
BINSEC/SE: A Dynamic Symbolic Execution
Toolkit for Binary-level Analysis?

Robin David,
Sébastien Bardin

CEA LIST,
Software Safety and Security Laboratoy

Saclay, France
first.last@cea.fr

Thanh Dinh Ta,
Josselin Feist,

Laurent Mounier,
Marie-Laure Potet

Vérimag, Grenoble, France
first.last@imag.fr

Jean-Yves Marion
Université de Lorraine,

CNRS and Inria, LORIA, France
jean-yves.marion@loria.fr

Abstract—When it comes to software analysis, several ap-
proaches exist from heuristic techniques to formal methods,
which are helpful at solving different kinds of problems. Un-
fortunately very few initiative seek to aggregate this techniques
in the same platform. BINSEC intend to fulfill this lack of binary
analysis platform by allowing to perform modular analysis. This
work focusses on BINSEC/SE, the new dynamic symbolic exe-
cution engine (DSE) implemented in BINSEC. We will highlight
the novelties of the engine, especially in terms of interactions
between concrete and symbolic execution or optimization of
formula generation. Finally, two reverse engineering applications
are shown in order to emphasize the tool effectiveness.

I. INTRODUCTION

While security can be checked and enforced at different
level, we focus here on binary-level security analyses, such
as malware comprehension or vulnerability analysis. Reverse
engineering of binary codes is a key component of these
activities, yet it is notoriously difficult. Especially, low-level
assembly constructs can deceive disassemblers, while dynamic
execution explores only a few possible behaviors. Our long-
term goal is to adapt formal methods, which have been very
successful in source-level safety analysis, to binary-level secu-
rity analysis. We present in this paper a binary-level dynamic
symbolic execution engine, named BINSEC/SE, geared toward
security analysis and especially reverse-engineering.

The main contribution is a highly configurable generic DSE
engine toolkit, with a strong interaction between the tracer and
the symbolic execution core, as well as heavy optimizations
on the path predicate. Two reverse engineering applications
are shown to emphasize the tool effectiveness.

II. BACKGROUND

Dynamic Symbolic Execution [5], [9] is a formal technique
for exploring program paths in a systematic way. For each
path, the technique computes a path predicate, i.e. a set of
constraints on the program input that leads to follow that
path at runtime. This predicate is then fed to an automatic
solver: a solution to the predicate is a new test input exploring
the targeted path. Systematic exploration is achieved through
iterating on all (user-bounded) paths of the program.

? Work partially funded by ANR, under grant ANR-12-INSE-0002

BINSEC [8] is a recent platform for formal analysis of
binary codes. The platform currently proposes a front-end from
x86(32bits) to a generic intermediate representation called
DBA [8] (including decoding, disassembling, simplifications),
a simulator and a static analysis engine (typically for dynamic
jump resolution). The platform is written in OCaml (∼30,000

loc), and will be released under an open source license soon1.
Our DSE engine BINSEC/SE is built upon BINSEC. The
current tool paper describes only BINSEC/SE, a consequent
add-on to BINSEC reusing only the x86-to-DBA translation.

III. USER VIEW

From a user point of view, the advantage of using a DSE
engine is twofold. First, nowadays closed source binaries and
malwares are so commonly widespread that having tools for
working at binary level is mandatory. Second, recovering
information from a binary can be a tedious task, especially
in heavily obfuscated binaries. Therefore applying automatic
techniques for recovering information is crucial with regard to
the usual amount of code to review.

During a reverse-engineering task or an information retrieval
task, the analyst can be interested in knowing information
about the binaries, e.g. the register value at a given location,
the possible values at a given memory address, whether a
given branch can be covered or not or the possible targets of
a dynamic jump. These problems can be addressed by DSE.

Various dynamic analyses are already implemented in BIN-
SEC/SE and new ones can conveniently be written using a
callback mechanism. An analysis takes a JSON configuration
file as input and a trace file. Both the configuration and trace
file formats are open and specified.

IV. BINSEC/SE ARCHITECTURE

We describe hereafter the new module for DSE, named
BINSEC/SE. Its implementation is made of three components,
presented in Figure 1.

• a pintool named PINSEC, written in C++ (∼2,000 loc),
based on the Pin DBI framework [10] for dynamic
tracing;

1http://binsec.gforge.inria.fr



• the core DSE engine written in OCaml(∼8,000 loc), whose
tasks are to generate path predicates, to send them to a
solver and to get back new input data;

• the path selector, written in OCaml(∼1,200 loc), in charge
of choosing which path to explore next.

