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Introduction

Road safety: an international stake

• Worldwide, 1.24 million people of road traffic deaths per year (+ 50 million of injuries) a. For
people aged 5-29 years, road traffic injuries is the leading cause of death.

• Various causes: speed, alcohol, drugs, non safe driving,...
• Recognized importance of smart and safe cars: passive safety (airbags, belt..) and active

(ABS, ESP....)

aWorld health organization 2013
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Road safety: an international stake

• Worldwide, 1.24 million people of road traffic deaths per year (+ 50 million of injuries) a. For
people aged 5-29 years, road traffic injuries is the leading cause of death.

• Various causes: speed, alcohol, drugs, non safe driving,...
• Recognized importance of smart and safe cars: passive safety (airbags, belt..) and active

(ABS, ESP....)

aWorld health organization 2013

Among the 5 pillars towards road safety

Safer vehicles: Electronic Stability Control is part of the minimum standards for vehicle
construction (ex European and Latin New Car Assessment Programs - NCAP)
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Introduction

Challenges in chassis control

Today’s vehicles. . .

• Growth of controlled organs: suspensions, ABS, ESC, ABC, braking distribution, active
steering, tire pressure, TCS

• Increasing number of sensors & actuators
• Heavy networking
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Introduction

Challenges in chassis control

Complexity to synchronize all the controllers to improve
• Driving comfort (and pleasure)
• Active safety

Need for fault tolerance in case of actuator/sensor malfunctions
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Introduction

Introduction

This course has been mainly written thanks to:
• the Post-doctoral work of [Moustapha Doumiati (2010)]
• the PhD dissertations of [Damien Sammier (2002), Alessandro Zin (2005),

Poussot-Vassal(2008), Sébastien Aubouet (2010), Anh Lam DO (2011), Soheib Fergani
(2014)].

• the authors’ works since 1995
• interesting books cited below
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Introduction

Collaborations & associated studies

ANR INOVE 2010-2014

Modelling and control of a hydraulic semi-active damper-
PhD thesis of Sébastien Aubouet 2010

Global chassis control using LPV/H∞ control - PhD the-
sis Soheib Fergani 2014, Alessandro Zin 2005, Charles
Poussot 2008

Magneto-rheological dampers - PhD thesis of Charles
Poussot 2008, Sébastien Aubouet 2010

Modelling and control of semi-active suspensions - Post
Doc Charles Poussot 09, PhD thesis of Ahn-Lam Do
2011

Skyhook and H∞ control of semi-active suspensions -
PhD thesis of Damien Sammier 2002
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Models

Suspension system

Objective

• Link between unsprung and sprung masses

• Involves vertical (zs,zus) dynamics
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Models

Suspension system

Objective

• Link between unsprung (mus) and sprung (ms) masses

• Involves vertical (zs,zus) dynamics

Passive suspension system
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Models

Suspension system

Objective

• Link between unsprung (mus) and sprung (ms) masses

• Involves vertical (zs,zus) dynamics

Semi-active suspension system −−−→dissipates energy through an adjustable damping coefficient
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Models

Suspension system

Objective

• Link between unsprung (mus) and sprung (ms) masses

• Involves vertical (zs,zus) dynamics

Active suspension system −−−−−−−−→dissipate and generate energy working as an active actuator
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Models

Vehicle model - dynamical equations

Full vertical model

• Mainly influenced by the vehicle suspension systems.
• Describes the comfort and the roadholding performances.
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z̈s = −
(
Fsz f l +Fsz f r +Fszrl +Fszrr

)
/ms

z̈usi j =
(
Fszi j −Ftzi j

)
/musi j

θ̈ =
(
(Fszrl −Fszrr )tr +(Fsz f l −Fsz f r )t f

)
/Ix

φ̈ =
(
(Fszrr +Fszrl )lr− (Fsz f r +Fsz f l )l f

)
/Iy



Models

Wheel & Braking system

Objective

• Link between wheel and road
• Influences safety performances
• Involves longitudinal (v) rotational (ω) and slipping (λ = v−Rω

max(v,Rω) ) dynamics
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Models

Wheel & Braking system

Objective

• Link between wheel and road (zr, µ)
• Influences safety performances
• Involves longitudinal (v) rotational (ω) and slipping (λ = v−Rω

max(v,Rω) ) dynamics

Extended quarter vehicle model
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Models

Vehicle model - dynamical equations

Full vertical model

• Mainly influenced by the vehicle suspension systems .
• Describes the comfort and the roadholding performances .
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Models

Vehicle model - dynamical equations

Full vertical and longitudinal model

• Mainly influenced by the vehicle suspension systems and the braking system.
• Describes the comfort and the roadholding performances and the the stability and security

issues.
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ẍs =
(
(Ftx f r +Ftx f l )+(Ftxrr +Ftxrl )

)
/m

z̈s = −
(
Fsz f l +Fsz f r +Fszrl +Fszrr

)
/ms

z̈usi j =
(
Fszi j −Ftzi j

)
/musi j

θ̈ =
(
(Fszrl −Fszrr )tr +(Fsz f l −Fsz f r )t f

)
/Ix

φ̈ =
(
(Fszrr +Fszrl )lr− (Fsz f r +Fsz f l )l f +mhẍs

)
/Iy

λi j =
vi j−Ri jωi j

max(vi j ,Ri jωi j )

ω̇i j = (−RFtxi j (µ,λ ,Fn)+Tbi j )/Iw



Models

Wheel & Steering system

Objective

• Wheel / road contact
• Influences safety performances
• Involves lateral (ys), side slip angle (β ) and yaw (ψ) dynamics
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Models

Wheel & Steering system

Objective

• Wheel / road contact
• Influences safety performances
• Involves lateral (ys), side slip angle (β ) and yaw (ψ) dynamics

Bicycle model
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Models

Vehicle model - dynamical equations

Full vertical and longitudinal model
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Models

Vehicle model - dynamical equations

Full model
• A very complex model with dynamical correlations.

