
Specification of Concretization and Symbolization Policies
in Symbolic Execution∗

Robin David,
Sébastien Bardin

CEA, LIST, Saclay, France
first.last@cea.fr

Josselin Feist, Laurent Mounier,
Marie-Laure Potet, Thanh Dinh Ta

UGA, Verimag, Grenoble, France
first.last@imag.fr

Jean-Yves Marion
Université de Lorraine, CNRS

LORIA, Nancy, France
first.last@loria.fr

ABSTRACT
Symbolic Execution (SE) is a popular and profitable approach
to automatic code-based software testing. Concretization
and symbolization (C/S) is a crucial part of modern SE tools,
since it directly impacts the trade-offs between correctness,
completeness and efficiency of the approach. Yet, C/S policies
have been barely studied. We intend to remedy to this
situation and to establish C/S policies on a firm ground. To
this end, we propose a clear separation of concerns between
C/S specification on one side, through the new rule-based
description language CSml, and the algorithmic core of SE
on the other side, revisited to take C/S policies into account.
This view is implemented on top of an existing SE tool,
demonstrating the feasibility and the benefits of the method.
This work paves the way for more flexible SE tools with
well-documented and reusable C/S policies, as well as for a
systematic study of C/S policies.

CCS Concepts
•Software and its engineering→ Formal software ver-
ification; Software testing and debugging; Dynamic analysis;
Specification languages;

Keywords
automatic test generation; formal methods; symbolic execu-
tion; specification language

1. INTRODUCTION

Context. Symbolic Execution (SE) [15] is a popular and
fruitful formal approach to automatic (code-based) software
testing. Given a path in a program, the key insight of SE
is the possibility in many cases to compute a formula (a
path predicate) such that a solution to this formula is a test
input exercising the considered path. Then, exploring all the

∗Work partially funded by ANR, grant 12-INSE-0002.

(bounded) paths of the program allows for intensive testing
and efficient bug finding.

Basis were laid in the 70’s by King [24], but the technique
found a renewal of interest in the mid 2000’s when it was
mixed with concrete execution [26, 21, 28] and combined
with the growing efficiency of SMT solvers. SE has quickly be-
come the most promising technique for code-based automatic
test generation, leading to impressive case studies [12, 16,
2, 14] and a promise of industrial adoption at large scale [9,
22]. Its usage for security purposes have also been consid-
ered, especially because of its straightforward adaptation
to binary-level analysis [22, 4, 27, 3]. SE has successfully
been applied in a wide range of security applications, such
as vulnerability [1, 23] or malware analysis [10].

Problem. While a purely symbolic approach is worth con-
sidering, the strength of modern SE tools is to symbolically
evaluate only a (small) trace fragment. Concretization uses
run-time values in order to under-approximate the path
predicate, while symbolization over-approximate the path
predicate by introducing new logical variables. The former
allows to handle in a precise but limited way parts of an
execution which are either missing (e.g., system calls) or too
costly to reason about (e.g., cryptographic functions), while
the latter allows to generalize certain program steps, keeping
the reasoning exhaustive but less precise.

Actually, choices of concretization and symbolization (C/S)
are a crucial part of modern SE tools, together with path
predicate computation and path selection. Yet, while the
latter are either well-understood (path predicate) or under
active research efforts (path selection), C/S policies have
been much less studied. Especially, design choices behind
implemented C/S policies are often barely explained, and
most SE tools either propose only hard-coded C/S policies,
or give full control on a line per line manner in the code [18].

Goal and contribution. We propose to address these
problems through a clear separation of concerns between (1)
a specification mechanism for C/S policies in SE, and (2) a
new SE algorithm parametrized by an arbitrary C/S policy.
The main contributions of this paper are the following:

• We formalize what a C/S policy is and we revisit the
standard path predicate computation algorithm taking
C/S policy into account (Section 4.1). This is the first
time such a parametric view of the core algorithm
behind SE is provided. We clearly show where the C/S
policy matters and we discuss correctness issues.

• We propose CSml, a rule-based specification language
for defining C/S policies, together with its semantics

(Sections 4.2 to 4.4). The language is simple, yet pow-
erful enough to encode standard C/S policies. Again,
correctness issues are discussed.

• As a first application, we perform an extensive literature
review, and we show how to encode existing C/S policies
into CSml, highlighting in some cases subtle differences
between similar policies (Section 4.5).

• As a second application, these results have been imple-
mented on top of the Binsec framework [19, 20], yield-
ing the first SE tool with fully customizable C/S policies
through high-level specifications (Section 5). First ex-
periments demonstrate that the overhead induced by
this genericity is very low (Section 6.2). We also show
an example of an original C/S policy fine-tuned for
vulnerability detection (Section 6.3).

• Finally, we present the first quantitative comparison of
C/S policies (Section 6.1), focused on policies dedicated
to the handling of memory operations. We compare five
policies on 169 programs. We found that, while new
policy PP* performs better on most examples, there
is still a high variability of results between the policies
depending on the considered example. This is a strong
a posteriori argument for a generic C/S specification
mechanism.

Outcome. This work proposes a clear separation of con-
cerns between the core SE algorithms and C/S specification,
paving the way for flexible SE tools with easy to config-
ure C/S policies. Additional benefits include: (1) better
documented policies, facilitating their understanding, com-
parison and reuse; (2) the systematic study of concretization
and symbolization (including both analytic and quantitative
analysis) in order to better understand their impact and to
identify interesting trade-offs; and finally (3) the fine-tuning
of dedicated policies tailored to specific programs or needs.

2. BACKGROUND

2.1 Notation
Given a program P over a vector V of m input variables

taking values in a domain D , D1× . . .×Dm, a test datum t
for P is a valuation of V , i.e. t ∈ D. The execution of P over
t, denoted P (t), is a path (or run) σ , (l1, Σ1) . . . (ln, Σn),
where the li denote control-locations (or simply locations)
of P and the Σi denote the successive internal states of
P (≈ valuation of all global and local variables as well as
memory-allocated structures) before the execution of each li.

2.2 Symbolic Execution in brief
We recall here a few basic facts about Symbolic Execution

(SE) [24] and Dynamic Symbolic Execution (DSE) [21, 26,
28]. Let us consider a program under test P with input
variables V over domain D and a path σ of P . The key
insight of SE is that it is possible in many cases to compute
a path predicate φσ for σ such that for any input valuation
t ∈ D, we have: t satisfies φσ iff P (t) covers σ. Such a
path predicate is said to be both correct and complete, where
correctness denotes the left-to-right implication (a solution
does cover the intended path) and completeness denotes the
right-to-left implication (any input covering the path is a
solution).

