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Robust Unmixing of Dynamic Sequences Using
Regions of Interest (RUDUR)

Marc Filippi*, Michel Desvignes, and Eric Moisan

Abstract—In dynamic planar imaging, extraction of signals
specific to structures is complicated by structures superposition.
Due to overlapping, signals extraction with classic regions of
interest (ROIs) methods suffers from inaccuracy, as extracted
signals are a mixture of targeted signals. Partial volume effect
raises the same issue in dynamic tomography. Source separation
methods such as factor analysis of dynamic sequences, have
been developped to unmix such data. However the underlying
problem is underdetermined and the model used is not relevant
in the whole image. This non-uniqueness issue was overcome by
introducing prior knowledge, such as sparsity or smoothness,
in the separation model. In pratice, these methods are barely
used because of the lack of reliability of their results. Previously
developed methods aimed to be fully automatic, but efficiency can
be improved with additional prior knowledge. Some methods
using ROIs knowledge in a straightforward way have been
proposed. In this paper, we propose an unmixing method, based
on an objective function minimization and integrating these ROIs
in a different and robust manner. The objective function promotes
consistent solutions regarding ROIs while relaxing the model
outside ROIs. In order to reduce user-dependent effects, ROIs
are used as soft constraints in a robust way through the use of
a distance matrix. Consistency, effectiveness and robustness to
the ROIs selection are demonstrated on a toy example, a highly
realistic simulated renography dataset and a clinical dataset.
Performance is compared with competitive methods.

Index Terms—Nuclear imaging, blind source separation, in-
verse methods, kidney, computer-aided detection and diagnosis.

I. INTRODUCTION

NUCLEAR imaging is a physiological imaging modality
dedicated to the assessment of organ and tissue function.

The first step of the pipeline is to acquire the data, a sequence
of 2D or 3D images, representing the dynamic activity of a
tracer injected inside the patient’s body. The second step is to
extract the time activity curve (TAC) of each organ and tissue
of interest. These curves are the input of a compartmental
model in the third step, giving kinetic parameters as outputs.
Finally, each organ and tissue function is assessed by a simple
analysis of these kinetic parameters. This paper is focused on
the second step, the extraction of TACs. The most straightfor-
ward method for the extraction consists in defining a region of
interest (ROI) for each structure (organ or tissue), and then to
average the activity inside each ROI. For each structure, a TAC
is obtained. However, this method is user-dependent and often
produces incorrect TACs, especially in scintigraphy, where the
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2D-images are projections of 3D-structures. As projections of
structures often overlap, a ROI is likely to contain the activity
of several structures, resulting in an incorrect TAC estimation.
An alternative method is to draw a very small ROI containing
only one structure, but this often produces noisy TACs and the
method is not always applicable. It is therefore necessary to
perform spatial and temporal structure unmixing in order to
obtain the pure TACs [1]. Because of partial volume effect, this
problem is also adressed in other medical imaging modalities,
such as SPECT [2], [3], PET [4], [5], contrast-enhanced MRI
[6], or constrast enhanced ultrasound [7], [8].

Factor analysis based methods have been developed to
perform this unmixing [1], [9]. These methods share the same
linear mixing model as positive matrix factorization [10] or
more popular non-negative matrix factorizaton [11]. Data are
assumed to be a mixture of a small number of structures,
each structure having its own positive spatial and temporal
signature. The objective is to recover the spatial and temporal
signature of each structure. However, a major drawback of the
factor analysis model is that the solution is not mathematically
unique and may have no physiological meaning [12], [13].
In order to obtain physiologically meaningful solutions and
to overcome non-uniqueness issues, prior knowledges on data
have been introduced.

Parametric methods have been developed, with various
assumptions on the TACs shape [14], [15]. The TACs are de-
composed on a dictionary of predefined parametrized temporal
curves. The degrees of freedom are then reduced since only
few parameters have to be computed. The major drawback of
these methods is the lack of flexibility, and the choice of the
dictionary.

A regularization constraint on the source images represent-
ing structures position has been introduced in [16]. Unfor-
tunately, the separation is not completely achieved as some
structures remain mixed. To overcome this problem and non-
uniqueness issues, a penalized least squares function was pro-
posed in [17]. The function introduces a new term penalizing
solutions for which pixels contain a mixture of structures. The
main drawback of this method is that it penalizes overlaps,
which is the essence of data, and therefore penalizes the target
solution.

More recently, some methods using physiological model
assumptions have been developed, where TACs are assumed
to be a convolution of an input function and tissue kernels.
These methods extract both TACs and convolution kernels. In
[6] the input function and convolution kernels are parametrized
as exponential functions, but the method shares the same
flexibility issue as parametrized methods described above. This
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issue was corrected in [18] and [19] by assuming only sparsity
on the convolution kernels. However, these methods based on a
variational Bayesian algorithm can be rather complex and time
consuming. Moreover, the separation is not always achieved
due to the presence of local minima.

A few methods using ROIs knowledge have also been
proposed. In [20], ROIs are used as masks to constrain the
source images to be null outside their ROIs. Thanks to these
constraints, source images are first estimated and then used
to compute TACs. However, the non-negativity criterion on
TACs is no longer ensured in this method and may lead to
inconsistent results with negative values on the TACs. It was
shown in [13] that the non-uniqueness issue can be overcome
using ROIs as masks. A generic method using spatial and
temporal prior knowledge was proposed in [21]. With this
method, it is possible to ensure non negativity of source images
and TACs. Also ROIs cans be used as masks to constrain the
source images. However, in this method ROIs can only be used
as hard constraints for source images. In [22], a method using
probabilistic ROI is also used, but with an automatic ROIs
selection. This method does not allow ROIs to be considered
as prior knowledge.