• Subject to several external disturbances.
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ẍs =
(
(Ftx f r +Ftx f l )cos(δ )+(Ftxrr +Ftxrl )−(Fty f r +Fty f l )sin(δ )+mψ̇ ẏs

)
/m

ÿs =
(
(Fty f r +Fty f l )cos(δ )+(Ftyrr +Ftyrl )+(Ftx f r +Ftx f l )sin(δ )−mψ̇ ẋs

)
/m

z̈s = −
(
Fsz f l +Fsz f r +Fszrl +Fszrr

)
/ms

z̈usi j =
(
Fszi j −Ftzi j

)
/musi j

θ̈ =
(
(Fszrl −Fszrr )tr +(Fsz f l −Fsz f r )t f−mhÿs +(Iy− Iz)ψ̇φ̇

)
/Ix

φ̈ =
(
(Fszrr +Fszrl )lr− (Fsz f r +Fsz f l )l f +mhẍs+(Iz− Ix)ψ̇θ̇

)
/Iy

ψ̈ =
(
(Fty f r +Fty f l )l f cos(δ )− (Ftyrr +Ftyrl )lr +(Ftx f r +Ftx f l )l f sin(δ )
+(Ftxrr −Ftxrl )tr +(Ftx f r −Ftx f l )t f cos(δ )− (Ftx f r −Ftx f l )t f sin(δ )
+(Ix− Iy)θ̇ φ̇

)
/Iz

λi j =
vi j−Ri jωi j cosβi j

max(vi j ,Ri jωi j cosβi j )

ω̇i j = (−RFtxi j (µ,λ ,Fn)+Tbi j )/Iw

βi j = arctan
( ẋi j

ẏi j

)



Models

Vehicle model - dynamical equations

Full model
• A very complex model with dynamical correlations.

• Subject to several external disturbances.
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ẍs =
(
(Ftx f r +Ftx f l )cos(δ )+(Ftxrr +Ftxrl )−(Fty f r +Fty f l )sin(δ )+mψ̇ ẏs−Fdx

)
/m

ÿs =
(
(Fty f r +Fty f l )cos(δ )+(Ftyrr +Ftyrl )+(Ftx f r +Ftx f l )sin(δ )−mψ̇ ẋs−Fdy

)
/m

z̈s = −
(
Fsz f l +Fsz f r +Fszrl +Fszrr+Fdz

)
/ms

z̈usi j =
(
Fszi j −Ftzi j

)
/musi j

θ̈ =
(
(Fszrl −Fszrr )tr +(Fsz f l −Fsz f r )t f−mhÿs +(Iy− Iz)ψ̇φ̇+Mdx

)
/Ix

φ̈ =
(
(Fszrr +Fszrl )lr− (Fsz f r +Fsz f l )l f +mhẍs+(Iz− Ix)ψ̇θ̇+Mdy

)
/Iy

ψ̈ =
(
(Fty f r +Fty f l )l f cos(δ )− (Ftyrr +Ftyrl )lr +(Ftx f r +Ftx f l )l f sin(δ )
+(Ftxrr −Ftxrl )tr +(Ftx f r −Ftx f l )t f cos(δ )− (Ftx f r −Ftx f l )t f sin(δ )
+(Ix− Iy)θ̇ φ̇+Mdz

)
/Iz

λi j =
vi j−Ri jωi j cosβi j

max(vi j ,Ri jωi j cosβi j )

ω̇i j = (−RFtxi j (µ,λ ,Fn)+Tbi j )/Iw

βi j = arctan
( ẋi j

ẏi j

)



Models

Vehicle model - synopsis

Chassis

Suspensions

Wheels

-

-

-

-

Fszi j

Ftx,y,z

-

-

 xs
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zs



 θ
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ψ



q
?

?

-

6

[
żs,zs

żus,zus

]

 ẍs, ÿs
ψ̇,v,

Fsz,zus


-
 λi j

βi j
ωi j



(vehicle dynamics)

(tire, wheel dynamics)

?

6
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(vehicle dynamics)
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(tire, wheel dynamics)

?
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(external disturbances)

(suspensions control)

(braking & steering control)

-
 λi j

βi j
ωi j



(vehicle dynamics)

(road characteristics)
(tire, wheel dynamics)

?

6
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Intro to Towards global chassis control

Towards global chassis control approaches (GCC)

Some facts

• In most vehicle control design approaches, the vehicle-dynamics control sub-systems
(suspension control, steering control, stability control, traction control and, more recently,
kinetic-energy management) are traditionally designed and implemented as independent (or
weakly interleaved) systems.

• The global communication and collaboration between these systems are done with empirical
rules and may lead to unappropriate or conflicting control objectives.

• So, it is important to develop new methodologies (centralized control strategies) that force the
sub-systems to cooperate in some appropriate "optimal" way.

Global chassis control

• This approach combines several (at least 2) vehicle sub-systems in order to improve the
general behavior of the vehicle ; in particular, the GCC methodology is developed to improve
comfort and safety properties, according to the vehicle situation, taking into account the
actuators constraints and the knowledge (if any) of the environment of the vehicle.

• The objective is then to make the sub-systems collaborate towards the same goals, according
to the vehicle situation (constraints, environment, ...) in order to fully exploit the potential
benefits coming from their interconnection.
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Intro to Towards global chassis control

Towards global chassis control approaches (GCC)

The GCC strategies are de-
veloped in 2 steps:
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Intro to Towards global chassis control

Towards global chassis control approaches (GCC)

The GCC strategies are de-
veloped in 2 steps:

• The monitoring
approach→
collaborative based
strategy.
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Intro to Towards global chassis control

Towards global chassis control approaches (GCC)

The GCC strategies are de-
veloped in 2 steps:

• The monitoring
approach→
collaborative based
strategy.

• Developping
coordinated control
strategies→ achieve
close loop performance
and actuators
coordination.
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 Steering controller 

Braking controller 

Suspension controller 

Coordination strategy 
Monitoring system 

       Renault 

Mégane   Coupé 

Main objective:

• Improve the overall dynamics of the car
and the vehicle safety in critical driving
situations.