A path predicate is intuitively the logical conjunction of
all branching conditions and assignments encountered along
that path. Figure 1 presents a simple program path (two
assignments and a branching condition x > 10 taken to
true) together with three possible path predicates. It is
straightforward to check that ϕ1 is correct and complete (a
valuation of a and b satisfies ϕ1 iff their execution satisfies
the assertion), while ϕ2 is correct but incomplete because
of the additional constraint a = 5 and ϕ3 is complete but
incorrect because of the removal of constraint x1 = a× b.

ϕ1 is a correct and complete path predicate, ϕ2 is obtained through
concretization of a (assuming its runtime value is 5) and ϕ3 through
symbolization of x on first line (fresh is a new unconstrained variable)

Figure 1: Path predicate, concretization and symbolization

In practice, path predicates are often under-approximated
and only correctness holds, which is fine for testing: SE
outputs a set of pairs (ti, σi) such that each ti is ensured
to cover the corresponding σi. DSE enhances SE by inter-
leaving concrete and symbolic executions. The dynamically
collected information can help the symbolic step, for example
by suggesting relevant approximations (cf. Section 2.4).

A high-level view of SE is depicted in Algorithm 1. We
assume that the set of paths of P , denoted Paths(P), is
finite1. The algorithm builds iteratively a set of tests by
exploring all the feasible paths.

Algorithm 1: Symbolic Execution algorithm

Input: a program P with finite set of paths Paths(P)
Output: TS a set of pairs (t, σ) such that P (t) covers σ

1 TS := ∅;
2 Spaths := Paths(P);
3 while Spaths 6= ∅ do
4 choose σ ∈ Spaths; Spaths := Spaths\{σ} ;
5 compute path predicate φσ for σ ;
6 switch solve(φσ) do
7 case sat(t): TS := TS ∪ {(t, σ)};
8 case unsat: skip ;

9 endsw

10 end
11 return TS;

The three major components of the SE algorithm are
the following: (1) path selection strategy (line 4); (2) path
predicate computation, with predicates in some theory T ; (3)
satisfiability checking, using a solver taking a formula φ ∈ T
and returning either sat with a solution t or unsat2. We focus
in this article on path predicate computation, which is where
C/S policy matters most. Note that the effective solvability
of a path predicate may depend a lot on its construction.

From now on, we do not distinguish between SE and DSE.

1This assumption is enforced through a bound on paths.
2SE tools typically rely on off the shelf SMT solvers.

2.3 Path predicate computation
In order to remain both general and concrete, we present

path predicate computation on a small core language well-
suited to low-level analysis. We choose DBA [20, 6] that has
been used in several binary-level analyzers [6, 20, 7, 5]. The
core language is presented in Table 1, where V ar denotes
a set of variables (typically: registers) and V al denotes the
set of values, here bitvectors of statically known size. The
program is represented as a map from (control) locations to
instructions. Operator @ represents both reads at and writes
to a distinguished variable Mem (modeling the memory), de-
pending whether they are in a lhs (write) or in an expression
(read). All basic bit-level operations are available, including
machine arithmetic and bitwise logical operators. The set of
instructions includes assignments, static jumps, computed
jumps (with an implicit cast from V al to Loc), conditional
jumps and a stop operation. We denote by l, v and bv some
elements of Loc, V ar and V al.

program ::= ε | stmt program

stmt ::= < l, inst >

inst ::= lhs := expr

| goto expr | goto l

| ite(expr)? ; goto l ; goto l

| stop

lhs ::= v | @ expr

expr ::= expr �b expr | �u expr | @ expr

| v | bv
�u ::= ¬ | −
�b ::= + | − | ×u,s | /u,s | ≤u,s | ⊕ ...

Table 1: DBA instructions

In the sequel Instr denotes the set of instructions and Expr
the set of expressions. The map from locations to instructions
is denoted ∆ : Loc → Instr. The operational semantics is
given in a standard way, each instruction updates a concrete
memory state Σ and moves control to the next instruction.
Here, Σ is a total function mapping each variable v ∈ V ar to
a value bv ∈ V al (respecting size constraints), and mapping
variable Mem to an array from addresses (values of size
addr size) to bytes (values of size 8).

Path predicate computation. We denote by Σ∗ the sym-
bolic memory state which maps all variables v ∈ V ar to
symbolic values ϕ (logical terms on logical variables ranging
over V al) and the distinguished variable Mem to a logical
array from addresses to bytes. The path predicate φ is a
first-order logic formula over logical variables and logical
arrays. At a given point of execution, the internal state of
the algorithm is composed of l, Σ∗, φ, respectively a location,
a symbolic memory state and a (current) path predicate.
The algorithm starts from the initial location l0, the initial
state Σ∗0 associating a fresh logical variable to each program
variable and a fresh logical array to Mem, and φ0 , true. It
proceeds instruction by instruction along the execution, then
the computed path predicate φ is returned. Recall that the
execution trace being fixed, the successor of each branching
instruction is known.

The path predicate computation algorithm over DBA is
given in Figure 2, where represents path predicate compu-
tation itself while `e represents the symbolic evaluation of a

DBA expression. Recall that ϕ (resp. φ) denotes a symbolic
value (resp. a formula). For instance, rule var

Σ∗,v`eΣ∗(v)
states that the symbolic evaluation of variable v is the sym-
bolic value stored for v in the current symbolic memory state
Σ∗, denoted Σ∗(v). Rule le−goto e allows the symbolic eval-
uation of a dynamic jump branching to location le. The rule
reads as follows: expression e is symbolically evaluated into
the symbolic value ϕe, le is converted to a concrete address
with to val : Loc→ V al and the constraint to val(le) = ϕe
is added to the path predicate being built, modeling the
fact that the execution flow must lead to le. Remaining
unexplained symbols are:

• the symbols gathered into �∗u and �∗b are the logical
counterparts of the unary and binary symbols of con-
crete expressions, e.g “+” is evaluated to the logical
operator bvadd of the bitvector theory;

• select/store are the standard logical operators from the
theory of arrays, representing reads at and writes to
specific array indexes;

• “fresh” designates a new logical variable in the formula.

Property 1. The path predicate computation algorithm
of Figure 2 is correct and complete, i.e. it returns a correct
and complete path predicate.

2.4 Concretization & Symbolisation
In practice, performing a fully symbolic path predicate

computation as shown in Figure 2 is not necessarily feasible
for various reasons: unavailable parts of the code, presence
of an environment, concrete operators outside the scope of
the underlying solver, etc. That is why concretization and
symbolization were introduced into symbolic execution [26,
21, 18] (cf. Figure 1 for examples):

Concretization uses run-time values in order to under-
approximate the path predicate, allowing to handle in
a precise but limited way parts of an execution which
are either missing (e.g., system calls) or too costly
to reason about. For instance, concretizing read and
write addresses significantly reduces the complexity
of the path predicate since the theory of arrays is
computationally hard to solve;

Symbolization over-approximates the path predicate by
introducing a fresh logical variable, allowing to gen-
eralize certain program steps, keeping the reasoning
exhaustive but less precise. For example, symbolizing
eax after a system call is a good way to simulate all
possible return values of the call;

Propagation computes the path predicate as explained in
Section 2.3, without any extra-approximation.

