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Abstract. Unmixing is often a necessary step to analyze 2D SPECT
image sequence. However, factor analysis of dynamic sequences (FADS),
the commonly used method for unmixing SPECT sequences, suffers from
non-uniqueness issue. Optimization-based methods were developed to
overcome this issue. These methods are effective but need improvement
when the mixing is important or with very low SNR. In this paper, a new
objective function using soft spatial prior knowledge is developed. Com-
parison with previous methods, efficiency and robustness to the choice
of priors are illustrated with tests on synthetic dataset. Results on 2D
SPECT sequences with high level of noise are also presented and com-
pared.

Keywords: Source Separation, SPECT, Factor Analysis, Spatial Priors, Penal-
ized Least Squares.

1 Introduction

Insulin resistance is the desensitization of cells to insulin. It can lead to type 2
diabete and cardiovascular disease. Knowledge of the insulin resistance index is
of great interest in order to prevent these diseases. However, actual methods are
rather invasive and can’t be used in clinical routines. A new and easier method
has been proposed [1]. It uses a tracer of glucose transport (6-DIG), injected
to a patient. The activity of the tracer is dynamically acquired with a gamma
camera which produces a 2D SPECT images sequence. Because of the collimator,
a very few number of radiations are counted and these images suffer from a high
Poisson noise with a very low Signal-to-Noise Ratio (Figure 1).

To compute the insulin resistance index [1], the dynamic activity of the tracer
in the myocardium, and in the left and right ventricles (LV and RV) have to be
determined. As images are the 2D projections of the 3D organs, spatial overlaps
are present in these 2D images, particularly in the cardiac area between the
myocardium and the ventricles. Then, to obtain the pure time-activity curve
(TAC) of each organ, methods based on region of interest (ROI) give poor results.
Because of the spatial overlaps, the activity on these ROIs is composed of a
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Fig. 1. 6-DIG SPECT dataset (a) 3rd image of a sequence - Tracer reaching right
ventricle (b) Activity of a pixel located on the right ventricle on the first 100 frames.

mixture of pure organs TAC. Therefore, the tracer activity in each physiological
compartments have to be unmixed in order to be further analyzed.

It is a common issue in medical imaging, particularly in scintigraphy. Data
are assumed to be a mixing of physiological compartments activity and are
represented with a linear mixing model (1). Each compartment has its own
temporal signature (factor or TAC) and its own spatial signature (factor image).

Y = A× F + ε (1)

The dynamic data are represented in the N × P matrix Y , where N is the
number of pixels (vectorized) and P is the number of images. The N×K matrix
A contains the factor images and the K × P matrix F contains the factors,
where K is the number of physiological compartments. The activity in each
pixel is then a linear combination of several factors F . The coefficients of this
linear combination are contained in the matrix A. The matrix ε of size N × P
contains the noise.

The matrix A represents the quantity of each organ on each pixel, and the
matrix F represents the number of gamma photons detected on a pixel during a
short time span. Then coefficients of matrix A and F must be non-negative. Two
classes of methods [2] have been typically used to find A and F with non-negative
coefficients by solving equation (1): spectral-type methods [3] and Factor Anal-
ysis of Dynamic Structures (FADS) methods [4].

In spectral methods, F is a combination of chosen basis functions such as
splines. In general, these methods produce too smooth solutions.

FADS, introduced by Barber [5], shares the same foundation than some In-
dependent Component Analysis (ICA) or Non-Negative Matrix Factorization
methods, widely used in hyperspectral unmixing [6, 7, 8, 9, 10]. FADS has a
great geometrical interpretation and proceeds in two steps, an orthogonal anal-
ysis followed by an oblique analysis. The first step is used to reduce noise and
project data into a low dimension space. The second step uses oblique rotation
of factors in order to find factors and factor images with positive coefficients.

FADS has been improved and adapted to scintigraphy [11]. In order to face
high Poisson noise an optimal metric has been found [12], and a regularized fac-
tor analysis has been proposed [13]. However finding A and F in equation (1)



with positive constraints is an ill-posed problem, the solution is not mathemati-
cally unique, and this leads to high remaining mixture in factors obtained. Prior
knowledge on the data has to be added in order to perform the right unmixing
and obtain a solution close to the desired one.

Temporal prior knowledge have already been used in [14] and spatial prior
knowledge in [15], [16], both with FADS, but these methods fail with very low
SNR and high compartments mixing.

In order to overcome non-uniqueness issue of FADS, a penalized least squares
objective function has been proposed in [17]. This optimization-based method
gives good results when the mixing in the data is low, but results can be improved
when the mixing is higher, because solutions with overlaps are penalized in the
objective function.

We propose here to exploit soft spatial prior knowledge on the data to improve
unmixing in an optimization-based method, by constructing a new objective
function. Our method is described in section 2, algorithm and implementation
details are given in section 3 and results are shown in section 4.