Intro to Towards global chassis control

Towards Global chassis control approaches

Two main approaches, one considering the vehicle as a MIMO system, the other developing a
"super controller" for the local actuators. Some references : Lu and DePoyster (2002), Shibahata
(2005), Chou and d’Andréa Novel (2005), Andreasson and Bunte (2006), Falcone et al. (2007a),
Falcone et al. (2007b), Gáspár et al. (2008), Fergani and Sename (2016)...

Vehicle considered as a MIMO system

• This approach consists in considering the vehicle as a global MIMO system and in designing
a controller that solves all the dynamical problems by directly controlling the various actuators
with the available measurements. No local controller is considered (no inner loop). See, for
instance Lu and DePoyster (2002), Chou and d’Andréa Novel (2005), Andreasson and Bunte
(2006), Gáspár et al. (2008), Fergani et al (2016).

High level reference super controller

• The second approach consists in designing a controller which aims at providing somehow,
the reference signals to local controllers, which have been previously designed to solve a
local subsystem problem (e.g. ABS). Thus, this controller, more than a controller, "monitors"
the local controllers. Therefore, such a controller solves the global vehicle dynamical
problems, playing the role of "super controller". See also Falcone et al. (2007a).
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Intro to Towards global chassis control

A MIMO case: Suspension and braking

Characteristic of the solution

Build a multivariable global chassis controller Shibahata (2004), (Poussot et al. 2011) :
• Improve comfort in normal cruise situations
• Improve safety in emergency situations (safety prevent comfort)
• Supervise actuators and resources
• The proposed design relies in the introduction of two parameters to handle the performance

compromise, actuator efficiency and well-coordinated action.
• The suspension performance moves from comfort to road holding characteristics when the

braking monitor identifies a normal or critical longitudinal slip ratio.
• Robust control theory approach (LPV/H∞)
⇒ MIMO internal stability & no switching
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Intro to Towards global chassis control

Towards Global chassis control approaches

Some examples

• braking/suspension : non linear approach (Chou & d’Andréa Novel), LPV for heavy vehicles
(Gaspar, Szabo & Bokor), for cars (Poussot et al.)

• braking / steering : optimal control [Yang et al.], predictive [Di Cairano & Tseng, control
allocation [Tjonnas & Johansen], or LPV [Doumiati et al, 2013]

• braking /suspension/ steering : [Fergani, Sename, Dugard]
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LPV interest: on-line Adaption of the vehicle performances

• to various road conditions/types (measured, estimated)
• to the driver actions
• to the dangers identified thanks to some measurements of

the vehicle dynamical behavior
• to actuators/sensors malfunctions or failures



Intro to Towards global chassis control

Towards Global chassis control approaches

In this presentation, 3 examples are provided for the topic:

F Active safety using coordinated steering/braking control.

F Road profile estimation and road adaptive vehicle dynamics
control.

F LPV FTC for Vehicle Dynamics Control.

O.Sename-S.Fergani (GIPSA-lab - LAAS) Intelligent Vehicles Summer School July 2-7, 2017 21



Active safety using coordinated steering/braking control

Outline
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The LPV FTC VDC... approach
Simulations on a full NL vehicle model

7. Conclusions and future work
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Active safety using coordinated steering/braking control Active safety

Vehicle safety systems:
• Prevent unintended behavior
• Help drivers maintaining the vehicle control
• Current production systems include:

• Anti-lock Braking Systems (ABS): Prevent wheel lock during braking
• Electronic Stability Control (ESC): Enhances lateral vehicle stability

• Braking based technique
• 4 Wheel steering (4WS): Enhances steerability

• Adding additional steering angle

General structure:

    Vehicle 

Sensors 

Active safety systems: 

measures 
Act on Actuators  
(suspensions, brakes, steer) 
Alert the driver  

Any vehicle control system needs accurate information about the vehicle dynamics, and the more
accurate information it gets, the more it can perform
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Active safety using coordinated steering/braking control Objective

The presentation of today focuses on:

• Yaw stability by active control
• Prevents vehicle from skidding and spinning

out
• Improves of the turning (yaw) rate response
• Improves lateral vehicle dynamics
• Involves Braking and Steering actuators

Desired trajectory 

Undesired 
motion 

Figure: The objective is to restore the yaw rate as
much as possible to the nominal motion expected by
the driver
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Active safety using coordinated steering/braking control Objective

Problematic

Problem tackled: vehicle critical situations

• Lateral and yaw stability of ground vehicles & braking actuator limitations
• Widely treated in literature [Ackermann, Falcone, Villagra, Bunte, Chou, Canale] (mainly

steering or braking, but a few use both)

Contributions

• Use Rear braking & Steering actuators to enhance vehicle stability properties
• Extension of [Poussot-Vassal et al., CDC2008 & ECC2009] results
• Propose a simple H∞ tuning using [Bünte et al., IEEE TCST, 2004] results
• LPV Controller structure exploiting system properties to handle braking constraints
• Nonlinear frequency validations

O.Sename-S.Fergani (GIPSA-lab - LAAS) Intelligent Vehicles Summer School July 2-7, 2017 25
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Active safety using coordinated steering/braking control Basics on vehicle dynamics

Lateral motion of a vehicle

• Motion of a vehicle is governed by
tire forces

• Tire forces result from deformation
in contact patch

• Lateral tire force, Fy, is function of:
1 Tire slip (α)
2 Vertical load applied on the tire (Fz)
3 Friction coefficient (µ)

V (tire velocity) 

α 

Fy (lateral tire force) 

 (tire sideslip angle) 

Side view 

Contact patch 
Ground 

Fy 

α Bottom view 
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Active safety using coordinated steering/braking control Basics on vehicle dynamics
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Vehicle response

• Normally, we operate in LINEAR region
• Predictable vehicle response

• During slick road conditions, emergency maneuvers, or aggressive driving
• Enter NONLINEAR tire region
• Response unanticipated by driver

O.Sename-S.Fergani (GIPSA-lab - LAAS) Intelligent Vehicles Summer School July 2-7, 2017 27



