already
discussed, a key feature of DSE exploration is to prioritize
which branches will be inverted first. We guide this selection
using the slice, more precisely, we compute for each node a
score to the destinations.

Distance Score. We denote DS the score to the destina-
tions (Distance Score). In our experiments, DS is computed
using shortest paths, in a preprocessing step before the explo-
ration. As UAF requires three targeted nodes, we compute
three scores for each destination, to: nalloc, nfree and nuse.
The prototype of DS is: DS : nsrc ∗ ndst → score

Remind that, since the static analysis performs function
inlining, we associate nodes with their call-stack to distin-
guish the same instruction in different calling context (thus
the node n is in fact represented as a pair, addr ∗ cs).

To illustrate the need for three different scores, let us
consider the example in Figure 52. Two executions give two

0 p=malloc (..);
1 for (..){
2 if(cond1)
3 free(p);
4 else
5 ..
6 }
7 *p=42;

Figure 5: Score selection example

paths: P0 and P1, both unrolling the loop one time. P0
evaluates the condition at line 2 to false while P1 evaluates
it as true, and so P1 contains the call to free. We focus in

2Here the call stack is empty, and a node is only represented
by its line number in the code

this example on the score used to determine if it is interesting
to unroll a second time the loop (the second node "1 for"

in both cases). In P0, nfree was not reached; thus, we
should try to unroll a second time the loop and nfree is the
destination node used as parameter for DS. In P1, nfree

was reached; we do not need to unroll a second time the loop
and nuse is the destination node. Thereby, the node "1 for"

does not take the same destination and therefore the same
score, depending on if nfree was reached previously in the
path or not.

The slice is thus weighted by DS to guide the exploration.

Paths exploration. Algorithm 1 describes a high-level
view of how our method works. P represents a deterministic
program3, where P (i) denotes the (execution) trace followed
at runtime on input i 4. At first, we use an input seed, i0,
to generate a set of initial paths and to initiate the working
list WL, using get_initial_paths. Here, select chooses
from the WL a triplet: a path p, a condition to invert c
and its score. compute_predicate gives a path predicate
from a path p with respect to a conditional node ci (see
Section 4.2). Function solve evaluates this path predicate
and returns either an UNSAT verdict, or a SAT verdict with a
corresponding input i. If the trace P (i) does not contain a
UAF, checked by the oracle σ (see Section 6), a set of pairs
(ci, dsti) are extracted from p and S such that:

• ci are conditions of p corresponding to nodes of S;

• dsti is the destination node (nalloc, nfree or nuse) as-
sociated to (p, ci).

Then each (ci, dsti) is ranked with a score si, according to
DS. Finally, the path p with these branch nodes and their
scores are added to the working list WL. The algorithm stops
either when σ holds on the current path, or when there is no
more path to explore. Therefore, WS-Guided DSE ensures
correctness of its output, assuming the oracle σ is correct.
Such an oracle will be described in Section 6.

Algorithm 1: WS-Guided DSE

Input: Program P , DS, slice S, oracle σ, input seed i0
Output: Input i, with P(i) respecting oracle σ
WL := get initial paths(i0);
while WL 6= ∅ do

select (p, ci, si) ∈WL;
WL := WL\{(p, ci, si)};
Φp := compute predicate(p, ci);
verdict, i := solve(Φp);
if verdict = SAT then

t := P (i);
if t respects σ then

return i;
end
(c0, dst0)..(cn, dstn) := extract(p, S);
compute s0..sn where si = DS(ci, dsti);
WL := WL ∪ {(p, c0, s0)..(p, cn, sn)};

end

end
return Not Found ;

3Two runs of P (i) give the exact same internal computations.
4A path is defined statically from the CFG, while a trace is
defined at runtime.

Property 1 (Correctness). If algorithm 1 terminates
and returns an input value i, then the execution trace P (i)
respects σ. Hence, if σ is correct then i is a proof-of-concept
triggering an UAF on program P .

On the other hand, completeness is not ensured, since the
oracle is checked against a single trace and not against all
input following the same path. Moreover, since exploring all
paths of S is not always possible (there could be an infinite
number of paths), we must bound the exploration with a
timeout or a fixed number of paths, losing completeness –
but this is a standard and acceptable tradeoff with DSE.

Example. In our example, if we first try to explore the
program with a file containing only ’A’5 as input, the first
condition is evaluated to true, and we go out of the slice
(see Figure 6a). Since the path goes out of the subgraph at
the first condition, this one is selected. All the other possible
conditions on this path are outside the slice and are thus not
explored. DSE is able to invert the condition and creates
a new input starting with "BAD\n" (Figure 6b). However,
condition 14 is still evaluated to false with this new input
and so, in this case, there is no UAF (since the path belongs
to P3 in Section 2). DSE then creates a third input, by
inverting line 14: ’BAD\nis a uaf\n’ (Figure 6c). As there
is a UAF in the trace generated from this input, our oracle
detects it (see Section 6).