2 Methods

We propose a new objective function to minimise defined as:

f = fLS(Â, F̂ ) + a× fUNI(Â) + b× fPRIOR(Â) (2)

and under the following constraints :

∀(i, t, k)Âi,k ≥ 0 and F̂k,t ≥ 0 (3)

where a and b are penalty constants. fLS corresponds to the least squares objec-
tive. This term measures the distance between the data and the factor model,
and ensures data fidelity. This function is not convex in (Â, F̂ ) but is convex in
both Â and F̂ , so that we can use an alternate minimization gradient method.

fLS(Â, F̂ ) =

N∑
i=1

P∑
t=1

(Yi,t −
K∑

k=1

Âi,k × F̂k,t)
2 (4)

fUNI penalizes solutions with high correlation between factor images [17] to
reduce amount of mixing and favors the separation of factor images with no
intersections. It can be seen as a sparsity promoting criterion.

fUNI(Â) =

K∑
k=1

P∑
h=k+1

N∑
i=1

Âi,k√
N∑
j=1

Â2
j,k

Âi,h√
N∑
j=1

Â2
j,h

(5)

fPRIOR is a new penalization term. This criterion ensures fidelity to spatial
prior knowledge. The idea behind this criterion is to penalize solutions whose
compartments are too far from their expected locations. In Cardiac SPECT



exams, the ventricles can be easily coarsely located. So, the new term exploits
this information to obtain a solution which respect the expected positions of the
ventricles.

fPRIOR(Â) =

K∑
k=1

N∑
i=1

distWk
(i)2 × Â2

i,k (6)

WK is a patch containing a set of pixels where the kth physiological com-
partment is likely to be located. This patch represents prior knowledge and is
the coarse spatial location of the kth physiological compartment. distWk

(i) is
the Euclidean distance between the ith pixel and the kth patch (i.e to the closest
pixel in the patch). This criterion has the advantage to be convex and computa-
tion is fast. Prior knowledge contained in this criterion is also very soft. In most
of scintigraphic studies, spatial positions of physiological compartments are eas-
ily available thanks to the perfusion. This criterion ensures fidelity with prior
knowledge by penalizing factor images far from their expected position. This
fidelity is essential in hard unmixing problem to obtain physically meaningful
solutions, and overcome non-uniqueness issue.

3 Algorithm and Implementation details

Before minimizing the objective function, the number of physiological compart-
ments K, the patches W and an initialization of Â and F̂ had to be chosen.

K can be chosen manually with prior knowledge on data, or can be computed
with an analysis of singular values given by a singular value decomposition ap-
plied on Y .

Spatial prior knowledge or patches W can be chosen manually, or automat-
ically with a first segmentation method. In our problem, a first factor analysis
gives a first coarse location of LV and RV. Factor images are thresholded and
skelotonization creates patches Wk containing spatial prior knowledge. When no
spatial prior knowledge on a physiological compartment exists, the associated
patch contains all the pixels because there are no constraints. Matrix of factor
images Â is initialized by a constant. F̂ is initialized with a mean on appropriate
ROI for each factor. These ROI can be those used to build the patches Wk.
For the purpose of speeding-up the optimization process, F̂ was multiplied by a
constant to have the same order of magnitude on Y and Â× F̂ .

As fLS is convex in Â and convex in F̂ , but not in (Â, F̂ ), an alternating
minimization method was used. Depending on the alternation, a gradient of the
objective function f is calculated analytically according to Â or F̂ .

For each alternation, a nonlinear conjugate gradient method is used, with
Polak-Ribière method to choose descent direction. The minimum of the objective
function in this direction is computed thanks to the Brent method. In order to
speed-up the algorithm, the number of iterations for each alternation is limited
to 8 and the alternation is stopped if the relative change in the objective function
in one iteration is less than 10−6.



To satisfy the positivity constraints in (3), the negative coefficients of A and
F are forced to zero after each iteration. Each factor image is also re-scaled
in order to have their maximum to one after each iteration. Each factors are
re-scaled by the reciprocal, in order for (1) to hold.

The optimization process is stopped when the relative change in the objective
function between two groups of two alternations is less than 10−6. We have no
proofs of convergence, but in all our tests, the algorithm has always converged
in less than 500 alternations.

4 Results

4.1 Synthetic Data

First, this method is tested on synthetic data set inspired from [17] and rep-
resenting cardiac area. Dataset is a sequence of 400 images of 30-by-30 pixels.
Three physiological compartments are present : right ventricle (RV), left ventricle
(LV) and myocardium. Some overlaps are added, in order to have myocardium
softly present in the right and left ventricles, as in SPECT sequences.

Poisson noise is added to this data set, with different SNR.
Patches Wk are chosen manually, to show robustness of the method to the

choice of the prior. The robustness is shown in this example in three ways. Firstly,
no prior is selected for the myocardium. Secondly, instead of taking all pixels of
the organ (which lead to better results), prior for right and left ventricles are a
very thin skeleton of their respective organ. Thirdly, these skeletons are slightly
shifted and not exactly located at their right places. These priors are shown on
Figure 2. Penalty constants a and b are chosen empirically, a variation of 30%
of these constants does not change significantly the results.