Fig. 1. BINSEC/SE architecture

A. The PINSEC tracer

The tracer, called PINSEC, is a pintool [10] specialized in
analyzing x86 architectures. Its main purpose is to generate
the execution trace used as input by BINSEC. It is designed
to offer a generic and modular tracing for both Linux and
Windows binaries, and to export results into a generic format,
here protobuf2 which is usable with major programming
languages. The tracing is parameterized via a JSON file whose
format is also defined in protobuf. The main parameters are:

• start and stop: addresses indicating where to begin
and where to end the tracing,

• call_skips: address of calls for which the callee
should not be traced,

• fun_skips: function addresses that should not be
traced.

Other command line parameters allow to limit the trace size,
the tracing time or the instrumentation scope.

Advanced usage. What is differentiating PINSEC from other
pintools are the following functionalities:

• the automatic retrieval of function parameters and return
values for (some) libraries functions;

• the possible retrieval of the concrete value of any register
or memory location, even if not part of the operands /
results of the currently instrumented instruction;

• the injection of symbolic or concrete values in any
register or memory location, at any step of the execution;

• a remote command and control system allowing the DSE
core and PINSEC to exchange messages in an interactive,
debugger-like manner, in order to dynamically tune the
instrumentation.

A full-fledged example using some of these parameters is
presented in Section VI.

2https://developers.google.com/protocol-buffers/

B. DSE engine

Our DSE engine (Figure 1) follows a classical workflow.
From an input trace, x86 instructions are translated into DBA
instructions [8] (such a translation can be seen in Figure 2) on
which the path predicate is computed [12], and then used to
generate a formula (theory of arrays and bitvectors) which is
then exported to the SMTLIB2 format3, the standard input
of modern SMT solvers. A SMT solver is finally used to
check the satisfiability of the formula and if so, to get back
a solution (new input). We currently rely on Z3, CVC4 and
Boolector. The connexion between BINSEC/SE and PINSEC
easily allows to re-inject the new input to get a new trace.

Implementation insight. Internally an analysis is represented
as an OCaml class, which each analysis should inherit from.
This class provides appropriate callbacks and data structures
for implementing any trace-based analysis. These callbacks
allow to apply specific actions at a specific step and/or location
along the execution in a highly configurable manner. They help
developing new analyses without a deep understanding of the
whole inner-working of the DSE. Main callbacks are:

• pre_execution, post_execution triggered respec-
tively once at the begining and the end of the analysis;

• visit_instr_before, visit_instr_after triggered
before (resp. after) every asm instruction of the trace;

• visit_dbainstr_before, visit_dbainstr_after

triggered before (resp. after) every DBA instructions of
an x86 instruction;

• input_message_received triggered when a message
is received from PINSEC.

A summary of all callback location calls is given in Figure 2.

Fig. 2. BINSEC/SE callbacks

C. Path selection

Beside a fine-grained control of a single trace execution,
automatic multiple paths exploration is also a desired feature
of a DSE tool. Ideally, the path exploration engine should
allow either to fulfill some standard coverage requirements,
or to focus on specific parts of the code through dedicated
(user-defined) search heuristics. The design of the explo-
ration module of BINSEC/SE is inspired from the one of
OSMOSE [2]. It relies on a simple API allowing to easily
implement various exploration strategies. In particular this API
offers a function select(S) returning the “best” trace from
a set of traces S, w.r.t. a user-defined score function. Scores

3http://smtlib.cs.uiowa.edu/



are built from several (predefined or dynamically computed)
trace characteristics, such as length, last instruction call-
depth, distance to a given target, etc. This approach allows to
precisely define a wide-range of exploration strategies. Several
strategies are already implemented such as DFS, BFS, random
path, MinCall-DFS and MinCall-BFS [1].

V. FORMULA GENERATION AND SOLVING

The bottom-line of DSE is path predicate generation. While
we follow the standard approach [12], i.e. maintening a
symbolic memory state along the computation together with
the encountered path constraints (i.e. branching conditions),
our method is original in several aspects:

• we can take into account constraints on the initial memory
state (cf. Section V-B);

• we provide callback mechanisms for fine-tuning of con-
cretization and symbolization (cf. Section V-C);

• the path predicate is highly optimized, and we take
advantage of incremental solving (cf. Section V-A).

A. Optimizations

The core engine implements several optimizations of the
path predicate, ranging from standard simplifications such
as constant folding, local rewriting (e.g. a ⊕ a becomes 0)
or pruning useless parts of the formula, to less common
optimizations, such as Read-over-Write (RoW) simplifications
over array load and store [4]. Finally, great care is taken
in order to make these optimizations compatible with the
incremental solving mode of modern SMT solvers, which
is particularly well-suited to DSE, since path predicates are
naturally built incrementally.