The exploration stops, and we now have a proof-of-

concept triggering the UAF.

(a) First path,
input filled with

’A’

(b) Second path,
input:

’BAD\nAAAA..’

(c) Third path,
input: ’BAD\nis

a uaf\n’

Figure 6: DSE: Paths generation

5This is a standard seed for dynamic analysis.

6. RUNTIME UAF DETECTION
Runtime UAF detection is not a trivial task. In particular,

executing in sequence the three operations alloc, free and
use on the same address is not a sufficient condition to
characterize a UAF. As seen in Section 2, paths in P3 fulfill
this condition, but they correspond to false positives. We
need a way to validate if a trace contains the UAF.

Issue. The main problem when defining a correct and com-
plete runtime checker for UAF detection is aliasing due to
re-allocations, as shown in our motivating example. Allo-
cation calls at lines 1 and 15 may return the same address
when condition 6 is true. Therefore, pointers p and p_alias

would be implicit aliases, but without referring to the same
memory block (i.e., returned by the same allocation call).
In particular, only p_alias is a dangling pointer and leads
to a UAF if it is accessed. Tracking the points-to addresses
relations only is therefore not sufficient, and the current
allocation site of each memory block has to be taken into
account.

Our solution. A UAF occurs on an execution trace t if and
only if the following property Φ holds:

(i) t = (. . . , nalloc(sizealloc), . . . , nfree(af), . . . , nuse(au))

(ii) af is a reaching definition of the block returned by nalloc

(iii) au is a reaching definition of an address in the block
returned by nalloc

Property Φ could be verified using data-flow analysis. How-
ever, the execution traces we consider during the DSE are
“incomplete” in the sense that the behavior of some library
functions is summarized by stubs to build the path predicates
(see Section 7.2). Data-dependency computations should then
take into account the side-effects of these functions. On the
other hand, by using the stubs, path predicates implicitly
keep the data-dependencies of symbolic values when pieces
of code are missing. Therefore, we propose to use another ap-
proach, directly based on the symbolic reasoning performed
by our DSE engine. The idea is to build a trace predicate

ϕt for trace t, similar to a path predicate except that all
input are fixed but only one unconstrained symbolic vari-
able Salloc corresponding to the value returned by the target
allocation site nalloc. Using a symbolic variable for Salloc

allows to detect the absence of data-flow relations between
this address and the ones used by nfree and nuse and avoids
the problem of implicit aliases occurring with concrete values.
Indeed, Φ holds on a trace t if and only if the SMT formula
ϕt ∧ Φ′ is not SAT, where

Φ′ = (af 6= Salloc) ∨ (au 6∈ [Salloc, Salloc + sizealloc − 1])

Φ′ is the negation of the properties (ii) and (iii) of Φ:

• af 6= Salloc: the pointer given as the parameter for
free is not the one allocated at nalloc (negation of
property (ii))

• au 6∈ [Salloc, Salloc + sizealloc − 1]: the pointer used is
not a reaching definition of the pointer allocated at
nalloc (negation of property (iii))

Thus, if ϕt ∧ Φ′ is UNSAT, these two conditions are false and
thus (ii) and (iii) are respected: a UAF is present.

We use ϕt ∧ Φ′ as oracle σ in Algorithm 1.

Property 2 (Correctness). As (ii) and (iii) are re-
spected, UAF detected by our Oracle are true positives.

Property 3 (Completeness). If a UAF is present in
the trace, it is detected by our Oracle; there is no false
negative.

Examples. In the motivating example (Figure 1), we have
two distinct paths containing nalloc, nfree and nuse.
• For paths in P2

6:

ϕt = (p0 = Salloc ∧ p alias0 = p0 ∧ p1 = 0x8040000)

Φ′ = (p0 6= Salloc) ∨ ¬(Salloc ≤ p alias0 < Salloc + 4)

ϕt ∧ Φ′ is UNSAT, which confirms the presence of a UAF at
line 23.
• For paths in P3,

ϕt = (p0 = Salloc ∧ p alias0 = p0 ∧ p1 = 0x8040000

∧p alias1 = p1)

Φ′ = (p0 6= Salloc) ∨ ¬(Salloc ≤ p alias1 < Salloc + 4)

In this case ϕt ∧ Φ′ is SAT (e.g., with Salloc = 0x0), which
confirms that there is no UAF in this path.

7. DSE APPLIED IN THE REAL WORLD
While DSE shows good ability to explore paths of a pro-

gram, it requires some adaptations in order to be used effec-
tively in real world examples. One problem is to explore part
of the program related to standard libraries. When dealing
with such cases, we use two different approaches:

• either we locally improve the search heuristic by using
a set of known code programming behaviors;

• Or we use stubs of libraries to model their effects with-
out tracing them.

Our goal here is not to replace the main search heuristics,
but rather to improve it locally in order to avoid getting
stuck in uninteresting parts of the path space.