In all previous methods, the underlying separation model is
assumed to be true in the whole image or in a selected rectan-
gular window. This assumption is however wrong on clinical
data and must be relaxed. Unmixing remains a challenging
problem in nuclear medicine, especially in scintigraphy. The
nuclear medicine context is nonetheless very specific because
prior knowledge is easily accessible.

In order to improve unmixing, our proposed method ro-
bustly integrate ROIs knowledge as soft constraints, by gen-
eralizing and improving a previous work described in [23].
This method introduced a criterion based on the distance to
ROI. In this paper, we propose to generalize this criterion
and to robustly relax data fidelity constraint outside ROIs.
The objective function optimization is improved in term of
speed. Details and rational behind the choice of the objective
function will be given in section II. Implementation details are
given in section III. The proposed method is compared to other
competitive methods in section IV. Consistency, effectiveness
and robustness to ROIs selection are demonstrated on a toy
example, on a highly realistic simulated renography dataset
and also on a clinical data. These datasets have already been
used in [19].

II. MODEL AND METHOD

The linear mixing model used to describe the data is first
presented. The new objective function is introduced, along
with the reasons for choosing each criterion.

A. Linear Mixing Model

In nuclear imaging, the data represents the dynamic activity
of a tracer as an image sequence. Each image is then an
approximation of the tracer concentration in the patient’s body
during a time frame. In nuclear imaging, image sequences are
commonly modeled by the linear mixing model. This model
assumes that the dynamic activity of each pixel is described by

Fig. 1. An example of matrix Y , A and F consistent with the model described
in equations (1) and (2), with K = 3. The first three columns contain the
data (matrix Y ) at time t=0,3,6...24. The fourth column contains the source
images (A), and the last column contains the corresponding factors (F ). The
x-axis represents the tim and the y-axis the activity.

a linear combination of only few TACs (also called factors),
which are shared by all pixels. These factors represent the
dynamic activity of the physiological structures present in the
image. Formally, we get

Yi,t =

K∑
k=1

Ai,kFk,t + εi,t. (1)

where Y is the N by P matrix containing the image sequence,
with N the number of pixels, P the number of frames,
and K the number of observed factors. Each column of Y
corresponds to the vectorized image of the tracer activity
during a time frame. Yi,t is thus the activity on the ith pixel
in the tth frame. The matrix F of size K by P is the matrix
of factors. Its kth row corresponding to the kth factor activity.
The matrix A of size N by K contains the weights of the
linear combinations. The kth column of A thus corresponds
to a vectorized image representing the weight of the kth factor.
Finally, ε is a matrix of the same size as Y representing the
noise. Using a more compact matrix notation we obtain

Y = A× F + ε (2)

An example of matrices Y , A and F consistent with this model
is given in Figure 1.

In this work, the goal is to recover source images (matrix A)
and factors (matrix F ) from data (matrix Y ). In order to obtain
a physiologically meaningful solution, positivity constraints
are added to the coefficients of A and F . Since F represents
structures activity and A represents structures weight along
the image, their coefficients must be positive, i.e.

∀i = 1..N, k = 1..K,Ai,k ≥ 0 (3)

∀k = 1..K, t = 1..P, Fk,t ≥ 0 (4)

A common way to determine A and F under these positivity
constraints is to compute the least squares solution, as realized
in classical non negative matrix factorization method [11].
However, this problem is underdetermined since the solution
is not unique [12], [13]. To overcome this issue, we introduce
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on the next part a new criteria based on ROIs knowledge.
It should be mentionned that the previous model gives a
good approximation for only a limited area of the image.
Our method robustly uses ROIs knowledge to relax the linear
mixing model constraint outside the selected ROIs.

B. Objective Function

The proposed objective function contains three terms. The
first is a relaxed data fidelity term and the others introduce
spatial prior knowledge (on A) and temporal prior knowledge
(on F ). The first two terms use ROIs knowledge. A ROI is
a set of pixels assumed to contain a structure. In this paper,
ROIs are represented by a N by K matrix M (i.e. same size
as A) containing binary masks. A column of M is a vectorized
binary image representing the ROI of one structure, with

Mi,k =

 1 if the ith pixel is in the kth ROI

0 otherwise
(5)

However, the key knowledge of ROI is not its binary
information (i.e. whether or not a pixel belongs to this ROI), as
it is used in the basic averaging method. Pixels close to a ROI
are treated in the same way than distant pixels. This makes
the method highly sensitive to user choices. In order to make
the method more robust to ROI selection, the ROI knowledge
should not be only used associated with the binary matrix M .
To overcome this limitation, we introduce the distance to ROIs
matrix D of the same size as M (N by K), defined by

Di,k = min
j/Mj,k=1

disteuc(i, j), (6)

where disteuc(i, j) is the euclidean distance between the ith

and the jth pixel. This matrix contains the euclidean distance
from each pixel to each ROI. Specifically, Di,k = 0 if and
only if the ith pixel is in the kth ROI. This matrix will be
used to express constraints and relaxation.

The proposed objective function, to be minimized, is ex-
pressed

fRUDUR(A,F ) = fWLS(A,F ) + αfROI(A) + βfTik(F ) (7)

with α and β two non-negative constants. The objective
function is decomposed in three terms. The first term, fWLS,
is a weighted least squares term ensuring data fidelity, and
containing a model relaxation thanks to matrix D. The second
term, fROI, penalizes solutions with inconsistent coefficients in
A according to ROIs using matrix D. Finally, the third term
fTik is a Tikhonov regularization term promoting solutions
with smooth TACs in F .