Both concretization and symbolization allow to make SE
more robust to real programs, yet they come at the price
of losing either completeness (concretization) or correctness
(symbolization). The decision upon which a value is con-
cretized or symbolized is in general hard-coded inside the path
predicate computation, and many alternative choices exist in
the literature (cf. Section 7), more or less documented. Our
goal is precisely to design a flexible and clear specification
mechanism for such a decision.

Expr : cst
Σ∗, bv `e bv

var
Σ∗, v `e Σ∗(v)

binop
Σ∗, e1 `e ϕ1 Σ∗, e2 `e ϕ2 ϕ , ϕ1 �∗b ϕ2

Σ∗, e1 �b e2 `e ϕ

unaryop
Σ∗, e `e ϕe ϕ′ , �∗uϕe

Σ∗, �ue `e ϕ′
@

Σ∗, e `e ϕ
Σ∗,@ e `e select(Σ∗(Mem), ϕ)

Instr : goto l1
l, Σ∗, φ, goto l1 l1, Σ∗, φ,∆(l1)

le − goto e
Σ∗, e `e ϕe φ′ , φ ∧ to val(le) = ϕe
l, Σ∗, φ, goto e le, Σ∗, φ′,∆(le)

T − ite Σ∗, e `e ϕe φ′ , φ ∧ ϕe = true

l,Σ∗, φ, ite(e) : l1; l2 l1, Σ∗, φ′,∆(l1)
F − ite Σ∗, e `e ϕe φ′ , φ ∧ ϕe = false

l, Σ∗, φ, ite(e) : l1; l2 l2, Σ∗, φ′,∆(l2)

var assign
Σ∗, e `e ϕe Σ∗new , Σ

∗[v ← fresh] φ′ , φ ∧ fresh = ϕe
l, Σ∗, φ, v := e l + 1, Σ∗new, φ′,∆(l + 1)

@ assign
Σ∗, e `e ϕ Σ∗, e′ `e ϕ′ Σ∗new , Σ

∗[Mem← freshm] φ′ , φ ∧ freshm = store(Σ∗(Mem), ϕ′, ϕ)

l, Σ∗, φ,@ e′ := e l + 1, Σ∗new, φ′,∆(l + 1)

stop
l,Σ∗, φ, stop return φ

Figure 2: Path predicate computation.

3. MOTIVATIONS

3.1 The case for clear C/S policy specification
Let us consider an instruction x := @(a*b) (recall that @

denotes a dereferencing operator), and a policy stating that
read expressions should be concretized. Let us assume that
runtime values are 7 for a and 3 for b. Then, there are at
least three ways of understanding this “concretization” (M
is a variable representing memory):

CS1: x == select(M, 21) [incorrect]

CS2: x == select(M, 21) ∧ a× b == 21 [minimal]

CS3: x == select(M, 21) ∧ a == 7 ∧ b == 3 [atomic]

The first formula is simple yet incorrect (we lose that
a × b == 21), the second formula is correct and minimal
w.r.t. the initial objective, and the third formula is correct
but very restrictive since it imposes values for both a and b

— we can see it as a atomic concretization of read expressions,
affecting only variables. Note however that CS2 does not
allow to get rid of the × operator, which may be a problem if
our solver does not support it, while both CS1 and CS3 do.
None of these three policies is clearly better, it all depends
on the context. Yet, which policy was intended?

This example demonstrates that C/S policies can show
subtle differences, and that clear specifications are required.

3.2 The case for dedicated C/S policies
Let us consider the C program presented in Figure 3, where

x, y and z are supposed to be tainted [25], i.e. on the control
of the user. This program is therefore vulnerable: variable
buf can be overflowed at lines 7 and 8. In both cases, the
pointer ptr could be overwritten3, potentially hijacking the
function call at line 9.

3We assume here that ptr is just below buf in the stack
frame, which is compiler-dependent.

Nevertheless, only the second case (line 8) is interesting
from an exploitability point of view, since the attacker can
control both the value to write (z*2) and the destination
address (buf[y]), while in the first case value 42 probably
does not produce an executable address.

1 void example1(int x,int y,int z) {
2 int val;
3 int buf [10];
4 void (*ptr)(void);
5 ptr=&fun1; //a function elsewhere
6 val=z*2; //val is tainted
7 buf[x]=42;//buf[x] tainted , 42 is not
8 buf[y]=val;//buf[y] and val tainted
9 ptr();
10 }

Figure 3: Motivating example

Let us suppose that our goal is to detect such form of
weakness through DSE. Here, results will highly depend on
the C/S choices on memory reads and writes. For instance,
we can consider two standard C/S policies :

CS4: concretize the destination address of every write oper-
ation, propagate (i.e. keep symbolic) otherwise.

CS5: concretize the destination address of every write oper-
ation if not tainted, propagate otherwise.

CS4 scales well since it avoids the computation of array
formulas with symbolic indexes (which introduce combinato-
rial reasoning), but it leads to a strong under-approximation
of the path predicate, possibly preventing the detection of
the vulnerability. On the other hand, since CS5 keeps both
buf[x] and buf[y] symbolic because they are tainted, the
solver is indeed able to provide a valuation for x and y allow-
ing to overwrite ptr and to hijack the control-flow. Yet, this
policy keeps also x symbolic at line 7, leading to unnecessary
computations here. A more appropriate policy would be to

keep a write address symbolic only if both this address and
the written value are tainted (policy CS6).

This example suggests that it is beneficial to tune C/S
policies for specific application domains, as will be illustrated
in Section 6.3.

4. SPECIFICATION OF C/S POLICIES
Our main goal is to design a high-level specification lan-

guage for C/S policies able to encode the major policies
found in the literature. Especially, we want to be able to
distinguish between CS1, CS2 and CS3 (Section 3.1) and
to express CS4 and CS5 (Section 3.2). Besides expressive-
ness, the following properties are also desirable: (1) a clear
semantics; (2) simplicity and concision; (3) independence
from the code under analysis or from a particular SE tool;
(4) “executability”, in that we want to synthesize the code
enforcing a C/S policy from its specification.

We achieve these goals through CSml, a high-level rule-
based language offering pattern matching and subterm checks
on the expression and the instruction being processed. As
an example, the encoding of CS4 is presented in Table 2. It
will be explained in Section 4.2.

∗ :: 〈@?e := ??〉 :: 〈!e〉 :: ∗ ⇒ C ;

default ⇒ P ;

Table 2: CS4 policy

Before presenting CSml together with its semantics (Sec-
tion 4.2), we define formally what a C/S policy is, and how
it interacts with path predicate computation (Section 4.1).