7.1 Library-Driven Search Tuning
Libraries are generally used respecting some specific code

programming behaviors. By knowing such patterns, we can
improve the exploration and drives it with this knowledge.
In the current implementation, these heuristics are based
on information of common libraries, such as libc. We called
them Libraries Driven Heuristics (LDH). As we guide the
DSE by using a score provided by DS, we can detect that
the exploration diverges from the destination (e.g. the score
decreases). The idea is to use LDH to generate a set of new
paths to explore. Then, thanks to DS, we can know if these
new paths are interesting to reach the destination, or not.
We describe in the following two heuristics needed during
the exploration of realistic codes.

7.1.1 String Length Based Heuristic
The first heuristic helps when there is a comparison on a

string whose length depends on the number of iteration of a
previous loop. Let us consider this example:

6In this example, malloc returned 0x8040000 as concrete
value, and sizeof(int)=4. p0 and p1 and p alias0 are the
SSA variables created during the path predicate computation.

1 read(f,tmp ,255);
2 for(i=0;i<255;i++){
3 buf[i] = tmp[i];
4 if(tmp[i]==’\0’) break;
5)
6 buf[i]=’\0’;
7 if(strcmp(buf ,"this is really bad") ==

0)
8 ..

strcmp checks if the two strings passed as parameters
are exactly the same. Every time the loop is iterated, a
constraint is added to the path predicate forcing tmp[i]

(and so buf[i]) to be different from ’\0’. If the seed input
is an array of 255 ’A’, the first path will unroll this loop
255 times. To evaluate the comparison at line 7, we need
to unroll the loop at line 2 exactly 19 times (the size of the
string plus the character ’\0’ which ends the string). This
is a standard example when DSE can take time to explore a
path that seems easy to trigger. Indeed, in this case, DSE
needs to explore all the 18 first iterations of the loop, before
being able to invert line 7.

Our solution. We propose to use the size si of constant
strings passed to strcmp (and equivalent functions, as strncmp)
to find this specific iteration. We use this only to explore
conditions located after such calls that we were not able
to invert. In the previous example, the condition at line
7: .. == 0 follows a call to strcmp. We use the size of the
string "this is really bad": 19, to prioritize the inver-
sion of conditions located at the 19th iteration of the loop,
saving us the exploration of conditions located in the 18
previous iterations of this loop. In the current implementa-
tion, all loops containing conditions in the iteration si are
inverted. We plan to combine this heuristic with a backward
data-dependency analysis, to locate which loops have an
impact on the parameter of the call to strcmp. Nevertheless,
even with this naive implementation, this heuristic showed a
real impact on DSE performance during the exploration of
JasPer (see Section 8).

7.1.2 Allocator Functions Behavior Based Heuristic
A second heuristic is imposed by the fact that some paths

need specific results of allocator function to be reached. This
is illustrated in the following code:

1 p=malloc(size);
2 if(p==NULL)
3 {
4 // path to trigger
5 }

Although this example appears simple, standard DSE tools
are not able to trigger the path, since to be reached, the
size given to malloc needs to exceed the available size of the
heap.

Our solution. When meeting this pattern, our engine will
try to create an input with a very large value for size, in the
hope of making malloc return a null pointer. This heuristic
targets all functions with a similar behavior (e.g.: realloc,
calloc). CVE-2013-4232 (tiff2pdf) is an example where this
heuristic is needed to trigger the UAF.

7.2 Stubs
The new stub mechanism implemented in Binsec/se al-

lows to over-approximate or simulate logical effects of an

untraced library call. This makes possible to preserve sym-
bolic execution soundness without having to execute the
library code symbolically. Stubs are required to ensure a
relative compactness of the trace. Furthermore, library calls
generally contain themselves system calls that would require
some over-approximation, thus specifying the stub at library-
level is a fair balance.

The implemented mechanism allows us to parametrize
actions to be performed on the parameters and the result of
a given function. Possible actions are

• CONC: concretize the given value (take runtime value);

• LOGIC: apply the logical operation specified in the stub;

• SYMB: symbolize the value, creating a new input.

realloc is an example of library code where the stub is
not straightforward, but necessary. Tracing this call adds
complex constraints on the path predicate (especially on
the heap state). Skipping this function without taking into
account its logical effect induces errors. Indeed, if the pointer
returned by realloc is different from the pointer given as
parameter, the values present in the original buffer are copied
into the fresh buffer. By not keeping this side-effect, results
of the analysis become incorrect. The stub mechanism allows
to handle this behavior by skipping the code of this function
while keeping its logical effect.

In our experimentation, we use logical stubs on fifteen sig-
nificant functions (such as strcpy, strchr) while we simply
concretize the return value of the other functions (such as
open, printf).

8. EXPERIMENTAL EVALUATION
We now describe our implementation and we detail the

successful automated proof-of-concept creation achieved
by WS-Guided DSE on a real CVE. To illustrate its efficiency,
we compare our approach with and without WS-guidance or
LDH, and we also compare the approach with two well-known
fuzzers (AFL [1] and radamsa [49]).