More precisely, the data fidelity criterion fWLS is expressed
as

fWLS(A,F ) = ||W (Y −A× F )||2F (8)

where ||.||F is the Frobenius norm, and W is a N by N
diagonal weighting matrix relaxing data fidelity, with

Wi,i =
1

1 +
K

min
k=1

g(Di,k)

(9)

where function g can be chosen as

g(x) = γ × x2 (10)

with γ a non negative constant. While data fidelity is main-
tained for pixels inside one of the ROIs, data fidelity of pixels
outside of ROIs is relaxed according to the distance to the
closest ROI. The farther the ROI, the greater the relaxation will
be. Indeed, a pixel far from all ROIs is likely to not contain
any information about TACs of interest. In order to avoid these
far pixels to have a large impact on the separation process, the
constraint on their data fidelity must be relaxed. Robustness
to ROIs selection is thus obtained by relaxing data fidelity
according to the distance to the closest ROI. When γ = 0,
fWLS is equal to the classic least squares fidelity criterion
without relaxation.

The second term also uses ROIs knowledge through the
matrix D. A pixel far from one ROI should not contain
the corresponding factor. The corresponding coefficient in the
matrix A is thus expected to be close to 0. fROI penalizes the
opposite behaviour with

fROI(A) = ||h(D) ◦A||1,µ (11)

where ◦ is the Hadamard product and µ a small positive
constant. For the penalization to increase with the distance,
the function h is chosen as

h(D) = D ◦D (12)

||.||1,µ is a smooth `1-norm defined as

||X||1,µ =

N∑
i=1

K∑
k=1

√
X2
i,k + µ2 − µ (13)

where X is a N by P matrix. Unlike classic `1-norm, this
smooth `1-norm is differentiable at 0 which is more convenient
for the optimization process. Pixels far from a ROI are not
expected to contain the corresponding factor. The farther the
pixel, the lower the likelihood. This knowledge is included
here through the use of the distance to ROIs matrix D. fROI
promotes consistent solutions according to ROIs. Once again,
robustness to the ROIs selection is ensured through the use of
matrix D.

If the weighting constant α is chosen to be +∞, the
coefficients of matrix A are constrained to be equal to 0 when
the pixel is not in the corresponding ROI (i.e Mi,k = 0 ⇒
Ai,k = 0). This particular case was exploited in a previous
work [24].

Finally, the third term fTik is a Tikhonov regularization.
Targeted TACs are expected to be smooth. However, in a noisy
context, separation methods often produces noisy TACs. In
order to avoid this behaviour, this term promotes solutions
containing smooth TACs in F . The function is expressed

fTik(F ) = ||Γ× (FT )||2F (14)
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where T is the transpose operator and Γ is a lower bi-diagonal
P by P gradient operator matrix

Γ =



1 0
. . . . . . 0

−1 1 0
. . . . . .

0
. . . 1 0

. . .
. . . 0 −1

. . . 0

0
. . . 0 −1 1


(15)

The minimization of fRUDUR according to A and F and
under positivity constraints (3) and (4) gives the desired TAC
and source image of each structure of interest in F̃ and Ã
respectively. It is expressed by

(Ã, F̃ ) = arg min
A≥0,F≥0

fRUDUR(A,F ) (16)

The minimization of this objective function fRUDUR is detailed
in the next section.

III. IMPLEMENTATION

Due to the least squares term in fWLS, the objective function
fRUDUR is not jointly convex in A and F . However, fRUDUR
is convex in A and convex in F . Under this condition,
the classic way to minimize fRUDUR is to use an alternate
minimization method. The basic procedure for this type of
method is to alternate minimization according to A (with
F fixed) and minimization according to F (with A fixed)
until convergence. Several iterations are performed for each
minimization before switching the roles of A and F . The
proposed method relies on the alternating non negative least
squares framework (ANLS, [25]). Conjugate gradient descent
with the Polak-Ribière formula [26] was used to find the
descent direction at each iteration. The step can be chosen to
be constant over the iterations, or proportional to the inverse
of the current Lipschitz constant of the partial derivative
functions. In this case, the Lipschitz constant is different for
each pixel and each iteration (see Appendix B). In practice,
this accelerates the convergence of the algorithm.

The positivity of the coefficients of A and F is ensured
by a projection on the positive orthant at each iteration of
the optimization. To increase the speed of the algorithm, A
is initialized as the matrix of binary masks M , and F as the
average activity inside each mask.

To overcome identification problems, A is normalized after
each iteration so that the sum of each source image is equal
to the ratio N

K . For the matrix product Fk × Ak to remain
unchanged, F is counter normalized and

∀k : Fk = Fk ×
N∑
n=1

An,k ×
K

N
(17)

∀k : Ak =
Ak∑N

n=1An,k
× N

K
(18)

The complete optimization pipeline is detailed in Algorithm
1.

Details about partial derivatives of the objective function are
presented in Appendix A. The Condition in the while loop is
set to false if and only if the relative change in the objective
function is lower than 10−7 three times in a row. The presented
results have been obtained with the constant nbIter set to 5.
The functions g and h are chosen as suggested in equations
(10) and (12), with γ = 3 and µ = 0.1. The number of factors
K is assumed to be known. The matrix W is a diagonal
matrix of size N , where N is the number of pixels. Due
to the generally large size of N , it is computationally more
efficiency to treat diagonal elements of W separately instead
of performing a matrix product. In the next section, unmixing
is achieved by the proposed method and each simulation was
performed in only a few seconds (using a 2.60 GHz CPU).