4.1 Revisiting DSE with C/S policies
Formalization of C/S policies. The goal of a C/S policy
is to decide whether a given expression of the execution trace
must be:

• concretized (C), i.e. replaced by its concrete value in
the trace;

• symbolized (S), i.e. replaced by a fresh (unconstrained)
symbol;

• or propagated (P), keeping its current value as in the
standard algorithm of Figure 2.

We denote by ρ , {C,S,P} the set of possible decisions,
and by State the set of concrete memory states. We define
a C/S policy csp expr as a function that takes as input a
location l, an instruction i, a concrete memory state Σ and
an expression e, and returns a decision d ∈ ρ. Formally:

csp expr : Loc× Instr × Expr × State→ ρ

Path predicate computation with C/S policy. The
C/S policy is queried inside the path predicate computation
algorithm each time an expression must be evaluated. Intu-
itively, the standard algorithm of Figure 2 corresponds to
the case where the decision is always P (propagate current
value), starting from an initial state where all variables are
symbolized.

A version of the path predicate computation algorithm
revisited for taking C/S policies into account is presented in

Figure 4. The main difference with the standard approach is
that the symbolic evaluation operator `e is slightly modified
into `cs• to use the policy. Moreover, before evaluating an
expression, csp expr(l, i, e,Σ) is queried in order to know
which action shall be performed (lower part of Figure 4):

• S: the expression e is replaced by a new symbol;

• P: the expression e is symbolically evaluated, applying
the C/S policy on each sub-terms [with `cs◦];
• C: the expression e is symbolically evaluated [with `cs◦],

then the resulting logical expression is constrained to
be equal to the concrete evaluation evalΣ(e) of e, in
order to preserve correctness of concretization.

Note that `cs• [and `cs◦] returns now both a symbolic ex-
pression and a formula, the latter representing the constraints
potentially induced by concretizing some subterms of the
expression to evaluate.

4.2 Specification language for C/S policies
We describe now CSml, our rule-based language whose

syntax is given in Table 3.

Basic principles. A rule is of the form guard ⇒ ρ where
the guard allows to check if the rule should be fired (typically
using pattern-matching and subterm checks) and ρ is the deci-
sion to be returned by the policy. As explained before, rules
are queried with the current location, instruction, expression
and concrete memory state. Namely, guards are denoted by
πloc :: πins :: πexpr :: πΣ , where:

• πloc is a predicate on the location,

• πins is a predicate on the instruction,

• πexpr is a predicate on the expression,

• πΣ is a predicate on the concrete memory state.

Rules are tested sequentially, and the first fireable rule returns
its associated action. If no rule fires, then a default rule is
applied. Inside each rule, guard predicates are also checked
sequentially, so that πloc must be satisfied in order to check
πins and so on. Note that any of these predicates can be
replaced by ∗, which always evaluate to true. Finally, guard
predicates may communicate in a limited way through meta-
variables and placeholders.

policy ::= rules default | default

rules ::= rule | rule rules

rule ::= guard ⇒ ρ

default ::= default ⇒ ρ

guard ::= πloc :: πins :: πexpr :: πΣ

πloc ::= loc | [loc..loc] | *

πins ::= 〈pinstr〉 | *

πexpr ::= 〈pexpr〉 | expr+ ≺ term+ | expr+ � term+ | *

term+ ::= expr+ | instr+

πΣ ::= P (expr)

. expr+: extended expression, allowing placeholders

. pexpr: expr. pattern, allowing placeholders and meta-variables

. instr+ and pinstr: the same w.r.t. instructions

Table 3: Policy language

Matching and meta-variables. Predicates for πexpr and
πins typically allow to check if the input expression (resp. in-
struction) matches a given pattern pexpr (resp. pinstr). A

Expr : cst
Σ∗, bv `cs◦ bv, true

var
Σ∗, v `cs◦ Σ∗(v), true

binop
Σ∗, e1 `cs• ϕ1, φ1 Σ∗, e2 `cs• ϕ2, φ2

Σ∗, e1 �b e2 `cs◦ ϕ1 �∗b ϕ2, φ1 ∧ φ2

unaryop
Σ∗, e `cs• ϕe, φe ϕ′ , �∗uϕe

Σ∗, �ue `cs◦ ϕ′, φe
@
Σ∗, e `cs• ϕe, φe ϕ , select(Σ∗(Mem), ϕe)

Σ∗,@ e `cs◦ ϕ, φe

Instr : goto l1
l, Σ∗, φ, goto l1 l1, Σ∗, φ,∆(l1)

le − goto e
Σ∗, e `cs• ϕe, φe φ′ , (φ ∧ φe ∧ to val(le) = ϕe)

l, Σ∗, φ, goto e le, Σ∗, φ′,∆(le)

T − ite Σ∗, e `cs• ϕe, φe φ′ , φ ∧ φe ∧ ϕe
l, Σ∗, φ, ite(e) : l1; l2 l1, Σ∗, φ′,∆(l1)

F − ite Σ∗, e `cs• ϕe, φe φ′ , φ ∧ φe ∧ ¬ϕe
l, Σ∗, φ, ite(e) : l1; l2 l2, Σ∗, φ′,∆(l2)

var assign
Σ∗, e `cs• ϕe, φe Σ∗new , Σ

∗[v ← fresh] φ′ , (φ ∧ φe ∧ fresh = ϕe)

l, Σ∗, φ, v := e l + 1, Σ∗new, φ′,∆(l + 1)

@ assign
Σ∗, e `cs• ϕ, φe Σ∗, e′ `cs• ϕ′, φe′ m′ , store(Σ∗(Mem), ϕ′, ϕ) φm , (φ ∧ φe ∧ φe′ ∧ freshm = m′)

l, Σ∗, φ,@ e′ := e l + 1, Σ∗[Mem← freshm], φm,∆(l + 1)

Σ∗, e `cs• :


fresh, true if ρ = S
ϕe, φe if ρ = P, Σ∗, e `cs◦ ϕe, φe
Cϕ, φe ∧ Cϕ = ϕe if ρ = C, Σ∗, e `cs◦ ϕe, φe and Cϕ , evalΣ(e)

 ρ , csp expr(l, i, e, Σ)

Instruction, location l and concrete state Σ are propagated inside all `cs• rules, but we omit it for clarity.

Figure 4: Path predicate computation with C/S policy

pattern is similar to an expression (resp. instruction), but
with two additional kinds of variables. Meta-variables (pre-
fixed by ?) allow to match any term. Once successfully
matched, these terms become available as placeholders in
the subsequent guard predicates. When a meta-variable
does not need to be reused, one can employ an anonymous
meta-variable ??. Placeholders (prefixed by !) take the value
of their corresponding meta-variable (e.g., ?e for !e) once
matched. The distinguished placeholder !� contains the
current expression being processed. Given a pattern p, we
denote the predicate “match p?” by 〈p〉. As an example,
we concretize the expression being added to esp, in any
assignment instruction:

∗ :: 〈?? := esp + ?e 〉 :: 〈!e 〉 :: ∗ ⇒ C

Here, ?e is defined in πins and then available in πexpr through
!e. The rule reads as follows: if the current instruction assigns
the sum of esp and some expression e to any lhs and the
current expression matches e, then it should be concretized.
Or, put another way: if we are evaluating an expression e
in the context of an instruction where e is added to esp and
assigned to some lhs, then e should be concretized.