8.1 Implementation
WS-Guided DSE (Algorithm 1) is primarily implemented

in Binsec/se using OCaml functors. We thus allow a modu-
lar usage of the guided DSE. For example, the criterion σ is a
functor that can be easily changed. The current implementa-
tion includes the UAF detection and also a buffer overflow

detection. DS and the select function are also part of a
functor. Thereby we can choose from a DFS (depth-first
search) exploring the slice, shortest paths or using shortest
paths enhanced by the libraries driven heuristics (Section
7.1). As the LDH requires a score to know if generated paths
are interesting, we could not combine them with DFS. We
compute shortest paths using the igraph7 library.

8.2 JasPer: case study
We demonstrate the efficiency of our approach through

the study of a UAF in JasPer8. JasPer is used to convert an
image from one format to another. GUEB returns several
suspicious slices as result of the analysis of JasPer, we detail
in the following the validation of a particular selected slice,

7http://igraph.org/
8https://www.ece.uvic.ca/˜frodo/jasper/

which was strongly suspected to contain a UAF. The issue of
slice selection is discussed in Section 8.4.

The vulnerability was found by GUEB and is located
in the function mif_process_cmpt (CVE-2015-5221). Un-
fortunately, GUEB does not give any input exhibiting the
reality of the vulnerability. The entry point of the slice is
the function mif_hdr_get. The first step of the analysis
is therefore to find a way to trigger this function starting
from the main function. Fortunately, this is directly done
by forcing JasPer to take as input an image in the format
MIF (which is a format specific to JasPer). The following
command triggers mif_hdr_get:

jasper --input input --input -format
mif --output output --output -format
jpg

The file input is then converted from the format MIF to the
format JPEG into the file output.

PoC. Our DSE engine takes as input the weighted slice
computed from GUEB, the command line and a first file
input as seed. In our experimentation, we give a file filled
with ’A’. It successfully generates a test-case triggering the
UAF (a double-free in this case), shown in Figure 7.

MIF
component

Figure 7: PoC of CVE-2015-5221 generated by DSE

At the time when this document is written, no official patch
is available for this vulnerability, so the generated PoC is still
working on JasPer. It was tested with success on the last ver-
sion 1.900.1, on the version available on Ubuntu 16.04 (pack-
age libjasper-runtime, version 1.900.1-debian1-2.4ubuntu1)
and Debian 8.04 (version 1.900.1-debian1-2+deb8u1). Since
the vulnerable code is inside the library of JasPer itself
(libjasper1), it affects all software using the library and
allowing the manipulation of MIF files (such as utilities pro-
vided within the library: imginfo,..). Fortunately, to the
knowledge of the authors, most of the tools based on this
library do not allow this format.

Exploration. We can separate the PoC in two parts: the
first line "MIF\n" and the second line "component". The
first line is the result of a comparison byte per byte of the
first four characters of the file, as showed in the following
simplification of the code of JasPer:

if (m[0] != "M" || m[1] != "I" || m[2]
!= "F" || m[3] != "\n")

It is naturally easy for a DSE to solve this condition,
and the creation of this first line took only a few inversions.
However, the second line, "component" is harder to create.
The following code represents a simplification of the necessary
conditions to create this line:

bufptr = buf;
while(i > 4096){

if ((c=get_char ()) == EOF) break
;

*bufptr ++=c;
i--;
if(c==’\n’) break;

}

if (!(bufptr = strchr(buf ,’\n’))) exit
(0);

*bufptr = ’\0’
..
p = malloc ();
strcpy(p,buf);
..
if(!(strcmp(p,"component"))) exit (0);

The loop copies the input file to a buffer until it reaches the
size of the buffer (4096), the end of the file or the character
’\n’. Then the function strchr and the next assignment
replace the character ’\n’ in this buffer by ’\0’. Finally,
the buffer is copied to a new buffer and compared to the
string "component". Similarly to the example at Section
7.1.1, every time the loop is iterated, the constraint buf[i]

!= ’\n’ is added. Thereby, to successfully find an input
validating the comparison made in strcmp, the comparison
c==’\n’ needs to be evaluated as true at the tenth iteration
and false during the nine preceding iterations. In the code
of JasPer, the loop and this comparison are distant in the
code, so triggering this specific path is not straightforward.

8.3 Evaluation
We compare several versions of DSE and two standard

fuzzers on their ability to detect the UAF fault in the consid-
ered slice. Actually, we report for each tool the time required
to produce an input file with "MIF\n" as a first line and the
time required to trigger the vulnerability. Experiments are
performed on a standard laptop (i7-2670QM), and we use
Boolector [13] as SMT solver. Table 1 reports details of the
experimentation.