The results of the next section are obtained using the
RUDUR method with α = 1 and β = 10. Better results can
be obtained with other parameters values, but usually optimal
parameters are not available without ground truth. However,
as RUDUR is not too sensitive to the choice of parameters, it
is possible to build a model of the dataset of interest and find
rough values for parameters thanks to the ground truth of the
model.

A MATLAB implementation of the algorithm and some
demos are available for download at http://www.gipsa-
lab.grenoble-inp.fr/~marc.filippi/.

IV. RESULTS

Unmixing results of the proposed algorithm (RUDUR) are
compared with state of the art methods, on simulated and
clinical dataset which have already been used in [19]. The
competing methods considered in this evaluation are :

1) FPLS [17]: In this method, unmixing is achieved thanks
to the minimization of an objective function, containing
a classic data fidelity criterion, a term penalizing solu-
tions with negative coefficients, and a term penalizing
overlapping in source images. In the following results,
this objective function is optimized with Algorithm 1
and the term penalizing solutions with negative coeffi-
cients is ignored.

2) FAMIS [21]: This method concerns Benali’s approach, a
generic method that can use temporal and spatial prior
knowledge. For the simulations, the method considered
the same ROIs as the ones selected in RUDUR. Source
images were forced to have null coefficients outside their
corresponding ROI.

3) FAROI [22]: This method promotes sparsity on source
images, and integrates automatic estimation of proba-
bilistic ROI which facilitates model solving. The model
is solved with the variational Bayesian method [27].

4) S-BSS-vecDC [19]: This method uses physiological
model assumptions. TACs are assumed to be a convolu-
tion of the input function and a tissue kernel. The method
promotes sparse source images and sparse convolution
kernels, and also uses the variational Bayesian method.

For FAROI and S-BSS-vecDC, results were
obtained using the MATLAB code available at
http://www.utia.cas.cz/AS/softwaretools/image sequences
.
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ROI Ground Truth RUDUR FAMIS FPLS S-BSS-vecDC FAROI

Fig. 2. Unmixing results on one simulation of the toy example, with σ = 0.5. The first four rows contain ground truth (second column) and an estimation
of the source images for each algorithm (columns 3 to 7). ROIs used for RUDUR and FAMIS are shown on the first column. The colorbar used for source
images display is on the bottom left of the figure. The last row contains ground truth (second column) and the estimation of TACs (F ) for each algorithm
(columns 3 to 7). For columns 3 to 7, estimations are depicted in solid lines, and ground truth in dotted lines, with time on the x-axis and activity on the
y-axis.

TABLE I
ESTIMATION ERRORS ON FACTORS (F ) - TOY EXAMPLE

sigma=0.5 sigma=1
Measure Algorithm F1 F2 F3 F4 F1 F2 F3 F4

NMSE

RUDUR 0.039 ± 0.006 0.079 ± 0.018 0.075 ± 0.004 0.270 ± 0.018 0.035 ± 0.008 0.367 ± 0.075 0.087 ± 0.015 0.460 ± 0.082
FAMIS 0.033 ± 0.013 0.143 ± 0.031 0.117 ± 0.036 0.082 ± 0.010 0.220 ± 0.295 0.476 ± 0.278 0.421 ± 0.195 0.645 ± 0.158
FPLS 0.167 ± 0.027 2.217 ± 0.296 0.036 ± 0.011 0.202 ± 0.063 0.540 ± 0.069 26.72 ± 4.569 0.185 ± 0.050 0.711 ± 0.123

S-BSS 0.402 ± 0.119 2.308 ± 0.600 0.015 ± 0.012 0.708 ± 0.154 0.540 ± 0.249 8.650 ± 3.641 0.125 ± 0.054 0.360 ± 0.125
FAROI 0.129 ± 0.019 0.932 ± 0.077 0.051 ± 0.003 0.843 ± 0.016 0.030 ± 0.056 2.136 ± 0.343 0.091 ± 0.115 0.637 ± 0.041

NMAE

RUDUR 0.264 ± 0.023 0.610 ± 0.091 0.268 ± 0.007 0.474 ± 0.017 0.187 ± 0.024 1.281 ± 0.168 0.244 ± 0.024 0.530 ± 0.052
FAMIS 0.191 ± 0.042 0.727 ± 0.065 0.281 ± 0.043 0.236 ± 0.016 0.404 ± 0.239 1.181 ± 0.233 0.541 ± 0.135 0.722 ± 0.111
FPLS 0.416 ± 0.039 2.647 ± 0.277 0.150 ± 0.022 0.370 ± 0.066 0.664 ± 0.054 8.952 ± 1.072 0.358 ± 0.065 0.693 ± 0.055

S-BSS 0.658 ± 0.037 3.694 ± 0.465 0.095 ± 0.026 0.709 ± 0.021 0.775 ± 0.209 6.418 ± 1.635 0.317 ± 0.080 0.529 ± 0.089
FAROI 0.375 ± 0.036 1.679 ± 0.068 0.216 ± 0.008 0.824 ± 0.006 0.148 ± 0.085 2.676 ± 0.260 0.261 ± 0.087 0.758 ± 0.018