(a) (b)

Fig. 2. Prior used for synthetic data set. (a) Right ventricle in white, and its prior in
blue. (b) Left ventricle in white and its prior in red.

Our algorithm FGlobal is compared to the optimization-based method FPLS

[17] and the regularized FADS method FREG [13]. FREG is the method previously



used for the 6-DIG SPECT data. To compare these algorithms, the errors Aerror

and Ferror are computed. Noise was measured with the formula in (9).

Aerror =

∑N
i=1

∑K
k=1 |Ai,k − Âi,k|∑N

i=1

∑K
k=1Ai,k

(7)

Ferror =

∑K
k=1

∑P
t=1 |Fk,t − F̂k,t|∑K

k=1

∑P
t=1 Fk,t

(8)

SNR = 20 ∗ log(

∑N
i=1

∑P
t=1 |Yi,t|2∑N

i=1

∑P
t=1 |εi,t|2

) (9)

Results on synthetic data with different noise levels are detailed in Table I.
For FPLS and FGlobal, penalty constants were first chosen adequately for each
noise level. Examples of factors and image factors obtained with synthetic data
with a SNR of 10 are shown respectively in Figure 3 and 4, with a = 150000
for FPLS and a = 80000 and b = 300 for FGlobal.)

SNR FREG FPLS FGlobal

6
Aerror 0.298 0.225 0.169
Ferror 0.254 0.120 0.112

8
Aerror 0.237 0.172 0.135
Ferror 0.166 0.085 0.077

10
Aerror 0.206 0.142 0.109
Ferror 0.140 0.068 0.059

12
Aerror 0.184 0.110 0.088
Ferror 0.109 0.055 0.049

Table 1. Comparison of measures Aerror and Ferror, with different methods and noise
levels. Each measure is a mean of 20 tests.

Table 1 shows that unmixing is better performed by optimization-based
methods (FPLS and FGlobal) than FADS method (FREG), for every noise levels
and for both estimation of factors and factor images.

Even if the added priors are very soft (just a skeleton) and not perfectly
located, the new criterion fPRIOR greatly improves the unmixing, especially on
factor images. This new criterion penalizes the factor image corresponding to
LV when having high coefficients in the RV area, because the distance to the
prior is high. Furthermore, this criterion doesn’t penalize myocardium factor
image and this myocardium factor image has positive coefficients on the LV or
RV area because there is really a superimposition of these organs on the 2D
images. At the contrary, the fUNI criterion penalizes overlaps between factor
images and can’t cope with this problem, and so myocardium is underestimated
on the ventricles area with FPLS . The improvement on factor image estimation
with FGlobal leads to a better estimation of factor curves (Figure 4).



Fig. 3. Comparison of algorithms on synthetic data with a SNR of 10. First row
correspond to ground truth. Row 2, 3 and 4 correspond to factor images obtained
respectively with FREG,FPLS ,FGlobal. Column 1, 2 and 3 correspond respectively to
RV, LV and myocardium.

4.2 6-DIG SPECT sequence

The second data set is a 6-DIG SPECT sequence of a patient (see Figure 1), and
contains a sequence of 450 images of 128-by-128 pixels. A zoom is performed in
order to focus on the cardiac area. Priors chosen are illustrated in Figure 5 and
factor images obtained are in Figure 6.

Method fPLS does not have a coherent factor image for the myocardium, this
is due to the dimness of the myocardium signal. With fGlobal, the myocardium is



(a) (b)

Fig. 4. Comparison of factors obtained with FGlobal on synthetic data with a SNR of
10. (a) Ground Truth (b) Factor obtained with FGlobal. The blue curves correspond to
RV, the red curves to Myocardium, and the green curves to LV.

(a) (b) (c)

Fig. 5. Prior used for 6-DIG SPECT data set. Set of pixel Wk is represented in white.
(a) Prior of RV. (b) Prior of LV. (c) Prior of myocardium.

Fig. 6. Factor images obtained when unmixing of 6-DIG dataset. First row : with
fPLS . Second row : with fGlobal. Columns 1, 2 and 3 represent respectively RV, LV
and myocardium.

realistic thanks to the prior located on the cardiac apex, and has been validated
by a cardiologist.

5 Conclusion

In this paper, we have presented a new spatial prior that can be defined coarsely
to improve dynamic sequence analysis. This prior is a convex term and is em-
bedded in an objective function to minimize by an alternate gradient method.



This prior can be automatically defined because the method is robust to the
location and shape of the prior. Tests on synthetic and SPECT dataset show the
efficiency and the potential of this method. Future works include tests on larger
database and quantitative analysis of the robustness.
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[6] Säıd Moussaoui, Hafrun Hauksdottir, Frédéric Schmidt, Christian Jutten, Joce-
lyn Chanussot, David Brie, Sylvain Douté, and Jon Atli Benediktsson, “On the
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