Table 1: JasPer evaluation

Name Time MIF line UAF found # Paths

DSE (in Binsec/se)

WS-Guided+LDH 20m 3min Yes 9

WS-Guided 6h 3min No 44

DFS(slice) 6h 3min No 68

DFS 6h 3min No 354

standard fuzzers (arbitrary seed)

AFL 7h < 1min No 174†

Radamsa 7h > 1h No ‡

standard fuzzers (MIF seed)

AFL
(MIF input)

< 1min < 1min Yes < 10

Radamsa
(MIF input)

< 1min < 1min Yes < 10

† AFL generates more input, 174 is the number of unique paths.
‡ For radamsa it is not trivial to count the number of unique path.

WS-Guided DSE and variants. The creation of the PoC
with WS-Guided DSE (+ LDH heuristic) takes 20 minutes.
Nine test cases are correctly generated while 225 path predi-
cates are UNSAT. The C/S policy [25] used during our explo-
ration kept as logical load addresses and concretized store
addresses. We limit the exploration of loops up to one hun-
dred iterations.

We try other variants of DSE in order to assess the effective-
ness of our approach. Especially, we consider: WS-Guided
DSE without LDH, standard DFS-based DSE and DFS-based
DSE restricted to the slice of interest – where the search is

cut when exiting the slice, but no distance score information
is available (getting a technique similar to [21], yet simpler).
All these variants easily find the word MIF, but none of them
is able to trigger the UAF, illustrating the importance of
both weighted slices and LDH.

Comparison with fuzzing. As a comparison with the
state of the art technique, we used AFL [1] (American Fuzzy
Lop) and radamsa [49] to try to reproduce the crash. Starting
from the same state: an input file filled with ’A’ and the
same command line, we run AFL and radamsa on JasPer for
7 hours. We used both the simple and the quick & dirty

mode on AFL, with the same results. No crashes have been
found. These fuzzers are built in a perspective of coverage,
not to find a particular path, thereby finding this specific bug
is hard, as expected. We should mention that AFL creates an
input with the MIF header in less than one minute, radamsa
generates the word MIF after 1 hour and not as header of
the file. The second line of the PoC being more complicated,
they were not able to reproduce it.

Notice that by using as seed a correct MIF file (from the
JasPer library), both fuzzers were able to generate the PoC
in less than one minute. Since all proper MIF files contain
the line MIF as header and at least one line starting with
component, few mutations on these files generate a PoC of
the vulnerability.

Therefore, our approach is complementary to standard
fuzzing in certain situations, typically when no good initial
seed is available. Moreover, recent tools such as Driller [52]
or the cyber reasoning systems used during the Cyber Grand
Challenge [24] showed that fuzzing can be efficiently com-
bined with symbolic execution; such combinations are a
natural evolution of our system.

8.4 Discussion: slice selection
GUEB identifies 450 suspicious slices on JasPer, and we

choose as validation a slice strongly suspected to be a true
positive (through a quick manual check). This slice selection
issue can be mitigated in two ways:

• First, we plan to improve GUEB to reduce the number
of suspicious slices. For example, GUEB analyzes the
same binary from several entry points, so that several
results refer in fact to the same issue. By simply merg-
ing together slices sharing the same root cause, we can
already reduce the number of slices by 30− 50%. For
example, in the case of JasPer the number of slices falls
to 250. We are confident that slightly more accurate
analyses and more sophisticated slice merges should
allow a significant reduction of suspicious slices;

• Second, considering that DSE can be launched in paral-
lel on several slices and that additional cores go cheaper
and cheaper with a Moore-like rate, exploring a few
hundreds of slices for a few hours is already a realistic
scenario, even for a small size organization.

As a concluding remark, note also that our approach is
already well adapted in a context of semi-automated analysis
when a user has already selected a set of interesting slices from
GUEB and wants them to be automatically validated with
DSE. Indeed, even with the knowledge that a slice contains
effectively a UAF, an input triggering the vulnerability is
generally mandatory to demonstrate its reality. From our
experiences of vulnerability disclosure, developers are more
willing to patch the vulnerability if a test-case is provided.

9. RELATED WORK
Vulnerability detection is an active research area. The

techniques proposed are essentially based on static and/or
dynamic analysis.

Static UAF detection. In the specific case of UAF de-
tection, static techniques exist [18, 36] but unfortunately
they are not available; so no fair comparison can be made.
Moreover, they are not always able to provide precise enough
results on large examples [42]. This is particularly the case
when they are applied on binary code. Therefore, most ex-
isting detection techniques are based on dynamic runtime
analysis.

Dynamic UAF detection. First, general “memory error
detectors” like Valgrind [48] or AddressSanitizer [51] can be
used to detect UAF at runtime. These tools face the problem
of false positives due to re-allocations of heap memory blocks
(see Section 6). To address it, AddressSanitizer replaces the
system memory allocation function by a custom one, using a
quarantine zone for the liberated blocks. However, memory
reallocations can still occur when the heap is full, leading
to undetected UAF. An example is given in Appendix 8
and in [42]. Note also that this solution is not well suited
for custom allocators. Another approach, adding metadata
information, as it can be found in SoftBoundCETS [45] (a
combination of SoftBound [46] and CETS [47]) allows a
dynamic detection of UAF, yet it requires to recompile the
program from the source code.