Results are in the form mean± std where mean and std are the average and the standard deviation of the current measure (NMSE or NMAE) over a set of 100 simulations
of the toy example. S-BSS corresponds to S-BSS-vecDC method.
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TABLE II
ESTIMATION ERRORS ON SOURCE IMAGES (A) - TOY EXAMPLE

sigma=0.5 sigma=1
Measure Algorithm A1 A2 A3 A4 A1 A2 A3 A4

NMSE

RUDUR 0.047 ± 0.003 0.168 ± 0.013 0.086 ± 0.010 0.805 ± 0.044 0.156 ± 0.014 0.446 ± 0.029 0.236 ± 0.022 1.982 ± 0.094
FAMIS 0.252 ± 0.006 0.597 ± 0.027 0.061 ± 0.003 1.396 ± 0.014 0.811 ± 1.117 1.133 ± 0.365 0.222 ± 0.429 3.132 ± 2.408
FPLS 0.103 ± 0.048 0.344 ± 0.013 0.044 ± 0.007 1.190 ± 0.089 0.285 ± 0.046 0.727 ± 0.112 0.090 ± 0.030 1.157 ± 0.067

S-BSS 0.603 ± 0.401 0.632 ± 0.322 0.025 ± 0.003 1.242 ± 0.200 0.519 ± 0.228 0.922 ± 0.197 0.116 ± 0.065 1.232 ± 0.184
FAROI 0.079 ± 0.002 0.389 ± 0.009 0.032 ± 0.001 1.094 ± 0.008 0.272 ± 0.016 0.593 ± 0.055 0.034 ± 0.010 0.854 ± 0.378

NMAE

RUDUR 0.201 ± 0.006 0.404 ± 0.016 0.261 ± 0.015 0.683 ± 0.015 0.374 ± 0.016 0.667 ± 0.023 0.577 ± 0.027 1.143 ± 0.014
FAMIS 0.456 ± 0.006 0.676 ± 0.013 0.188 ± 0.005 1.081 ± 0.007 0.676 ± 0.297 0.891 ± 0.091 0.329 ± 0.242 1.267 ± 0.107
FPLS 0.393 ± 0.057 0.891 ± 0.021 0.269 ± 0.012 0.851 ± 0.027 0.644 ± 0.050 1.342 ± 0.107 0.347 ± 0.044 0.879 ± 0.027

S-BSS 0.869 ± 0.413 1.216 ± 0.371 0.197 ± 0.012 0.933 ± 0.082 0.870 ± 0.233 1.517 ± 0.201 0.355 ± 0.094 0.853 ± 0.052
FAROI 0.375 ± 0.004 1.023 ± 0.012 0.264 ± 0.002 0.933 ± 0.004 0.691 ± 0.032 1.286 ± 0.079 0.237 ± 0.034 0.619 ± 0.180

Results are in the form mean± std where mean and std are the average and the standard deviation of the current measure (NMSE or NMAE) over a set of 100 simulations
of the toy example. S-BSS corresponds to S-BSS-vecDC method.

Algorithm 1. Minimization of the proposed objective function
1: ROIs selection
2: Initialize and normalize A and F with ROIs.
3: while Condition do
4: // Fix F (and minimize according to A - see below)
5: for i=1:nbIter do
6: Choose a descent direction for A
7: Choose a step and move A in the descent direction
8: Project A on the positive domain
9: Normalize A and counter-normalize F

10: end for
11: // Fix A (and minimize according to F - see below)
12: for i=1:nbIter do
13: Choose a descent direction for F
14: Choose a step and move F in the descent direction
15: Project F on the positive domain
16: end for
17: end while
18: return (A,F)

Methods are quantitatively compared with the normalized
mean square error (NMSE) and the normalized mean average
error (NMAE) on each TAC (rows of F ) and on each source
image (columns of A). In order to avoid scaling indeterminacy,
each source image (column of A) is previously normalized so
that its sum is equal to N

K . The corresponding TAC (row of
F ) is counter-normalized accordingly.

NMSE(FGTk , F̂k) =

P∑
t=1

(FGTk,t − F̂k,t)2

P∑
t=1

(FGTk,t )2
(19)

NMAE(FGTk , F̂k) =

P∑
t=1
|FGTk,t − F̂k,t|

P∑
t=1
|FGTk,t |

(20)

where FGTk is the ground truth TAC of the kth factor, and
F̂k is the estimated one. A similar formula stands for source
images comparison.

In practice, it is not possible to find the optimal parameters
and ROIs for RUDUR and FAMIS. Consequently both of these

methods are evaluated under suboptimal conditions in the
following examples.

A. Toy example
Image sequences of this first dataset contain 50 images of

size 50 × 50 pixels, and four factors (K = 4). The first
three curves represent the convolution between a common
input function and a kernel, thereby satisfying the S-BSS-
vecDC method assumptions. In order to be more realistic, a
background factor has been considered. Source images and
TACs are shown in Figure 2, column 2. More details about
this dataset can be found in [19]. While the noise addition
was done in the same way as [19], two different noise levels
were considered for the simulations on the dataset. Also, the
result presented is a summary of 100 realizations of the noise
(instead of only one). Variance of noise is proportional to
the signal, with Yi,t = Yi,t + σ × ei,t

√
Yi,t, where ei,t is

a random realization of a normal distribution with zero mean
and standard deviation equal to 1. σ is chosen equal to 0.5 or
1 and defines the noise level.