We can now understand the encoding of CS4 given in
Table 2: if we are evaluating an expression e in the context
of an assignment where e is used as the write address, then
e is concretized, otherwise it is propagated.

Subterm. This language is already quite expressive, but still
does not allow to match a nested sub-expression depending on
its context. The typical usage is, when willing to concretize
a read address, we want to know if the given expression is
in the scope of a read operation. This can be solved by
introducing the � operator (resp. ≺), allowing to check if
an expression is a subterm (resp. strict subterm) of another
one. Specifying that any read or write expression must be
concretized can then be simply written as follows, where ?i

matches a whole instruction:

• correct concretization of r/w expressions [CS2]

∗ :: 〈?i 〉 :: (@ !�) ≺ !i :: ∗ ⇒ C

The rule can be read as follows: when evaluating an ex-
pression e (given by the special placeholder !�) such that
the expression @e is a subterm of the current instruction
(captured by ?i) then e should be concretized.

Note that ≺ and � can be applied to (extended) terms
containing placeholders (expr+ and instr+ in Table 3).

Other predicates. πloc consists in checking that the input
location l is either equal to a given location loc or within
a range of locations [loc..loc’]. πΣ is a predicate over Expr
that can query information from Σ. For example, we can
imagine performing some concretization and/or symboliza-
tion depending of the runtime value of the expression being
evaluated. The interest of πΣ will be lightened once we allow
extended memory states (cf. Section 4.4).

4.3 Properties of the specification language
CSml ensures interesting properties on the C/S policy

being defined. In order to present them, we need a few addi-
tional definitions. A CSml rule is said to be well-defined if
it is well-typed and place holders are used in an appropriate
manner. Note that the well-definedness of a rule is automat-
ically checkable. A C/S policy is well-defined if it is a total
function (deterministic behavior, defined on any input), and
it is correct if it yields to the computation of a correct path
predicate (cf. Section 2.3). Then, by construction, we have
the good following properties4:

Property 2. A set of well-defined CSml rules defines a
well-defined C/S policy.
4Property 2 comes also from the sequential ordering of rules
and the presence of a default rule.

Property 3. A set of well-defined CSml rules employing
only C and P defines a correct C/S policy.

4.4 Advanced features
We propose here a few extensions to the CSml core lan-

guage, presented with less details due to space limitations.

Richer decisions. We enrich the set of possible decisions by
allowing a domain restriction on both S and P, now denoted
SD and PD, where D is an interval constraint (resp. singleton
constraint) of the form [a..b] (resp. [a]) with a and b expres-
sions evaluating to bitvector values. This feature is useful
typically for limiting the domain of a fresh logical variable,
but it can also be used to encode incorrect concretization
or restricted propagation (cf. below). Note that the domain
does not need to be defined by constant values, for example
its definition can involved runtime evaluation of bitvector
expressions, through function evalΣ : Expr → V al

• incorrect concretization of r/w expressions [CS1] [23]

∗ :: 〈?i 〉 :: (@ !�) ≺ !i :: ∗ ⇒ S[evalΣ(!�)]

• restriction of r/w expressions [5]

∗ :: 〈?i 〉 :: (@ !�) ≺ !i :: ∗ ⇒
P[evalΣ(!�)−10..evalΣ(!�)+10]

Richer subterm constraints. We allow chaining of sub-
term constraints, e.g. e ≺ pe1 ≺ . . . ≺ pen ≺ term+,
together with the use of anonymous meta-variables inside
the pei. This allows finer subterm relationship, such as check-
ing that an expression is a subterm of an expression pattern,
used itself within another expression.

• recursive concretization of r/w expressions:

∗ :: 〈?i 〉 :: !� ≺ (@ ??) ≺ !i :: ∗ ⇒ C

Compared with concretization CS2 presented in Section 4.2,
this rule enforces the concretization of all subterms of a r/w
expression. This policy is also slightly different from atomic
concretization CS3, whose encoding is shown hereafter.

Richer predicates. We can also allow more predicates
in the language. This can be done at two stages: either
enriching the four classes of predicates already defined, or
adding new classes of predicates. For the first category, it
could be useful to have a var predicate indicating if a term is
a variable or not. An application is to restrict concretization
to atomic variables:

• atomic concretization of r/w expressions [CS3]

∗ :: 〈?i 〉 :: var(!�) ∧ !� ≺ (@ ??) ≺ !i :: ∗ ⇒ C

For the second category, it could be useful to consider
a predicate class πstep regarding the step of the execution,
allowing for example to define a C/S policy step by step in a
trace-oriented manner, which may sometimes come handy.

Extended memory states. In the same vein, it can be
interesting to enrich the predicate πΣ working on a concrete
memory state Σ into a predicate πΣ+ working on an ex-
tended concrete memory state Σ+. Basically, an extended
concrete memory state is a concrete memory state enriched
with additional runtime information collected. A typical

example of such a predicate is T̂Σ+(e), indicating whether

an expression e is tainted or not in a given extended memory
state Σ+, using dynamic taint information [25].

Note that this extension makes the C/S policy dependent
on the services provided by the underlying dynamic execution
engine. While it is fair to assume that a concrete evaluation
function evalΣ is available on any dynamic execution engine,
more exotic queries on Σ+ may not be available. We assume
that C/S policies querying unsupported Σ+-function (or
Σ+-predicate) are syntactically rejected.

C/S through memory injection. Besides C/S at the
level of symbolic evaluation, another common pattern is to
enforce concretization and/or symbolization through direct
modification of the symbolic memory state. This is partic-
ularly useful to handle unknown or hard-to-reason-about
functions (e.g. system calls, cryptographic function) with
side-effects or returning complex data structures. Note that
this kind of C/S is different from the one we have considered
so far, since it modifies permanently the value of a lhs (inside
Σ+), while csp expr affects a single evaluation of any expres-
sion. For example, C/S memory injection allows to declare
that at some location, variable eax receives a fresh value
(which will last along the trace until eax is rewritten), while
csp expr allows to declare that at some location, variable
eax evaluates as if it were unconstrained (with no impact on
the remainder part of the trace).

C/S injection can be handled similarly to C/S in expression
evaluation. Due to space limitation, we only sketch the idea.
We introduce a new function

csp mem : Loc× Instr × State→ (lhs 7→ {C,S})

which takes as argument a location, an instruction and a
memory state, and returns a map from lhs to decisions, which
are here limited to C and S. Intuitively, the map represents
the modifications which have to be performed on the current
symbolic memory state Σ∗ before the symbolic execution
goes on.