A second category contains more specific tools like Un-
dangle [14] or DangNull [42]. Their principle is to track
at runtime the memory allocation and free operations, in
order to maintain some metadata allowing to detect dangling
pointer dereferences.

Although these tools happen to be rather effective in find-
ing (and even preventing) UAF errors in large applications,
they still require either to permanently run instrumented
code (with the associated overhead) or to correctly “guess”
the relevant inputs during a fuzzing campaign. The approach
we propose in this paper fulfills a different need: potentially
dangerous execution paths are identified statically, and they
are subsequently confirmed/invalidated using a dynamic sym-
bolic execution (DSE). The expected benefits are twofold:
first, the target application is analyzed “once for all”, trying
to find as many UAF vulnerabilities as possible, and second,
concrete inputs are provided to exercise each vulnerability
found. Moreover, since we focus on a few numbers of sus-
picious UAF, we can afford a more expensive – but correct
and complete – oracle based on SMT solvers.

Guided DSE. Using score functions to guide the path ex-
ploration during a DSE has been introduced in several tools,
in dedicated [34, 16, 15] or generic ways [55, 5], either to
improve instruction coverage or to reach a specific statement,
or, as explained above, to confirm some potential vulnerabil-
ities. More recently, specific guiding techniques have been
proposed [23, 57] to cover sequential execution patterns (e.g.,
safety properties). In these latter work, scores are associated
with branch conditions, essentially based both on control-
flow and data-flow properties. We currently rely only on one
control-flow information: the shortest path to the destination.
Using data-flow as well, or other control-flow metrics is an
interesting work direction. In [31], we studied how random
walks can be used to better guide a DSE exploration inside
a given subpart of the program. This is a natural extension

of the approach proposed in this paper.

Combination of static analysis and DSE. Despite its
many successes [17, 35], DSE suffers from the path explosion
issue. Hence, a few teams have tempted to mitigate this
problem through combining DSE with a first static analysis
geared at reducing the search space to a subset of interesting
paths. For example, Kosmatov et al. [21] first use a static
analysis to check common classes of runtime errors in a C
program, then they try to trigger all remaining potential
errors through DSE restricted to a slice of the original pro-
gram. Bardin et al. [7, 6] design a similar approach for
proving the infeasibility of some white-box testing objectives,
before launching DSE in order to cover them all. In [56],
authors combine static analysis with DSE, using a proximity
heuristic computed statically to guide the exploration to
generate from a bug similar traces leading towards it. In [3],
a data-flow analysis is combined with shortest path in the
Visible Pushdown Automaton (VPA) representation of the
program to find vulnerabilities. In vulnerability detection,
we can also mention for instance Dowser [38], which finds
buffer-overflows by guiding the DSE tool S2E [22] in order
to focus on execution paths containing “complex” array ac-
cess patterns identified by a (lightweight) source-level static
analysis. A similar approach is proposed in [43], to confirm
memory leaks found in C++ programs by the static analyzer
HP Fortify [40].

If our work follows a similar approach, it differs in several
respects: it fully operates on binary code (both on the static
and dynamic side); the DSE is guided here by a weighted slice
containing a set of (potentially) vulnerable paths. Moreover,
these paths need to contain several targets in a specific order
since we are looking for safety properties rather than invariant
properties. Finally, our combination is not purely black-box,
in the sense that the dedicated search heuristics is more
deeply coupled with the static analysis.

10. CONCLUSION
In this paper, we have detailed a novel approach combining

static analysis with dynamic symbolic execution to detect
UAF. Our approach relies on the use of a weighted slice,
and we showed that it is efficient enough to find complex
vulnerabilities on real world applications. Our platform is
still at a early stage, and many improvements are ongoing.

Future work. Guiding heuristics proposed in Section 7.1
are just a first step to a larger set of heuristics. Our platform
is still in the stage driven by examples, where we define
new heuristics when needed. By doing so, we hope to be
able to build a platform robust and diversified enough to
explore standard programming patterns. Naturally we need
to apply our methodology to a larger dataset, and we intend
to continue using our platform to detect new vulnerabilities.
We shared our platform as an open-source project to go in
this direction. More complex software (like multithreaded
applications, browser) are for now out of the scope of our
analysis, yet its use on parts of them (such are libraries) is
naturally a path to explore.

Other applications. The approach described in this paper
focuses on UAF detection. However, the combination of
static analysis and DSE can be applied to other kinds of
vulnerability. It only requires to give as input a targeted
instruction and a score on the graph. We also plan to apply
our approach to other types of subgraphs. For example, from

a patched binary and its original version, binary comparison
tools (such as BinDiff) allow us to know the difference be-
tween the two versions. It could be interesting to extract a
subgraph from this difference, and explore it with our ap-
proach. This would lead to the automated creation of 1day

vulnerability [12].

11. REFERENCES
[1] AFL. American fuzzy lop.

http://lcamtuf.coredump.cx/afl/.