Results are detailed in Tables I and II. An example of
results obtained for each method and with a noise level
σ = 0.5 is shown in Figure 2. For RUDUR and FAMIS,
ROIs were manually chosen as rough rectangular windows,
as depicted in the first column of Figure 2. The ROI of the
background factor (the fourth factor) is selected as the union
of the three other ROIs. For all the methods, the number
of factors K is set to 4, and one hundred simulations are
performed. Performance of the FPLS algorithm was improved
by considering an initialization with ROI knowledge. This
algorithm is really sensitive to initialization, and unmixing
may fail when not considering ROI-based initialization.
Thanks to ROIs knowledge, RUDUR generally outperforms
others methods in term of NMSE and NMAE for both TACs
and source images. The source images estimation computed
with other methods are corrupted by noise outside of their
proper location, especially for sources 1 and 2. Since TACs
and source images are jointly estimated, this noise also affects
TACs estimation. Thanks to ROIs knowledge, extraction of
source images are improved with RUDUR by limiting the
possibility of unreal estimations. TACs estimations also benefit
from this improvement. The low standard deviation obtained
indicates that the proposed method leads to consistent unmix-
ing for all simulations. FAMIS is the only other method leading
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Fig. 3. Unmixing results on the highly realistic dataset (left kidney). The first three rows contain the ground truth (second column) and the estimation of
source images for each algorithm (columns 3 to 7). Rows 1, 2 and 3 correspond to cortex, medulla and pelvis respectively. ROIs used for RUDUR and FAMIS
are depicted in the first column. The colorbar used for the source images display is presented at the bottom left. The last row contains the ground truth (second
column) and the estimation of TACs (F ) for each algorithm (columns 3 to 7). For columns 3 to 7, estimations are depicted in solid lines and the ground truth
in dashed lines, with time on the x-axis and activity on the y-axis.

TABLE III
ESTIMATION ERRORS ON FACTORS (F ) - REALISTIC RENOGRAPHY

Left Kidney Right Kidney
Measure Algorithm F1 F2 F3 F1 F2 F3

NMSE

RUDUR 0.0327 ± 0.0076 0.0384 ± 0.0088 0.0302 ± 0.0232 0.0655 ± 0.0217 0.0419 ± 0.0106 0.0383 ± 0.0155
FAMIS 0.0559 ± 0.0055 0.0138 ± 0.0051 0.3996 ± 0.1607 0.0776 ± 0.0083 0.0514 ± 0.0929 0.1989 ± 0.0372
FPLS 0.1196 ± 0.0417 0.1481 ± 0.1043 0.0427 ± 0.0278 0.1093 ± 0.0483 0.0282 ± 0.0093 0.0610 ± 0.0255

S-BSS 0.0374 ± 0.0196 0.1120 ± 0.1174 0.1755 ± 0.0679 0.0989 ± 0.0858 0.2047 ± 0.3334 0.1547 ± 0.0678
FAROI 0.2949 ± 0.2354 0.0546 ± 0.0133 0.2077 ± 0.0637 0.2314 ± 0.1607 0.0593 ± 0.0222 0.2458 ± 0.0733

NMAE

RUDUR 0.1303 ± 0.0167 0.1327 ± 0.0137 0.1356 ± 0.0474 0.1967 ± 0.0374 0.1411 ± 0.0181 0.1610 ± 0.0377
FAMIS 0.1699 ± 0.0110 0.0962 ± 0.2206 0.4415 ± 0.0964 0.2096 ± 0.0162 0.1593 ± 0.1435 0.3264 ± 0.0360
FPLS 0.2706 ± 0.0484 0.3169 ± 0.1333 0.1461 ± 0.0394 0.2645 ± 0.0502 0.1101 ± 0.0181 0.1774 ± 0.0430

S-BSS 0.1672 ± 0.0656 0.2110 ± 0.1334 0.3014 ± 0.0795 0.2735 ± 0.1334 0.2812 ± 0.2905 0.2882 ± 0.0860
FAROI 0.3780 ± 0.1382 0.1486 ± 0.0238 0.3307 ± 0.0535 0.3857 ± 0.1277 0.1548 ± 0.0398 0.3764 ± 0.0579

Results are in the form mean± std, where mean and std are the average and the standard deviation of the current measure (NMSE or NMAE) over a set
of 6 sequences for each kidney (left and right). Each sequence has a different relative renal uptake and renal clearance rate. F1, F2 and F3 correspond to the

TACs of the cortex, medulla and pelvis respectively.
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TABLE IV
ESTIMATION ERRORS ON SOURCE IMAGES (A) - REALISTIC RENOGRAPHY

Left Kidney Right Kidney
Measure Algorithm A1 A2 A3 A1 A2 A3

NMSE

RUDUR 0.2011 ± 0.0462 0.1283 ± 0.0400 0.0990 ± 0.0405 0.3072 ± 0.1001 0.1142 ± 0.0201 0.2234 ± 0.1125
FAMIS 0.7369 ± 0.2930 1.0194 ± 0.1057 1.4869 ± 0.0911 0.3306 ± 0.0447 0.8415 ± 0.1055 2.5143 ± 0.4794
FPLS 0.1945 ± 0.0816 0.1013 ± 0.0336 0.4274 ± 0.0597 0.2207 ± 0.0865 0.0913 ± 0.0310 0.6277 ± 0.1394

S-BSS 0.4504 ± 0.1797 0.2553 ± 0.3820 0.5113 ± 0.0944 0.5177 ± 0.2558 0.3189 ± 0.4990 0.6807 ± 0.1322
FAROI 0.3215 ± 0.0948 0.1424 ± 0.0674 0.5499 ± 0.1993 0.3365 ± 0.1554 0.1788 ± 0.0915 0.7974 ± 0.2013

NMAE

RUDUR 0.4792 ± 0.2011 0.3691 ± 0.1283 0.4291 ± 0.0990 0.6242 ± 0.3072 0.3681 ± 0.1142 0.5766 ± 0.2234
FAMIS 0.7550 ± 0.1055 0.8686 ± 0.0203 1.0912 ± 0.0079 0.5190 ± 0.0314 0.7995 ± 0.0124 1.1967 ± 0.0182
FPLS 0.4723 ± 0.1171 0.3711 ± 0.0686 0.8898 ± 0.0836 0.5215 ± 0.1133 0.3568 ± 0.0746 1.1292 ± 0.1368