Active safety using coordinated steering/braking control Basics on vehicle dynamics

0 5 10 15 20 
0 

1000 

2000 

3000 

4000 

5000 

6000 

Sideslip angle (°) 

La
te

ra
l f

or
ce

 (N
) 

 

µFz 

Linear 

1 

C 

Saturation Loss of control 

α 

Maximum tire grip 

0 5 10 15 20 

 

Linear model 

Dugoff model 
Pacejka model 0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

La
te

ra
l f

or
ce

 (k
N

) 

Measure 
 

Sideslip angle (°) 

Vehicle response

• Normally, we operate in LINEAR region
• Predictable vehicle response

• During slick road conditions, emergency maneuvers, or aggressive driving
• Enter NONLINEAR tire region
• Response unanticipated by driver

O.Sename-S.Fergani (GIPSA-lab - LAAS) Intelligent Vehicles Summer School July 2-7, 2017 27



Active safety using coordinated steering/braking control Basics on vehicle dynamics

Why we lose the vehicle control?

Imagine making an aggressive turn. . .
• If front tires lose grip first, plow out of turn

(limit understeer)
• May go into oscillatory response
• Driver loses ability to influence vehicle

motion
• If rear tires saturate, rear end kicks out

(limit oversteer)
• May go into a unstable spin
• Driver loses control

• Both can result in loss of control

Desired trajectory 

Desired trajectory 

Unstable motion due to nonlinear tire characteristics

O.Sename-S.Fergani (GIPSA-lab - LAAS) Intelligent Vehicles Summer School July 2-7, 2017 28



Active safety using coordinated steering/braking control Partial non linear Vehicle model

Planar bicycle model (Dugoff et al.(1970))

Main dynamics under interest, toward control scheme . . .
• Equation of lateral motion:

mv
(

β̇ − ψ̇

)
= Fy f +Fyr (1)

• Equation of yaw motion:
Izψ̈ = l f Fy f − lrFyr, (2)

V 

lr

lf

Fyr 

Fyf

Ψ 
. 

 

vy 

δ 
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Active safety using coordinated steering/braking control Partial non linear Vehicle model

Linear Synthesis model

The 2-DOF linear bicycle model described in Section 2 is used for the control synthesis. Although
the bicycle model is relatively simple, it captures the important features of the lateral vehicle
dynamics. Taking into account the controller structure and objectives, this model is extended to
include:

• the direct yaw moment input M∗z ,
• a lateral disturbance force Fdy and a disturbance moment Mdz. Fdy affects directly the sideslip

motion, while Mdz influences directly the yaw motion.

[
ψ̈

β̇

]
=

 − l2
f C f +l2

r Cr

Izv
lrCr−l f C f

Iz

1+
lrCr−l f C f

mv2 −C f +Cr
mv

[ ψ̇

β

]
+

[ l f C f
Iz

C f
mv

]
δ
∗+
[ 1

Iz
0

]
M∗z +

[ 1
Iz
1

mv

][
Mdz
Fdy

]
(3)

O.Sename-S.Fergani (GIPSA-lab - LAAS) Intelligent Vehicles Summer School July 2-7, 2017 30



Active safety using coordinated steering/braking control Lateral stability control

Steering vs. Braking

Steering control: (Rajamani(2006), Guven et al.(2007))
• Adds steering angle to improve the lateral vehicle dynamics
• Regulates tire slip angles and thus, the lateral tire force
• Drawback:

• Becomes less effective near saturation

DYC (Direct Yaw Control) - Braking control: (Park(2001), Boada et al.(2005))
• Regulates the tire longitudinal forces
• Maintains the vehicle stability in all driving situations
• Drawbacks:

• Wears out the tires
• Causes the vehicle speed to slow down against the driver demand
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Active safety using coordinated steering/braking control Lateral stability control

The idea is to design a controller that:
• Improves vehicle steerability and stability

• Makes the yaw rate tacking the desired value (response of a bicycle model with linear tires)
• Makes the slip angle small

• Coordinates Steering/braking control
• Minimizes the influence of brake intervention on the longitudinal vehicle dynamics

• Rejects yaw moment disturbances

Methodology:
H∞ synthesis extended to LPV system:

• H∞ synthesis: frequency based performance criteria
• LPV : One type of a gain scheduled controller

See paper Doumiati et al (2013)
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Active safety using coordinated steering/braking control Lateral stability control

Overall control scheme diagram

Vehicle simulation 

model  

Sideslip  

dynamics 

Driver 

command 

Reference model 

(bicycle model) + 

Bounding  limits 

External yaw   

disturbances 

VDSC controller 

EMB 

AS 

Yaw rate (measure) 

+ 

_ 

Steering angle (δd) 

Tbr * 

δ * 

Vehicle velocity 

+ 

+ 

δd 

Monitor 

Yaw rate target    

AS: Steer-by-wire system
EMB: Brake-by-wire Electro Mechanical system
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Active safety using coordinated steering/braking control Lateral stability control

Reference model

The basic idea is to assist the vehicle handling to be close to a linear vehicle handling
characteristic that is familiar to the driver

• Bicycle linear model, Fy =Cα α (low sideslip angle)
• ψ̇ ≤ µ×g/Vx

• Ensures small slip dynamics (β , β̇ )
• Attenuates the lateral acceleration
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Active safety using coordinated steering/braking control Lateral stability control
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Active safety using coordinated steering/braking control Lateral stability control

VDSC Controller architecture

Upper controller 

Lower controller 

Commanded 
steering angle 

Desired yaw 
moment 

Applying brake torque to the 
appropriate wheel 

Objective: Lateral stability 
control 

 
Yaw rate 
Steering angle 
SideSlip angle 

and/or 

Measurements/estimation 
Level 1 

Level 2 
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Active safety using coordinated steering/braking control Lateral stability control

VDSC-upper controller: LPV/H∞ control

Vehicle model 

Fdy 

    S(ρ) 
 
LPV/H∞ 

+ 
_ 

Ψ 

Ψd 

W1 

W2 

W3 (ρ) 

W4 

M * 

δ* 

z1 

z2 

z3 

z4 

. 