Table I shows the results of optimization on a set of malware
samples (cf. Section VI-B), while Table II shows a more
detailed view on a single trace taken from the Artelad malware.
The timeout is set to 20 seconds on a Intel Core i7 2.7 GHz
(16GB RAM) using the Z3 solver.

TABLE I
OPTIMIZATION BENCHMARKS

Malware #inst #br #Solved no-Incr Incr
(#queries) no-opt pruning full-opt no-opt pruning full-opt

Artelad 10K 1295 1295 42m36 31m27 18m18 12m34 11m57 9m6
Benny 10K 3150 3510 14m35 10m34 7m54 3.64 2.58 2.94
Bogus 10K 191 191 41m51 7.71 7.34 1.45 2.98 3.41
Cornad 404 32 21 4m10 4m10 4m5 4m43 4m40 4m37
Eva 1069 115 115 3.44 2.07 1.98 0.16 0.15 0.16
Htrip 2525 1410 1410 15m6 12m23 11m34 18.36 18.52 11.17

Total 303998 6193 6181 118m25 58m48 42m03 17m46 17m3 14m3
Avg/query 1.15 0.57 0.40 0.16 0.16 0.14

time in seconds, or minutes/seconds Avg/query: average time per query
full-opt: all optimization turned on – no-opt: all optimizations turned off
Incr: incremental solving – no-Incr: non-incremental solving

B. Initial memory state

Logical arrays are unconstrained by default. Hence, mod-
elling the initial memory state as a logical array implies that
the solver is free to give any value to any memory location
of the initial state, possibly leading to meaningless results
since the initial mapping of addresses in a real program is
more complex. BINSEC/SE allows to specify constraints on
the initial memory state (initial logical array).

TABLE II
EFFECTS OF OPTIMIZATIONS

no-opt pruning full-opt
#VarsDef 27375 8952 3026
#Constraints 1585 1581 379
#Memory operations 1589 1585 1136
#Operators 85805 6330 2278

C. Concretization/Symbolization

For scalability issues, the path predicate is often approxi-
mated, either by forcing some logical values to their runtime
values (observed by the tracer) – concretization, or by injecting
fresh logical input – symbolization. Both operations reduce the
complexity of the formula, at the price of completness and/or
correctness. So choosing appropriately when and what to con-
cretize/symbolize is a major practical issue. While most tools
offer only hardcoded policies, BINSEC provides a complete
set of callbacks to specify such choices. Such a mechanism
allows, for instance, symbolic reasoning on memory pointers,
where existing tools usually enforce memory addresses to be
concrete.

VI. EXPERIMENTATIONS

A. Reverse engineering

In reverse-engineering, so-called crackme challenges simu-
late real world situations where binary programs are designed
to make the analysis difficult. The goal is usually to find a
string key (the flag) allowing to validate the challenge.

Flare-On is a reverse engineering challenge organized since
2014 by FireEye Security4. We analyse the first challenge of
2015 since it is straightforward enough to be discussed in
detail. This crackme is a 32 bits Windows program which
asks for a password and prints “You are success” or “You are
failure” depending on the keyboard input. Each byte of the
input (input_buffer) is xored with 0x7d, the result is then
checked against a key stored in the data section (data_str),
cf. Figure 3.

Fig. 3. Flare-on #1 key loop computation
Solving the crackme by symbolic execution aims at check-

ing that the predicate ZF=1 is true at location 0x40105b; and
this, for every character of the key. If the generated formula is

4http://www.flare-on.com/



satisfiable, then the right character can simply be retrieved
in the formula solution at input_buffer[ecx]. One last
remaining problem is the initial state. If none is specified,
the solver is allowed to give any valuation to the content
of data_str, while it is not user-controllable. Hence, an
initial state constraining the value of the data_str bytes is
required in order to get meaningful results for input_buffer
(cf. SectionV-B). Finally, iterating over input_buffer can be
done in two ways:

1) From a trace taking the fail branch, we should solve
ZF=1 at 0x40105b to get the right char and inject it
back as input via the configuration file for generating a
new trace that will do a second loop iteration, repeating
until the whole key is found;

2) Configure a breakpoint at 0x40105b (the address of
jnz), compute the right character value, send a com-
mand to patch the ZF flag and resume to force the
tracer to take the right branch and looping again. This
method is fully automatic and allow to take advantage
of incremental solving (cf. Section V-A).

We obtain the right key solving the challenge,
bunny_sl0pe@flare-on.com5. Note that we have solved
several other Flare-on challenges with the same principle.