Contrary to csp expr, concretizations defined by csp mem
are not ensured to be correct, as the symbolic memory state
is modified without any additional (correctness) constraint.

Discussion. Altogether, these extensions provide a very
fine control over the C/S policy, allowing for example to
encode the subtle differences between correct concretization,
incorrect concretization, recursive concretization and atomic
concretization.

4.5 Encoding of standard C/S policies
To illustrate how our language works, we show the encoding

of several state-of-the-art policies from the literature, not yet
covered in Sections 4.2 and 4.4.

For instance, CUTE and DART [26, 21] concretizes both
read and write addresses, as well as part of non-linear opera-
tions (here: left operand of any × operator). The associated
policy is shown in Table 4.

∗ :: 〈?i〉 :: (@ !�) ≺ !i :: ∗ ⇒ C ;

∗ :: 〈?i〉 :: (!� × ??) ≺ !i :: ∗ ⇒ C ;

default ⇒ P ;

Table 4: CUTE/DART policy

A variant for memory operations consists in concretizing
also all non-tainted expressions [23]. The corresponding

policy is shown in Table 5, where T̂Σ+(e) indicates whether
an expression e is tainted or not in a given extended memory
state Σ+ (cf. Section 4.4).

∗ :: 〈?i〉 :: (@ !�) ≺ !i :: ∗ ⇒ C ;

∗ :: ∗ :: ∗ :: ¬T̂Σ+(!�) ⇒ C ;
default ⇒ P ;

Table 5: CUTE/DART policy with tainting

The approach followed in EXE [13] in case of multi-level
dereferencement consists in concretizing all r/w expressions
but the most nested one. The encoding of such a policy is
shown in Table 6.

∗ :: 〈?i〉 :: (@ !�) ≺ (@ ??) ≺ !i :: ∗ ⇒ C ;

default ⇒ P ;

It is important here to use ≺ rather than �.

Table 6: EXE policy

Finally, the policy in Mayhem [16] consists in concretizing
all write expressions while keeping read expressions symbolic
as long as they cannot take too many values (otherwise,
concretizing them). We need here to consider Σ+ enriched
with an interval analysis. The encoding is then given in Table
7, where cardI(e) gathers the number of possible values for
e from the interval information available in Σ+.

∗ :: 〈@?a := ??〉 :: 〈!a〉 :: ∗ ⇒ C ;

∗ :: 〈?i〉 :: (@!�) ≺ !i :: cardI(!�) < 1024 ⇒ P ;

∗ :: 〈?i〉 :: (@!�) ≺ !i :: ∗ ⇒ C ;

default ⇒ P ;

Table 7: Mayhem policy

Summary. Table 8 presents a summary of the kinds of
C/S policies CSml can encode, together with the required
extension of the language. It is remarkable that CSml can
encode all popular C/S policies despite a limited language.
Hence, we think that our rule-based language manage to
capture the crucial aspects of current C/S policies.

Limits. We do not know of any major existing C/S policy
that cannot be encoded into CSml. Yet, the framework has
some limitations, coming from both the ordered evaluation
of guard predicates and the very restricted communication
between those predicates. Here are two such limitations.

• A C/S policy does not depend on the symbolic state
we are building, for example we cannot decide to con-
cretize a term if all its leaves (variables) are already
concretized.

• A C/S policy does not depend on the formula we are
solving. For example, we cannot compute a path pred-
icate, pass it to a solver (or to a simplifier) and then
request concretization or symbolization depending on
the solver’s output.

Note, however, that the extended memory state Σ+ does
allow to overcome most of the above limitations, assuming one
is willing to store (resp. to query) very complex information
into (resp. from) Σ+. In our view, Σ+ should be used with
care, only in last resort.

policy language

minimal concretization [CS2] core language

recursive concretization extended ≺
atomic concretization [CS3] extended ≺ and var

incorrect concretization [CS1] extended decisions

r/w full-concrete [dart/cute] core language

r/w full-symbolic [pathcrawler] core language

r/w domain restriction [osmose] extended decisions

r/w multi-level [exe] extended ≺
r/w taint-based [23] extended Σ+

r/w dataflow-based [mayhem] extended Σ+

Table 8: Encoding of C/S policies

5. IMPLEMENTATION
The C/S policy mechanism presented so far has been

integrated into Binsec/se [19], an open-source DSE tool
built on top of the Binsec framework [20] for binary code
analysis. Binsec and Binsec/se are developed in OCaml.
They rely on DBA [6] and use solvers Z3 [8] and Boolector
[11].

An overview of the modified architecture is shown in Figure
5. The C/S policy is specified in a textual format close to
CSml. Subsequently, while the SE engine creates the path
predicate, the C/S policy is queried for each encountered
expression (Section 4.1) via a hook function, instantiated
from the CSml specification.

Figure 5: CSml support in Binsec/se

This version of Binsec/se is currently the first SE tool
supporting high-level specification of a wide range of C/S
policies. The core engine is fully functional: all experiments
of Section 6 have been carried out with it. Concerning CSml,
the whole core language is supported, as well as extended
memory states (currently: taint and heap information) and
extended decisions. Other features are in progress, especially
memory injection.

6. EXPERIMENTS
We report in this section three experiments that have been

carried out with CSml and Binsec/se.

• First, we are interested in studying the impact of C/S
policies targeting memory reads and writes. While (the
new) policy PP* works better on average, a generic
C/S mechanism is still strongly recommended. This is
the first time such a comparison is performed.

• Second, we are interested in estimating the overhead
of rule-based C/S specification. The conclusion is that
our approach does impact the cost of formula creation,
yet it is still negligible w.r.t. formula solving. Hence,
our approach is practical.

• Finally, we come back to the motivating example of
Section 3.2, in order to argue on the benefit of defining
specific purpose-oriented C/S policies.

6.1 Quantitative evaluation of C/S policies
We study the impact on SE of C/S policies targeting

memory reads and writes. This is a typical application of
C/S, since a faithful modeling of memory operations may
lead to hard-to-solve formulas. More precisely, we investigate
the following questions: RQ 1: Do C/S policies have a
significant impact on SE in terms of the quality of results?
RQ 2: Is there a best C/S policy for read/write operations –
among standard policies?

Protocol. We consider 5 different C/S policies regarding
the handling of memory reads and writes, namely: CC, CP,
PC, PP*, PP, where the first letter indicates whether read
addresses are concretized (C) or propagated (P), and the
second letter indicates the same for write addresses. PP* is a
special case: all read and write addresses are kept symbolic,
except for stack registers (i.e., on x86, registers esp and ebp

are concretized). While CC and PP are standard policies,
the three others are new.