. 

β 

 

∑ 

e 
Ψ 
. 

z 

Generalized plant (tracking problem)

Vehicle model is LTI:
• Linear bicycle model
• Synthesized considering a dry road

ρ scheduling parameter:
• ρ(t) is time dependent and known

function
• ρ bounded: ρ ∈

[
ρ,ρ

]

w(t) =
[
ψ̇d ,Fdy

]
exogenous input

u(t) =
[
δ∗ ,M∗z

]
control input

y(t) =
[
eψ̇

]
measurement

z(t) =
[
W1z1 ,W2z2 ,W3z3 ,W4z4

]
controlled output
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Active safety using coordinated steering/braking control Lateral stability control

VDSC design (cont’d)

• z1 : sideslip angle signal, β : W1 = 2. to reduce the body sideslip angle

• z2 yaw rate error signal: W2 =
s/M+w0
s+w0A , where M = 2 for a good robustness margin, A = 0.1 so

that the tracking error is less than 10%, and the required bandwidth w0 = 70 rad/s.
• z3 braking control signal, M∗z ,according to a scheduling parameter ρ:

W3 = ρ
s/(2π f2)+1

s/(α2π f2)+1
, (4)

where f2 = 10 Hz is the braking actuator cut-off frequency and α = 100.
ρ ∈

{
ρ ≤ ρ ≤ ρ

}
(with ρ = 10−4 and ρ = 10−2).

• z4, the steering control signal attenuation ( f3 = 1Hz, f4 = 10Hz):

Wδ = Gδ 0
(s/2π f3 +1)(s/2π f4 +1)

(s/α2π f4 +1)2

Gδ 0 =
(∆ f /α2π f4 +1)2

(∆ f /2π f3 +1)(∆ f /2π f4 +1)
and ∆ f = 2π( f4 + f3)/2

(5)

This filter is designed is order to allow the steering system to act only in [ f3, f4]Hz. At ∆ f /2,
the filter gain is unitary [Bunte et al. 2004, TCST].
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Active safety using coordinated steering/braking control Lateral stability control

VDSC-upper controller: LPV/H∞ control

Controller solution: LPV/H∞

• Mixed-Sensitivity problem
• Minimizes the H∞ norm from w to z

• γ∞ = 0.89 (Yalmip/Sedumi solver)

W3(ρ):

• ρ = 0.1→ braking is ON
• ρ = 10→ braking is OFF

Steering control 
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ρ = ρ 

Figure: Bode diagrams of the controller outputs δ ∗ and
M∗z
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Active safety using coordinated steering/braking control Lateral stability control

VDSC-upper controller: LPV/H∞ control

Sensitivity functions:
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Figure: Closed loop transfer functions between β and exogenous inputs

• Attenuation of the side slip angle
• Rejection of the yaw disturbance
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Active safety using coordinated steering/braking control Lateral stability control

VDSC-upper controller: LPV/H∞ control

Sensitivity functions:
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Figure: Closed loop transfer functions between eψ̇ and exogenous inputs

• Attenuation of the yaw rate error
• Rejection of the yaw disturbance
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Active safety using coordinated steering/braking control Lateral stability control

VDSC-upper controller: LPV/H∞ control design

Sensitivity functions:
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Figure: Closed loop transfer functions between M∗ and exogenous inputs

ρ = 0.1→ braking is activated, ρ = 10→ braking is penalized
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Active safety using coordinated steering/braking control Lateral stability control

VDSC-upper controller: LPV/H∞ control design

Sensitivity functions:
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Figure: Closed loop transfer functions between δ ∗ and exogenous inputs

• Steering is activated on a specified range of frequency
• W4: Activates steering in a frequency domain where the driver cannot act (Guven et al.(2007))
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Active safety using coordinated steering/braking control Lateral stability control

Overall control scheme diagram
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Active safety using coordinated steering/braking control Lateral stability control

Coordination between Steering and braking

• β − β̇ phase plane is used as measure of the vehicle operating points

• Stability boundaries for controller design: χ =
∣∣∣ 1

24 β̇ + 4
24 β

∣∣∣< 1

(Yang et al.(2009), He et al.(2006))

−40 −30 −20 −10 0 10 20 30 40 

−100 

−80 

−60 

−40 

−20 

0 

20 

40 

60 

80 

100 

Sideslip angle (°) 

Si
de

sl
ip

 a
ng

ul
ar

 v
el

oc
ity

 (°
/s

) 

Control boundaries 

Stable region  

Unstable region 

Unstable region 

AS control 

DYC+AS 
control 

DYC+AS 
control 

This criterion, χ, allows accurate diagnosis of the vehicle stability.
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Active safety using coordinated steering/braking control Lateral stability control

Monitor

ρ 

ρ 

λ 

_ 

_ 

Steering Steering + 
full Braking 

λ λ _ 
_ 

(Stability index) 

Intermediate          
behavior 

Sc
he

du
lin

g 
p

ar
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ρ(χ) :=


ρ if χ ≤ χ (steering control - Steerability control task)
χ−χ

χ−χ
ρ +

χ−χ

χ−χ
ρ if χ < χ < χ (steering+braking)

ρ if χ ≥ χ (steering+full braking - Stability control task)

(6)

where χ = 0.8 and χ = 1 (χ is user defined)
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Active safety using coordinated steering/braking control Lateral stability control

Sideslip angle estimation

Available measurements (from ESC or reasonable cost sensors):
• Yaw rate, ψ̇

• Steering wheel angle, δ

• Wheel speeds, wi j

• Lateral acceleration, ay

• β̇ can be evaluated through available sensors:

β̇ =
ay

vx
− ψ̇, (7)

β?? → Existing Methods:
• Integration of β̇

• Kinematic equations (eq. ay,ax)
• Model-based observer (Vehicle model + Estimation technique)
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Active safety using coordinated steering/braking control Lateral stability control

Sideslip angle estimation

This study:
• Planar bicycle model (with constant velocity):{

β̇ = (Fy f +Fyr)/(mv)+ ψ̇

ψ̈ =
[
l f Fy f − lrFyr +M∗z

]
/Iz

(8)

• Dugoff’s tire model:

Fy =−Cα × tan(α)× f (α,Fz,Cα ), where f(.) is nonlinear (9)

• Nonlinear filtering: Extended Kalman Filter

State-space representation:
• X = [β , ψ̇]T

• U =
[
M∗z , δ , Fz

]T .
• δ = δ ∗+δd .