[2] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley.
Enhancing symbolic execution with VeriTesting. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE ’14. ACM Press, 2014.

[3] D. Babic, L. Martignoni, S. McCamant, and D. Song.
Statically-directed dynamic automated test generation.
In ISSTA. ACM, 2011.

[4] G. Balakrishnan and T. Reps. Wysinwyx: What you
see is not what you execute. ACM Trans. Program.
Lang. Syst., 32(6), 2010.

[5] S. Bardin, P. Baufreton, N. Cornuet, P. Herrmann, and
S. Labbé. Binary-level testing of embedded programs.
In 13th International Conference on Quality Software,
QRS’13, 2013.

[6] S. Bardin, O. Chebaro, M. Delahaye, and N. Kosmatov.
An all-in-one toolkit for automated white-box testing.
In Tests and Proofs - 8th International Conference,
TAP 2014, Held as Part of STAF 2014, York, UK, July
24-25, 2014. Proceedings. Springer, 2014.

[7] S. Bardin, M. Delahaye, R. David, N. Kosmatov,
M. Papadakis, Y. L. Traon, and J. Marion. Sound and
quasi-complete detection of infeasible test requirements.
In 8th IEEE International Conference on Software
Testing, Verification and Validation, ICST 2015, Graz,
Austria, April 13-17, 2015. IEEE, 2015.

[8] S. Bardin and P. Herrmann. Osmose: Automatic
structural testing of executables. Software Testing,
Verification Reliability, 21(1), 2011.

[9] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary,
and A. Vincent. The Bincoa Framework for Binary
Code Analysis. In Computer Aided Verification - 23rd
International Conference, CAV 2011, 2011. Springer,
2011.

[10] S. Bardin, P. Herrmann, and F. Védrine.
Refinement-based CFG reconstruction from
unstructured programs. In Verification, Model
Checking, and Abstract Interpretation - 12th
International Conference, VMCAI 2011, Austin, TX,
USA, January 23-25, 2011. Proceedings. Springer, 2011.

[11] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and
D. Engler. A few billion lines of code later: using static
analysis to find bugs in the real world. Communications
of the ACM, 53(2), 2010.

[12] D. Brumley, P. Poosankam, D. Song, and J. Zheng.
Automatic patch-based exploit generation is possible:
Techniques and implications. In SP 2008. IEEE, 2008.

[13] R. Brummayer and A. Biere. Boolector: An efficient
smt solver for bit-vectors and arrays. In TACAS,
volume 5505 of Lecture Notes in Computer Science.
Springer, 2009.

[14] J. Caballero, G. Grieco, M. Marron, and A. Nappa.
Undangle: Early detection of dangling pointers in
use-after-free and double-free vulnerabilities. In
Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012. ACM,
2012.

[15] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’08. USENIX Association, 2008.

[16] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. Exe: Automatically generating inputs of
death. In Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS ’06.
ACM, 2006.

[17] C. Cadar and K. Sen. Symbolic execution for software
testing: Three decades later. Commun. ACM, 56(2),
2013.

[18] S. Cesare. Bugalyze.com - detecting bugs using
decompilation and data flow analysis. In BlackHatUSA,
2013.

[19] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley.
Unleashing mayhem on binary code. In IEEE
Symposium on Security and Privacy. IEEE Computer
Society, 2012.

[20] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley.
Unleashing mayhem on binary code. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy, SP
’12. IEEE Computer Society, 2012.

[21] O. Chebaro, P. Cuoq, N. Kosmatov, B. Marre,
A. Pacalet, N. Williams, and B. Yakobowski. Behind
the scenes in SANTE: a combination of static and
dynamic analyses. Autom. Softw. Eng., 21(1), 2014.

[22] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E
platform: Design, implementation, and applications.
ACM Trans. Comput. Syst., 30(1), 2012.

[23] H. Cui, G. Hu, J. Wu, and J. Yang. Verifying systems
rules using rule-directed symbolic execution. In
Architectural Support for Programming Languages and
Operating Systems, ASPLOS, 2013.

[24] Darpa. Cyber grand challenge.
https://www.cybergrandchallenge.com.

[25] R. David, S. Bardin, J. Feist, J.-Y. Marion, L. Mounier,
M.-L. Potet, and T. D. Ta. Specification of
concretization and symbolization policies in symbolic
execution. In Proceedings of ISSTA. ACM, 2016.

[26] R. David, S. Bardin, J. Feist, J.-Y. Marion, M.-L.
Potet, and T. D. Ta. Binsec/se: A dynamic symbolic
execution toolkit for binary-level analysis. In
Proceedings of SANER 2016. IEEE, 2016.

[27] A. Djoudi and S. Bardin. Binsec: Binary code analysis
with low-level regions. In TACAS 2015. Springer, 2015.

[28] T. Dullien and S. Porst. Reil: A platform-independent
intermediate representation of disassembled code for
static code analysis. CanSecWest, 2009.

[29] P. Emanuelsson and U. Nilsson. A comparative study
of industrial static analysis tools. Electr. Notes Theor.
Comput. Sci., 217, 2008.