B. Malware exploration
We are interested here in demonstrating the ability of

BINSEC/SE to automatically discover new code areas of a
program, which is especially crucial in malware analysis. We
consider 11 malware programs taken from the VX Heaven
database6 and used in recent works on deobfuscation [11].
Table III shows our results. We report the number of new
explored paths (i.e. each time DSE manages to negate a branch
of the original trace), and of new behaviors (i.e. each time DSE
covers a branch not yet covered by the initial trace or by a
generated one). Here, we are able to discover 43 new code
areas in the malwares under consideration.

TABLE III
MALWARE EXPLORATION

File #inst #br #uniq #path #behavior Avg Total
(new) (new)

Virus.Win32.Artelad.2173 10K 1295 3 652 2 0.59 759.72
Virus.Win32.Belial.a 10K 1551 3 602 2 0.10 152.94
Virus.Win32.Benny.3219.a 10K 3153 121 4 4 0.0 3.10
Virus.Win32.Bogus.4096 10K 191 1 0 0 0.02 4.45
Virus.Win32.Cabanas.a 10K 2269 479 1 1 0.00 8.72
Virus.Win32.Cornad 404 32 17 12 12 0.63 20.05
Virus.Win32.Eva.a 1069 115 49 4 4 0.01 0.87
Virus.Win32.Htrip.a 2525 1105 9 598 6 0.10 137.23
Virus.Win32.Pulkfer.a 10K 1526 9 766 6 2.25 3434
Virus.Win32.Seppuku.1606 1696 147 61 4 4 0.01 1.85
Virus.Win32.Wit.a 10K 3334 2 3334 2 3.00 9985.96

Total 75694 14718 754 5977 43 6.71 14508.89

br: number of branches – uniq: unique conditional jumps – path: number of
new paths – behavior: new path covering a new code area – Avg: Average
solving time per paths

VII. RELATED WORK

A few other initiatives aim at applying DSE on binary pro-
grams for security purposes, most notably BAP [3], S2E [7],

5A complete demo is available at https://youtu.be/0xUc2jbpjQo
6http://vxheaven.org/

FuzzBall [6] or Triton [13]. All these approaches also rely
on an intermediate representations similar to DBA. Regarding
dynamic tracing, these tools are built either on Qemu or on Pin.
In addition to a generic DSE engine, the novelties provided by
BINSEC/SE are highly configurable path exploration strategies
and concretization/symbolization policies, a strong interaction
between the tracer and the DSE core and an optimized path
predicate computation.

VIII. CONCLUSION

The dynamic symbolic execution implemented in the plat-
form yields the interesting property of being modular w.r.t
the analysis configuration and to provide a strong interaction
between the DSE (BINSEC) and the tracer (PINSEC). Some
functionalities like the formula optimizations makes it original
from the existing state-of-the art tools. This platform comes
really handy for reverse-engineering and information recovery
tasks like it is the case for source-less programs and malwares.

REFERENCES

[1] S. Bardin, P. Baufreton, N. Cornuet, P. Herrmann, and S. Labbé. Binary-
level testing of embedded programs. In: QSIC 2013. IEEE, 2013.

[2] S. Bardin and P. Herrmann. OSMOSE: Automatic Structural Testing of
Executables. Software Testing, Verification and Reliability, 21(1), 2011.

[3] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A Binary
Analysis Platform. In: CAV 2011. Springer, 2011.

[4] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. In: CCS 2006. ACM,
2006.

[5] C. Cadar and K. Sen. Symbolic Execution for Software Testing: Three
Decades Later. CACM, 56, 2013.

[6] D. Caselden, A. Bazhanyuk, M. Payer, L. Szekeres, S. McCamant, and
D. Song. Transformation-aware Exploit Generation using a HI-CFG.
Technical report, University of California, Berkeley, 2013.

[7] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-
vivo multi-path analysis of software systems. In: ASPLOS XVI. ACM,
2011.

[8] A. Djoudi and S. Bardin. BINSEC: Binary Code Analysis with Low-
Level Regions. In: TACAS 2015. Springer, 2015.

[9] P. Godefroid, M. Levin, and D. Molnar. SAGE: Whitebox Fuzzing for
Security Testing. Queue, 2012.

[10] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney,
S. Wallace, V. J. Reddi, and K. M. Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. In: PLDI 2005.
ACM, 2005.

[11] M. H. Nguyen, M. Ogawa, and T. Q. Thanh. Obfuscation code
localization based on CFG generation of malware. In: FPS 2015.
Springer, 2015.

[12] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever Wanted to
Know About Dynamic Taint Analysis and Forward Symbolic Execution.
In: SP 2010. IEEE, 2010.

[13] http://triton.quarkslab.com/.