• Y = [ψ̇]T

M z * 

δ*+δd 

Fz 

Vehicle 
system 

Bicycle nonlinear 
model 

β 

ψ 
. 

EKF 

Observer 
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Active safety using coordinated steering/braking control Lateral stability control

VDSC Controller architecture

Upper controller

Lower controller 

Commanded 
steering angle

Desired yaw 
moment

Applying brake torque to the 
appropriate wheel 

Objective: Yaw stability
control

Yaw rate
Steering angle 
Sideslip angle 

and/or

Measurements/estimation
Level 1 

Level 2 
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Active safety using coordinated steering/braking control Lateral stability control

VDSC-lower controller algorithm

The stabilizing moment M∗z provided by the controller is converted into braking torque and applied
to the appropriate wheels

Rules

• Braking 1 wheel: from an optimal point of view, it is recommended to use only one wheel to
generate the control moment (Park(2001))

• Only rear wheels are involved to avoid overlapping with the steering control

Decision rule:

Oversteer Understeer 

Brake outer rear wheel Brake inner rear wheel 

Driving situations 
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Active safety using coordinated steering/braking control Simulations

Simulation results and results

• Matlab/Simulink software
• Vehicle Automotive toolbox

• Full nonlinear vehicle model
• Validated in a real car "Renault Mégane Coupé"

Two tests:

1 Double-lane-change maneuver at 100 km/h on a dry road (µ = 0.9)
2 Steering maneuver at 80 km/h on a slippery wet road (µ = 0.5)
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Active safety using coordinated steering/braking control Simulations

Test 1: Results [dry road µ = 0.9, V = 100 km/h]
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Active safety using coordinated steering/braking control Simulations

Test 1: Results [dry road µ = 0.9, V = 100 km/h]
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Active safety using coordinated steering/braking control Simulations

Test 2: Results [wet road µ = 0.5, V = 80 km/h]
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Active safety using coordinated steering/braking control Simulations

Test 2: Results [wet road µ = 0.5, V = 80 km/h]
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Active safety using coordinated steering/braking control Simulations

Test 2: Results [wet road µ = 0.5, V = 80 km/h]
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Road profile estimation and road adaptive vehicle dynamics control

Outline

1. Introduction

2. Models

3. Intro to Towards global chassis control

4. Active safety using coordinated steering/braking control
Active safety
Objective
Basics on vehicle dynamics
Partial non linear Vehicle model
Lateral stability control
Simulations

5. Road profile estimation and road adaptive vehicle dynamics control
Road profile vehicle control adaptation
Road Adaptive controller synthesis
Implementation & test validation on the INOVE test bench

6. LPV FTC for Vehicle Dynamics Control
Towards global chassis control
The LPV FTC VDC... approach
Simulations on a full NL vehicle model

7. Conclusions and future work
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Road profile estimation and road adaptive vehicle dynamics control Road profile vehicle control adaptation

Road profile vehicle control adaptation

Road Profile estimation strategies
• The H∞ observer for road profile estimation.
• The Algebraic flat observer for road profile estimation.
• The Parametric Adaptive Observation for road profile estimation.
• Guaranteed estimation based on interval analysis techniques.
• Vehicle-cloud-vehicle, data clustering and and identification.

LPV/H∞ Road profile Adaptation control
• Road Adaptive Semi-Active Suspension for 1/4 vehicle using an LPV/H∞ Controller.
• A new LPV/H∞ semi-active suspension control strategy for the full car with performance

adaptation to roll behavior based on a non linear algebraic road profile estimation
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Road profile estimation and road adaptive vehicle dynamics control Road profile vehicle control adaptation

Road profile vehicle control adaptation

Road Adaptive Semi-Active Suspension for 1/4 vehicle using an
LPV/H∞ Controller
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Road profile estimation and road adaptive vehicle dynamics control Road profile vehicle control adaptation

Road Adaptive control

One of the important investigation towards road safety

• On-line performance objectives adaptation (comfort vs roadholding).
• Less expensive and very efficient.

Suspension control and adaptation: Camera based road monitoring selective control, very recently
(2013) by Mercedes Benz.
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Road profile estimation and road adaptive vehicle dynamics control Road profile vehicle control adaptation

Road Adaptive control

• Road profile roughness estimation to identify the type of the road.
• LPV/H∞ semi-active suspension control adaptation to the type of the road profile.
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Road profile estimation and road adaptive vehicle dynamics control Road profile vehicle control adaptation

Road Adaptive control

• Road profile roughness estimation to identify the type of the road.
• LPV/H∞ semi-active suspension control adaptation to the type of the road profile.

A shock absorber with magneto-rheological fluid that
changes damping characteristics in the suspension sys-
tem depending on electric current.

FMR = I fctanh
(
a1 żde f +a2zde f

)
+b1 żde f +b2zde f

ρ1 = f (tanh(zde f , żde f ), I)
ρ2 = f (sat(tanh(zde f , żde f ), I))

{
ẋl pv = Al pv (ρ1,ρ2)xl pv +B1uc +B2w
yl pv =C1xl pv

ρ1 ∈ [−1,1] −→ Nonlinearities.
ρ2 ∈ [0,1] −→ Saturation.
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Road profile estimation and road adaptive vehicle dynamics control Road profile vehicle control adaptation

Road Adaptive control

• Road profile roughness estimation to identify the type of the road.
• LPV/H∞ semi-active suspension control adaptation to the type of the road profile.