[30] J. Feist, L. Mounier, and M. Potet. Statically detecting
use after free on binary code. J. Computer Virology and

Hacking Techniques, 10(3), 2014.

[31] J. Feist, L. Mounier, and M.-L. Potet. Guided dynamic
symbolic execution using subgraph control-flow
information. In Proceedings of SEFM. Springer, 2016.

[32] P. Godefroid. Higher-order test generation. In
Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, 2011.

[33] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. SIGPLAN Not., 40(6),
2005.

[34] P. Godefroid, M. Y. Levin, and D. A. Molnar.
Automated whitebox fuzz testing. In Proceedings of the
Network and Distributed System Security Symposium,
NDSS 2008, San Diego, California, USA, 10th February
- 13th February 2008. The Internet Society, 2008.

[35] P. Godefroid, M. Y. Levin, and D. A. Molnar. SAGE:
whitebox fuzzing for security testing. Commun. ACM,
55(3), 2012.

[36] P. Goodman. Pointsto: Static use-after-free detector for
c/c++. https://blog.trailofbits.com/2016/03/09/the-
problem-with-dynamic-program-analysis/.

[37] GUEB. Static analyzer detecting use-after-free on
binary. https://github.com/montyly/gueb.

[38] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos. Dowsing for overflows: A guided fuzzer to find
buffer boundary violations. In Proceedings of the 22Nd
USENIX Conference on Security, SEC’13. USENIX
Association, 2013.

[39] Hex-rays. Hex-rays decompiler. https://www.hex-
rays.com/products/decompiler/index.shtml.

[40] HP. Fortify static code analyzer.
http://www8.hp.com/us/en/software-solutions/static-
code-analysis-sast/.

[41] W. Landi. Undecidability of static analysis. LOPLAS,
1(4), 1992.

[42] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and
W. Lee. Preventing use-after-free with dangling
pointers nullification. In 22nd Annual Network and
Distributed System Security Symposium, NDSS, 2015.

[43] M. Li, Y. Chen, L. Wang, and G. Xu. Dynamically
validating static memory leak warnings. In Proceedings
of the 2013 International Symposium on Software
Testing and Analysis, ISSTA 2013. ACM, 2013.

[44] R. Majumdar and K. Sen. Hybrid concolic testing. In
29th International Conference on Software Engineering
(ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007.
IEEE Computer Society, 2007.

[45] S. Nagarakatte. Softboundcets. http://www.cs.rutgers.
edu/˜santosh.nagarakatte/softbound/.

[46] S. Nagarakatte, J. Zhao, M. M. K. Martin, and
S. Zdancewic. Softbound: highly compatible and
complete spatial memory safety for c. In M. Hind and
A. Diwan, editors, PLDI, pages 245–258. ACM, 2009.

[47] S. Nagarakatte, J. Zhao, M. M. K. Martin, and
S. Zdancewic. Cets: compiler enforced temporal safety
for c. In ISMM, 2010.

[48] N. Nethercote and J. Seward. Valgrind: A framework
for heavyweight dynamic binary instrumentation.
SIGPLAN Not., 42(6), 2007.

[49] radamsa. A general purpose fuzzer.

https://github.com/aoh/radamsa.

[50] K. Sen, D. Marinov, and G. Agha. Cute: A concolic
unit testing engine for C. SIGSOFT Softw. Eng. Notes,
30(5), 2005.

[51] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. Addresssanitizer: A fast address sanity
checker. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX
ATC’12. USENIX Association, 2012.

[52] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In NDSS. The Internet
Society, 2016.

[53] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute
Force Vulnerability Discovery. Addison-Wesley
Professional, 2007.

[54] N. Williams, B. Marre, and P. Mouy. On-the-fly
generation of k-path tests for C functions. In
Automated Software Engineering, 2004. IEEE, 2004.

[55] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte.
Fitness-guided path exploration in dynamic symbolic
execution. In Proceedings of the 2009 IEEE/IFIP
International Conference on Dependable Systems and
Networks, DSN 2009, Estoril, Lisbon, Portugal, June
29 - July 2, 2009. IEEE Computer Society, 2009.

[56] C. Zamfir and G. Candea. Execution synthesis: a
technique for automated software debugging. In
EuroSys. ACM, 2010.

[57] Y. Zhang, Z. Clien, J. Wang, W. Dong, and Z. Liu.
Regular property guided dynamic symbolic execution.
In Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ICSE ’15. IEEE
Press, 2015.

[58] Zynamics. BinNavi.
http://www.zynamics.com/binnavi.html.

APPENDIX

p1=malloc(sizeof(int));
*p1=0;
free(p1);
p2=malloc(sizeof(int));
while(p2!=p1)
{

free(p2);
p2=malloc(sizeof(int));

}
*p2=42;
printf("p1 %d\n",*p1); // uaf in *p1

Figure 8: Example of UAF not detected by standard
techniques that replace heap allocator functions