Experiments are performed over 167 programs (x86 ex-
ecutable codes) – composed of programs from NIST/SA-
MATE [29] (a standard benchmark for program analysis), all
Unix coreutils and several Windows malware [30], for a total
of 45,242 solver queries. Details can be found in Table 9.
All instructions are traced, except calls to library functions
which are stubbed by symbolic values (fresh logical variables).
The solver is Z3, with a time-out of 30 seconds.

Table 9: Benchmark characteristics

category #prog # trace instr # trace branch

max avg max avg total

samate 50 5,000 2,772 1,177 333 16,554

coreutils 100 5,000 1,572 1,053 171 17,198

malware 17 5,000 3,739 1,539 675 11,490

all 167 5,000 2,151 1,539 270 45,242

We measure the influence of these policies in the following
way: for each benchmark program, we consider an arbitrary
(but reproducible) initial concrete execution and we ask the
SE engine to iteratively invert every condition along the
initial execution, leading to a set of new path predicate
computations and solver queries. We record for each policy
the number of queries which have been successfully solved
(SAT), proved infeasible (UNSAT) or which have triggered
a time-out (TO). Note that only the first category leads to
new test input and (hopefully) better code coverage.

Results and conclusion. Part of results5 are summarized
in Tables 10 and 11. First, [RQ 1] the choice of C/S policy
may greatly affect the outcome of SE: there are ≥5x more
SAT results on 20/167 examples, and up to 286x more SAT
results on one program. Second, [RQ 2] there is no clear

5All our data will be made publicly available.

hierarchy between the considered policies. Indeed, even if
PP* performs very well on many examples — PP* is the
best policy on 41/167 examples, and it is optimal on 117/167
examples (Table 11), the global number of successfully solved
instances is pretty close for all policies but PP (Table 10).
Actually, while a more symbolic policy leads in theory to
more satisfiable queries, it may also come at the price of
harder-to-solve formulas and time-outs. These results are a
strong argument in favor of a generic C/S mechanism.

The major threats to validity are the representativeness of
the experimental setting (policies, programs) and internal
bugs in the SE tool. We mitigate these threats through
using standard policies and variants of them as well as a
large program set coming from three distinct well-known
and publicly-available benchmarks. Moreover, we rely on
publicly-available tools (SE, solver) and results have been
crosschecked for internal validity.

Table 10: Summary of #SAT, #UNSAT and #TO
#SAT #UNSAT #TO

CC 4,518 40,712 12

PC 4,436 38,897 1,909

CP 4,651 39,310 1,281

PP* 4,515 31,320 9,407

PP 3,340 25,037 16,865

total number of queries: 45,242

Table 11: Best and optimal policies
samate core malware total

opt best opt best opt best opt best

CC 20 0 44 1 5 0 69 1

PC 20 2 49 4 6 1 75 7

CP 23 1 61 11 4 0 88 12

PP* 36 12 71 24 10 5 117 41

PP 33 9 36 7 7 2 76 18

total number of programs: 167 - best (resp. opt): number of programs
for which the considered policy returns the strictly highest (resp. high-
est) number of SAT answers, w.r.t. the other policies.

6.2 Overhead of the rule-based language
We evaluate the overhead of our parametric C/S policy

mechanism. We want to answer the two following questions:
RQ 3: What is the extra-cost of rule-based C/S specification,
especially w.r.t. hard-coded policies (by mean of callback
functions) and no C/S policy at all? RQ 4: Is it affordable,
i.e. is the extra-cost low w.r.t. solving time?

Protocol. We reuse the experimental setting of the previous
evaluation. We consider two metrics: the cost of formula
creation – which is directly affected by C/S policies, and
the ratio between formula creation and formula solving. We
record these metrics for the 5 previous policies, implemented
either in CSml or through native callbacks, and we consider
a baseline consisting of SE without any C/S policy.

Results and conclusion. Table 12 reports the ratio be-
tween formula creation and formula creation plus solving.
Note that solving time does not depend on the way C/S is
implemented. [RQ 3] CSml does lead to a more expensive
path predicate computation (average: x3 w.r.t. hard-coded
callbacks and up to x5 w.r.t. no C/S at all, at worst x7 on
some examples), yet [RQ 4] the cost of predicate computa-
tion is still negligible (average of 1.45% for the most expensive
C/S policy; maximum of 23% on some easy-to-solve path

predicates) w.r.t. the cost of predicate solving. Hence, our
rule-based C/S mechanism brings extra-flexibility at only a
very slight extra-cost.

Threats to validity: besides issues discussed in the pre-
vious evaluation, the considered policies are rather simple
w.r.t. the expressive power of CSml. While the study is
of interest because these policies are representative, further
investigations are required for complex CSml policies.

Table 12: Overhead evaluation
min max average

base (PP) 0.04% 3% 0.3%

CC 0.1% 17% 1.2%

rule-based CP 0.1% 23.5% 1.45%

C/S policy PC 0.08% 12.8% 0.85%

PP* 0.08% 12.3% 0.95%

PP 0.05% 4% 0.48%

CC 0.05% 8.5% 0.5%

hard-coded CP 0.05% 8.2% 0.5%

C/S policy PC 0.05% 8% 0.45%

PP* 0.05% 6% 0.45%

PP 0.04% 3% 0.3%

Ratio between the cost of path predicate computation (impacted by
C/S) and the whole cost (i.e. formula creation + formula solving).
Note that the time for formula solving does not depend on the way
C/S is implemented (rules, hard-coded, no C/S).

6.3 Dedicated C/S policies
We come back to the motivating example of Figure 3. In

order to check that vulnerability at line 9 can be exploited, we
follow the general line of [1, 23, 16] and strengthen the path
predicate with the extra condition that at line 9, ptr must
be equal to an arbitrarily-chosen value, here 0x61626364.
Depending on C/S, our strengthened path predicate may or
not be satisfiable. We consider CS4 and CS5 (Section 3.2),
as well as the (original) following one:

CS6: Memory writes are kept symbolic if both the destina-
tion address and the value to write are tainted.

The encoding of CS4 is given in Table 2, those of CS5
and CS6 are straightforward from CS4 and Table 5. As
expected, CS6 does allow to recover input values triggering
the exploit and hijacking the execution control flow to ad-
dress 0x61626364 (with Z3: x=0x0, y=0xb and z=0x30b131b2),
while CS4 does not reveal the exploit (the formula is too con-
strained), and CS5 obtain an exploit, but with a more com-
plex formula (with an extra symbolic expression for &buf[x]).

7. RELATED WORK
Several DSE frameworks have been developed so far, each

of them offering its own solution to the C/S issue. We
summarize hereafter the most representative solutions, and
we compare them with our approach.