Vehicle Model with

the semi-acive

MR dampers

Road profile

estimation
reconstruction

Internal varying

Parameters

ρ1, ρ2

Measurement

(dissipativity, saturation)

(H∞ Observer)

ẑr = [mus z̈us− ks(ẑs− ẑus)+ kt ẑus−FMR] · k−1
t
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Road profile estimation and road adaptive vehicle dynamics control Road profile vehicle control adaptation

Road Adaptive control

• Road profile roughness estimation to identify the type of the road.
• LPV/H∞ semi-active suspension control adaptation to the type of the road profile.
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Road profile estimation and road adaptive vehicle dynamics control Road profile vehicle control adaptation

Road Adaptive control

• Road profile roughness estimation to identify the type of the road.
• LPV/H∞ semi-active suspension control adaptation to the type of the road profile.
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Road profile estimation and road adaptive vehicle dynamics control Road profile vehicle control adaptation

Road Adaptive control

• Road profile roughness estimation to identify the type of the road.
• LPV/H∞ semi-active suspension control adaptation to the type of the road profile.
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reconstruction
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Road roughness
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Road adaptive controller
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Road
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(dissipativity, saturation)

(H∞ Observer)
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Road profile estimation and road adaptive vehicle dynamics control Road Adaptive controller synthesis

LPV/H∞ control synthesis

Two scheduling parameters in the model:
ρ1 = f (tanh(zde f , żde f ), I)
ρ2 = f (sat(tanh(zde f , żde f ), I))

• ρ1 ∈ [−1,1] −→ Nonlinearities.
• ρ2 ∈ [0,1] −→ Saturation.
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Road profile estimation and road adaptive vehicle dynamics control Road Adaptive controller synthesis

LPV/H∞ control synthesis

One scheduling parameter ρ3 for online
suspension adaptation to the road profile:

ρ3 = Kρ3 ·Szr ( fzr ) ∈ [0,1] (10)

where Kρ3 is used to bound ρ3,
such that

I(ρ3) :=



I = Imax

i f ρ3 ≥ ρ3
Imin < I < Imax

i f ρ3 < ρ3 < ρ3
I = Imin

i f ρ3 ≤ ρ3

(11)
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Road profile estimation and road adaptive vehicle dynamics control Road Adaptive controller synthesis

LPV/H∞ control synthesis

The general LPV/H∞ is obtained thanks to
the polytopic appraoch, by solving the con-
sidered set of LMIs on each one of the 23 =
8 vertices. The general LPV/H∞ is a convex
combination of the 8 local controllers.

S(ρ) =
23

∑
k=1

αk(ρ)

[
Ack Bck
Cck Dck

]
where,

αk(ρ) =
∏

23
j=1 |ρ( j)−C c(Ωk) j|
∏

i
j=1(ρ( j)−ρ( j))

,

23

∑
k=1

αk(ρ) = 1 , αk(ρ)> 0
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Road profile estimation and road adaptive vehicle dynamics control Implementation & test validation on the INOVE test bench

Road adaptive control validation & implementation

The test bench is composed of:
• The process: 1/5 scaled real vehicle equipped with 4 Electro-Rheological semi-active

dampers and 4 DC motors to generate the desired road profiles.
• Matlab/Simulink environment + Xpc target environment for real time data acquisition and

control.
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Road profile estimation and road adaptive vehicle dynamics control Implementation & test validation on the INOVE test bench

Road classification implementation results
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Road profile estimation and road adaptive vehicle dynamics control Implementation & test validation on the INOVE test bench

Road classification implementation results

Table: Road profiles Classification (ISO 8608).

Type of Road Class
Smooth runway A
Smooth highway B

Highway with gravel C
Rough runway D

Pasture E
Plowed field F
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Road profile estimation and road adaptive vehicle dynamics control Implementation & test validation on the INOVE test bench

Road adaptive control implementation results

(a) plowed field (hard road F) at low velocity
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LPV FTC for Vehicle Dynamics Control

Outline

1. Introduction

2. Models

3. Intro to Towards global chassis control

4. Active safety using coordinated steering/braking control
Active safety
Objective
Basics on vehicle dynamics
Partial non linear Vehicle model
Lateral stability control
Simulations

5. Road profile estimation and road adaptive vehicle dynamics control
Road profile vehicle control adaptation
Road Adaptive controller synthesis
Implementation & test validation on the INOVE test bench

6. LPV FTC for Vehicle Dynamics Control
Towards global chassis control
The LPV FTC VDC... approach
Simulations on a full NL vehicle model

7. Conclusions and future work
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LPV FTC for Vehicle Dynamics Control Towards global chassis control

Towards global chassis control approaches (GCC)

Some facts

• Vehicle-dynamics sub-systems control (suspension, steering, stability, traction ....) are
traditionally designed and implemented as independent (or weakly interleaved) systems.

• Global collaboration between these systems is done through empirical rules and may lead to
inappropriate or conflicting control objectives.

What is GCC ?

• combine several (at least 2) subsystems in order to improve the vehicle global behavior
Shibahata (2004)

• tends to make collaborate the different subsystems in view of the same objectives, according
to the situation (constraints, environment, ...)

• is develop to improve comfort and safety, according to the driving situation, accounting for
actuator constraints and to the eventual knowledge of the vehicle environment
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LPV FTC for Vehicle Dynamics Control Towards global chassis control

Active safety using LPV FTC VDC coordinated control
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Key points

Yaw is one of the most complex dynamics to handle on a
ground vehicle. FTC LPV control:

• Prevents vehicle from skidding and spinning out
• Improves lateral vehicle dynamics face to critical

situations
• Handle Braking and suspension actuator

malfunctions and Steering activation

Desired trajectory 

Undesired 
motion 

The LPV FTC strategy

Monitoring Parameters
• Braking efficiency : torque

transmission
• Steering activation during

emergency situation (low slip)
• LTR: roll induced load transfer

by damper malfunctions

Control Issues
• Lateral coordinated steering/braking control:

parameter dependent weighting functions for braking
torque limitation and activation of the steering action

• Full car vertical suspension control: fixed control
structure for suspension force distribution, parameter
dependent weighting functions for roll attenuation in
critical situations and comfort improvement in normal
ones.