S-BSS 0.7066 ± 0.1656 0.5396 ± 0.4186 1.1088 ± 0.1475 0.7721 ± 0.2286 0.6040 ± 0.5058 1.2398 ± 0.1632
FAROI 0.5985 ± 0.0908 0.4594 ± 0.1196 1.0923 ± 0.1847 0.6132 ± 0.1433 0.5171 ± 0.1416 1.2755 ± 0.1567

Results are in the form mean± std where mean and std are the average and the standard deviation of the current measure (NMSE or NMAE) over a set
of 6 sequences for each kidney (left and right). Each sequence has a different relative renal uptake and renal clearance rate. A1, A2 and A3 correspond to

the source images of the cortex, medulla and pelvis respectively. S-BSS corresponds to S-BSS-vecDC method.

to similar results to RUDUR when σ = 0.5. This demonstrates
the importance of ROIs knowledge. However FAMIS exhibits
poor performance when σ = 1. This can be incurred to the
way ROIs knowledge is integrated as hard constraints in the
FAMIS algorithm. Furthermore, source images produced by
FAMIS remain mixed, which leads to higher estimation errors
on source images.

For these results, we set α = 1 and β = 10 for RUDUR.
Setting α in [0.5 100] and β in [1 200] does not significantly
change the results. RUDUR still outperforms the other algo-
rithms and results were even better when choosing α > 1.
However, it should be mentionned that this dataset is not
realistic, especially since source images are binarized.

B. Highly realistic dynamic 99mTc-MAG3 renography

Unlike first, the second dataset is highly realistic and con-
tains Monte Carlo simulated data of dynamic renal study [28].
Both noisy and noiseless datasets can be retrieved from [29].
Noisy data includes effects of photon attenuation, scattering,
limited spatial resolution and noise. The simulation was done
using a whole body pharmacokinetic model with the XCAT
phantom [30]. The aim of this experiment was to extract three
factors from the kidney area (cortex, medulla and pelvis).
This unmixing problem is very challenging because of both
the noise and the presence of other structures in the kidney
background. Furthermore, targeted factors are highly mixed.
This highly realistic dataset is therefore a relevant case to
compare algorithms performance.

The authors of the dataset provided us 6 noisy sequences
along with the corresponding ground truth. Each sequence
contains 60 images of size 128×128 pixels, and has a specific
relative renal uptake and renal transit time. From these 6 se-
quences, 12 sequences of kidney (left and right) were extracted
using a rectangular windows. Each extracted sequence was
analysed with the same algorithms as in the toy example.
As suggested in guidelines from [31], ROIs were drawn on
the summed image. The values of constants α and β were
selected as in the toy example (α = 1 and β = 10). Setting
α in [0.2 2] and β in [2 20] does not significantly change
the results. Algorithms were compared using the ground truth
provided by the authors of the dataset. A summary of results

Fig. 4. Example of ROIs selected for robustness evaluation. Cortex ROIs are
given in the first row, medulla ROIs in the second row, and pelvis ROIs in the
third row. For each structure, the original ROI are eroded, dilated and both
vertically and horizontally shifted. These modifications created 27 different
ROIs combinations. Only 6 are presented on this figure.

obtained is presented in Tables III and IV, and visual results
are depicted in Figure 3. The unmixing is greatly improved by
RUDUR. It is the only method giving consistent estimation for
all factors and for all simulations, as demonstrated by the low
standard deviation of the results. In this dataset, source images
are slightly fuzzy, mimicking the point spread function of a
camera. The hard constraint used by FAMIS is not optimal in
this more realistic context, because it does not allow source
images to have low values outside of ROIs. The soft constraints
set in RUDUR are more permissive and more tolerant, which
leads to a better unmixing for all sources. Thanks to the use
of Tikhonov regularization, TACs provided by RUDUR are
smooth unlike those provided by FAMIS. This regularization
is very beneficial for datasets with high noise levels.

In order to evaluate the robustness to ROI selection, the
previously used ROIs were modified by erosion, dilatation,
and vertical and horizontal shifts. These modifications lead
to 27 different ROIs (33) for each structure (the cortex, the
medulla and the pelvis) as depicted in Figure 4. RUDUR was
applied on one kidney sequence with these 27 combinations
of 3 ROIs. A summary of the results obtained is presented in
Table V. As shown by the low standard deviation of estimation
errors, modifications of the ROIs do not change significantly
the results. This demonstrates robustness of the method to
ROIs selection.
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TABLE V
ESTIMATION ERRORS OF RUDUR ON FACTORS (F ) AND SOURCE IMAGES
(A) ON ONE LEFT KIDNEY SEQUENCE OF REALISTIC RENOGRAPHY (27

DIFFERENT ROIS COMBINATIONS)

Measure F1 F2 F3
NMSE 0.0426 ± 0.0025 0.0442 ± 0.0097 0.0187 ± 0.0044
NMAE 0.1543 ± 0.0037 0.1509 ± 0.0181 0.1143 ± 0.0120
Measure A1 A2 A3
NMSE 0.1880 ± 0.0307 0.1476 ± 0.0621 0.1109 ± 0.0249
NMAE 0.4746 ± 0.0503 0.3990 ± 0.0683 0.4775 ± 0.0577

Results are in the form mean± std where mean and std are the average
and the standard deviation of the current measure (NMSE or NMAE) over a

set of 27 different ROIs combinations. The low standard deviation
demonstrates the robustness of the proposed method to ROIs selection.