Built-in C/S policies. Most SE tools implement a sin-
gle hard-coded built-in C/S policy, which can favor either
scalability (i.e., by considering most values as concrete) or
completeness (i.e., by keeping more symbolic values). For
instance, the pioneering tools DART [21] and CUTE [26]
fall in the former category (memory addresses, results from
external library calls and part of non-linear expressions are
concretized), while PATHCRAWLER keeps the computation

fully symbolic [28] and EXE [13] stands in between. More
recent engines can even build on more sophisticated heuristics
in the hope of reaching a sweet spot between scalability and
completeness, typically based on tainting [25, 23] or dataflow
analysis [16]. We showed in Section 4.5 how such policies
can be specified in CSml.

More flexible policies. Klee [12] is a popular symbolic
execution engine operating on LLVM byte-code [31]. By de-
fault, each program variable is considered as concrete, unless
specified otherwise. Source-level primitives 6 allows to indi-
cate that a variable should be considered as “symbolic” from
a given control location. Finally, symbolic values are (im-
plicitly) made concrete when calling native external libraries,
unless a model (i.e. a C stub) is provided.

S2E [18, 17] allows to perform symbolic execution at system
level, taking into account not only the target application
but also its whole environment. Although partially based
upon Klee, S2E offers several original features, especially: a
powerful – but rather complex – plugin mechanism allowing
the user to interact with the execution engine by inserting
external code upon reception of some events, and the ability
to switch between symbolic and concrete modes. In addition,
S2E provides several ways to introduce symbolic values at
arbitrary memory locations.

Comparison with our proposal. Both S2E and Klee do
allow the user to write and integrate C/S policies based on
memory injection (cf. Section 4.4). They do not provide
policies based on expression evaluation, while we argued
in Section 4.4 that both notions are useful and orthogonal.
Expressing a C/S policy with Klee is rather tedious and error-
prone since such a policy should be explicitly and manually
weaved into the code under test, S2E is more flexible, thanks
to its plugin mechanism.

These two approaches focus on practical implementation,
while we are also interested in the formalization, specification
and (ultimately) understanding of C/S policies. Especially,
we propose a much more comprehensive and declarative way
to define C/S policies.

8. CONCLUSION
Concretization and Symbolizations (C/S) is a crucial part

of modern SE tools, yet C/S is often treated as “black magic”,
with only little documentation and hard-coded heuristics. We
propose a clear separation of concerns between the specifica-
tion of C/S policies on one side, through the CSml rule-based
language, and the algorithmic core of SE on the other side,
revisited to take C/S policies into account. CSml is simple,
yet powerful enough to encode all popular C/S policies from
the literature. Such a mechanism has been implemented
on top of Binsec/se, yielding the first SE tool supporting
high-level specification of a wide range of C/S policies. We
also carried out the first quantitative comparison on C/S
policies, demonstrating that the level of genericity we offer
is both very beneficial to SE and affordable (very low over-
head). This work paves the way for a systematic study of
C/S policies in order to better understand their impact and
to identify interesting trade offs.

6like klee_make_symbolic

9. REFERENCES
[1] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz,

M. Woo, and D. Brumley. Automatic exploit
generation. Commun. ACM, 57(2), 2014.

[2] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley.
Enhancing symbolic execution with VeriTesting. In:
ICSE 2014. ACM, 2014

[3] S. Bardin, P. Baufreton, N. Cornuet, P. Herrmann, and
S. Labbé. Binary-level testing of embedded programs.
In: QSIC 2013. IEEE, 2013

[4] S. Bardin and P. Herrmann. Structural Testing of
Executables. In: ICST 2008. IEEE, 2008

[5] S. Bardin and P. Herrmann. Osmose: Automatic
structural testing of executables. Software Testing,
Verification Reliability, 21(1), 2011

[6] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary,
and A. Vincent. The BINCOA framework for binary
code analysis. In: CAV 2011. Springer, 2011

[7] S. Bardin, P. Herrmann, and F. Védrine.
Refinement-based CFG reconstruction from
unstructured programs. In: VMCAI 2011. Springer,
2011

[8] N. Bjørner. Engineering theories with Z3. In: IWIL
2012, 2012

[9] E. Bounimova, P. Godefroid, and D. A. Molnar.
Billions and billions of constraints: whitebox fuzz
testing in production. In: ICSE 2013. IEEE, 2013

[10] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, D. Song, and H. Yin.
Bitscope: Automatically dissecting malicious binaries.
Technical report, CMU-CS-07-133, 2007

[11] R. Brummayer and A. Biere. Boolector: An efficient
SMT solver for bit-vectors and arrays. In: TACAS
2009. Springer, 2009

[12] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In: OSDI 2008. USENIX
Association, 2008

[13] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. Exe: Automatically generating inputs of
death. In: CCS 2006. ACM, 2006

[14] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu,
K. Sen, N. Tillmann, and W. Visser. Symbolic
execution for software testing in practice: Preliminary
assessment. In: ICSE 2011. ACM, 2011

[15] C. Cadar and K. Sen. Symbolic execution for software
testing: three decades later. Commun. ACM, 56(2),
2013

[16] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley.
Unleashing mayhem on binary code. In: SP 2012.
IEEE, 2012

[17] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A
platform for in-vivo multi-path analysis of software
systems. In: ASPLOS XVI. ACM, 2011

[18] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E
platform: Design, implementation, and applications.
ACM Trans. Comput. Syst., 30(1), 2012

[19] R. David, S. Bardin, T. Thanh Dinh, J. Feist,
L. Mounier, M.-L. Potet, and J.-Y. Marion.
BINSEC/SE: A dynamic symbolic execution toolkit for
binary-level analysis. In: SANER 2016. IEEE, 2016

[20] A. Djoudi and S. Bardin. BINSEC: Binary code
analysis with low-level regions. In: TACAS 2015.
Springer, 2015

[21] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. SIGPLAN Not., 40(6), 2005

[22] P. Godefroid, M. Y. Levin, and D. A. Molnar. SAGE:
whitebox fuzzing for security testing. Commun. ACM,
55(3), 2012

[23] S. Heelan and A. Gianni. Augmenting vulnerability
analysis of binary code. In: ACSAC 2012. ACM, 2012

[24] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7), 1976

[25] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You
Ever Wanted to Know about Dynamic Taint Analysis
and Forward Symbolic Execution (but Might Have
Been Afraid to Ask). In: SP 2010. IEEE, 2010

[26] K. Sen, D. Marinov, and G. Agha. Cute: A concolic
unit testing engine for C. SIGSOFT Softw. Eng. Notes,
30(5), 2005

[27] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. G. Kang, Z. Liang, J. Newsome, P. Poosankam, and
P. Saxena. Bitblaze: A new approach to computer
security via binary analysis. In: ICISS 2008. Springer,
2008

[28] N. Williams, B. Marre, and P. Mouy. On-the-fly
generation of k-path tests for C functions. In: ASE
2004. IEEE, 2004

[29] http://samate.nist.gov/

[30] http://vxheaven.org/

[31] http://llvm.org