LPV FTC for Vehicle Dynamics Control Towards global chassis control

Global chassis control implementation scheme

zr

δd

uij Tbrj

Non Linear Full Vehicle Model

Road profil

Steer input

Suspension Controller Steering Controller Braking Controller

uij δ+ Tbrj

Load Transfer
Distribution

ρlij

Monitor 1

Steering
+ Braking

ρb
Supervision strategy

LPV/Hinf

Controllers

Driving scenario

Monitor 2

ρlij

ρs

ρs ρb ρb

δ+
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LPV FTC for Vehicle Dynamics Control The LPV FTC VDC... approach

Coordinated steering/braking control
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+

-

ψ̇ref(v)

Weψ̇ref

GCC(ρb, ρs)

WTbrj (ρb)

Wδ0(ρs)

Bicycle

Wv̇y

ψ̇

z1

z2

z3

z4

Tbrj , δ
0eψ̇ref

Vehicle model : Single track model
(dry road).

Inputs/Ouputs:

w(t) = [ψ̇re f (v)(t),Mdz(t)]
u(t) = [δ+(t),T+

brl
(t),T+

brr
(t)]

y(t) = eψ̇ (t)
z(t) = [z1(t),z2(t),z3(t)]

Weighting functions for performance requirements

Weψ̇
and Wv̇y are 1st order systems.

Weighting functions for actuator coordination

• Wδ (ρs) = (1−ρs)× 4th order
• WTbr j

(ρb) = (1−ρb)× 1st order
→ braking (and steering) penalized if ρ = ρ

→ braking (and steering) allowed if ρ = ρ

When a high slip ratio is detected (critical situation) , the tire may lock, so ρb→ 0 and the
gain of the weighting function is set to be high.
This allows to release the braking action leading to a natural stabilisation of the slip
dynamic.



LPV FTC for Vehicle Dynamics Control The LPV FTC VDC... approach

The suspension control configuration
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Σgv
Wu

Ks(ρl)
uH∞
ij

z1

z2

zdefij

z3

Wzs(ρs)

Wθ(1− ρs)

A new partly fixed control structure: manage the suspension control distribution in case of
damper malfunction

Ks(ρs,ρl) :=



ẋc(t) = Ac(ρs,ρl)xc(t)+Bc(ρs,ρl)y(t)
uH∞

f l (t)
uH∞

f r (t)
uH∞

rl (t)
uH∞

rr (t)

=

1−ρl 0 0 0
0 ρl 0 0
0 0 1−ρl 0
0 0 0 ρl

C0
c (ρs)xc(t)

ρl allows to generate the adequate suspension forces in the 4 corners of the vehicle
depending on the load transfer (left� right) caused by the performed driving scenario.



LPV FTC for Vehicle Dynamics Control Simulations on a full NL vehicle model

Simulations on a full NL vehicle model
Simulation results

• Vehicle Automotive ’GIPSA-lab’ toolbox
• Full nonlinear vehicle model
• Validated in a real car "Renault Mégane Coupé" coll. MIAM lab [Basset, Pouly and Lamy]

see C. Poussot-Vassal PhD. thesis

The stabilizing torques T ∗b provided by the controller is then handled by a local ABS strategy
Tanelli et al. (2008)

Simulation scenario
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Double lane-change maneuver at 100 km/h
on a WET road (from t = 2s to t = 6s)
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Driver Steering Angle

• Faulty left rear braking actuator:
saturation = 75N

• 5cm Road bump from t = 0.5s to
t = 1.5s and from t = 4s to t = 5s)

• Faulty front left damper: force limitation
of 70%

• Lateral wind occurs at vehicle’s front
generating an undesirable yaw moment
(from t = 2.5s to t = 3s).



LPV FTC for Vehicle Dynamics Control Simulations on a full NL vehicle model

Monitoring parameters
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• ρb handles the braking efficiency
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LPV FTC for Vehicle Dynamics Control Simulations on a full NL vehicle model

Braking/Steering actuators - stability analysis
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Fault Tolerant Yaw control through an efficient coordination of braking/steering actuators.



LPV FTC for Vehicle Dynamics Control Simulations on a full NL vehicle model

Braking/Steering actuators - stability analysis

0 1 2 3 4 5 6
0

200

400

600

800

t [s]

T
b

le
ft 

[N
m

]

Rear Left Braking Torque

0 1 2 3 4 5 6
0

200

400

600

800

t [s]

T
b

rig
ht

 [N
m

]

Rear right Braking Torque

0 1 2 3 4 5 6
−6

−4

−2

0

2

4

t [s]

δ
[d

eg
]

Additive Steering Angle

−6 −4 −2 0 2 4 6

−40

−20

0

20

40

β [deg]

β’
[d

eg
/s

]

Stability Region

FTC LPV

Stability boundries Uncontrolled

O.Sename-S.Fergani (GIPSA-lab - LAAS) Intelligent Vehicles Summer School July 2-7, 2017 76

Fault Tolerant Yaw control through an efficient coordination of braking/steering actuators.



LPV FTC for Vehicle Dynamics Control Simulations on a full NL vehicle model

Suspension control distribution
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Fixed structure LPV control for suspension force coordination in case of damper malfunction



Conclusions and future work

Conclusions

About today’s presentation:

An approach to the vehicle yaw stabilizing problem. . .
• Objective: Enhance vehicle steerability and stability

• Steerability is enhanced in normal driving condition.
• Braking is involved only when the vehicle tends to instability.

• Flexible design: Integration of different scheduled sub-controllers
• Scheduling parameters: Estimation of the sideslip angle
• Real-time implementation: General structure does not involve online optimization
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Conclusions and future work

Future work

• Implementation of the controller in a real car
• Integration of the suspension system in the control scheme
• Design of an LPV vehicle system

• Variation of the cornering stiffness with respect to road conditions (dry, wet, icy,. . . )
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Conclusions and future work

Thank you for your attention
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