TABLE VI
ESTIMATION ERRORS ON 38 CORTICAL PARENCHYMA TACS (CLINICAL

DATA)

Algorithm NMSE NMAE
RUDUR 0.0111 ± 0.0164 0.0756 ± 0.0368
FAMIS 0.0207 ± 0.0369 0.1004 ± 0.0745
FPLS 0.0522 ± 0.0679 0.1523 ± 0.1103

S-BSS-vecDC 0.0128 ± 0.0085 0.0875 ± 0.0264
FAROI 0.0710 ± 0.0818 0.1804 ± 0.1088

Results are in the form mean± std where mean and std are the average
and the standard deviation of the current measure (NMSE or NMAE) over a

set of 38 cortical parenchyma TACs. Methods were compared with the
currently recommended procedure guidelines from [31].

C. Clinical dynamic 99mTc-MAG3 renography

Finally, the methods were compared on a clinical dataset of
dynamic renal studies, available at [29]. As in [19], 19 studies
were selected, with clear visibility of the dynamic structure
as criterion of choice. For each of the 38 kidneys, cortical
parenchyma TAC were extracted with the recommended pro-
cedure guidelines from [31] and are used as ground truth. Clear
visibility of dynamic structure is critical to have a consistent
ground truth. Estimation errors were computed on the cortical
parenchyma TACs only, since medulla and pelvis TACs cannot
be reliably extracted without the use of a separation method.
The same protocol with the same parameters as previous
subsection was applied, and estimations errors were measured.
Results are presented in Table VI. For a fair comparison, each
TAC was previously normalized to have its sum equal to one
before computing estimation errors.

For the clinical data, RUDUR and S-BSS-vecDC gave
the best cortical parenchyma TACs estimation. An expert
physician qualitatively assessed the relevance of the TACs
and source images obtained. However, these results must be
carefully interpreted. Indeed the parenchyma TACs used as
ground truth are computed by averaging the signal of a ROI
containing mainly but not only parenchyma, so they may not
be perfectly reliable.

V. CONCLUSION

Structure separation in nuclear medicine is an underde-
termined and challenging problem. The cost of an efficient
unmixing is to use strong prior knowledge. In order to improve
the separation, we proposed to use ROIs knowledge, which is

an acceptable prior knowledge in nuclear medicine. A new un-
mixing method integrating ROIs knowledge as soft constraints
was proposed. ROIs ensure a physiologically meaningful solu-
tion to be found, and greatly improve the unmixing. Through
the use of a distance matrix, ROIs are robustly integrated
in the unmixing procedure. The separation model is relaxed
outside of the ROIs. Source images are constrained to be
consistent with ROIs and the method promotes solutions with
smooth factors. A significant improvement of the separation
is observed for a toy example and for highly realistic and
clinical renographies. Obviously, this is not the only way to
introduce ROIs knowledge. For example, the combination of
ROIs with a physiological model in a Bayesian framework as
in SBSS-vec-DC method can be considered.

In FAMIS [21], it is possible to integrate additional prior
knowledge on the physical model, for example fixed coeffi-
cients in source images or TACs. This can be done in RUDUR
by forcing the corresponding partial derivatives to zero. This
was not considered in this paper, as we focused on the use of
ROIs knowledge.

This paper demonstrates the potential of ROIs knowledge
for the source separation problem in nuclear medicine. A
generic and efficient method was developed based on ROIs
knowledge. In this method, there is no predetermined shape
for the ROIs, making it flexible and usable in a wide variety
of situations. Also the method can be efficient in challenging
and noisy conditions. The proposed method can be applied in
scintigraphy, but also in similar source separation problems,
where ROIs are easily available and located in a specific
area. We are currently working on a 3D-dataset (SPECT),
with 6-DIG tracer, able to compute insulin-resistance index
[32]. In order to compute this index, it is necessary to unmix
myocardium and blood activities in a challenging and very
noisy context, where traditional methods failed.

Since the ROIs have to be chosen manually, the proposed
method is only semi-automatic. However, thanks to the dis-
tance to ROIs matrix, RUDUR is robust to ROIs selection.
An automatic choice of coarse ROIs can thus be considered
to avoid the manual selection.

APPENDIX A
PARTIAL DERIVATIVES

∂fWLS

∂A
(A,F ) = −2W 2(Y −AF )FT (21)

∂fWLS

∂F
(A,F ) = −2ATW 2(Y −AF ) (22)

∂fROI

∂Ai,k
(A) =

D4
i,kAi,k√

D4
i,kA

2
i,k + µ2

(23)

f ′Tik(F ) = 2F (ΓTΓ) (24)
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APPENDIX B
LIPSCHITZ CONSTANT

For a given F (resp. A), we note fObjF (resp. fObjA )
the partial function A 7→ fRUDUR(A,F ) (resp. F 7→
fRUDUR(A,F ). Their derivatives are Lipshitz continuous
functions, with

||f ′ObjA(F )− f ′ObjA(F ′)||F
||F − F ′||F

≤ 2(||ATW 2A||F + β||ΓTΓ||F )

(25)
If we approximate the smooth `1-norm in fROI by the classic
`1-norm (µ = 0), then f ′ROI(A) = D ◦ D. We then obtain a
Lipschitz constant for each pixel i such that

||∂fObjF

∂Ai
(Ai)−

∂fObjF

∂Ai′
(Ai′)||F

||Ai −Ai′ ||F
≤ 2Wi,i||FFT ||F (26)
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[18] V. Šmı́dl and O. Tichỳ, “Sparsity in bayesian blind source separation
and deconvolution,” in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 2013, pp. 548–563.
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