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Introduction

Challenges in chassis control

Today’s vehicles. . .

• Growth of controlled organs: suspensions, ABS, ESC, ABC, brake repartition, active steering,
tire pressure, TCS

• Increasing number of sensors & actuators
• Heavy networking + need to to synchronize many subsystems

Need for advanced control to improve
• Driving comfort (and pleasure)
• Active safety
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Introduction

French ANR INOVE project 2010-2015
INtegrated approach of Observation and control and VEhicle dynamics

Objective: improve comfort and road holding of car vehicle (active or semi-active suspensions,
steering, braking)
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Introduction

Introduction

This course has been mainly written thanks to:
• the PhD dissertations of [Poussot-Vassal(2008), Alessandro Zin (2005), Damien Sammier

(2002), Sébastien Aubouet (2010), Anh Lam DO (2011), Soheib Fergani (2014), Manh Quan
Nguyen (2016)].

• the Post-doctoral work of [Moustapha Doumiati (2010)]
• the authors’ works since 1995
• interesting books cited below
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About suspensions

Framework & Objectives

Semi-active suspension control research

• LQ clipped: complex, involve state measurement Tseng et al. [VSD, 1994]
• H∞ & skyhook clipped: Sammier et al. [VSD, 2003]
• MPC based: involve optimization, state measurement, robustness? Canale et al. [Trans.

CST, 2006], Giorgetti et al. [IJRNLC, 2006], Guia et al. [VSD, 2004]
• ADD, Mixed SH-ADD: simple structure, comfort oriented Savaresi et al.[ASME, 2005, 2007]

Objectives

• Enhance passenger comfort & road-holding
• Ensure semi-active constraint
• Simplify controller structure
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About suspensions

Suspension system

Objective

• Link between unsprung and sprung masses
• Influences comfort / road-holding performances
• Involves vertical (zs,zus) dynamics

Passive quarter vehicle model
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About suspensions

Suspension system

Objective

• Link between unsprung (mus) and sprung (ms) masses
• Influences comfort / road-holding performances
• Involves vertical (zs,zus) dynamics

Semi-active quarter vehicle model
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{ms,zs}

{mus,zus}

The controlled actuator can only dissipate
energy (i.e. modify the damping factor in real
time): good performances, fast dynamics,
weight comparable to passive ones,
economically viable.



About suspensions

Suspension system

Objective

• Link between unsprung (mus) and sprung (ms) masses
• Influences comfort / road-holding performances
• Involves vertical (zs,zus) dynamics

Active quarter vehicle model
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About suspensions

Different types of suspensions : a summary

• Passive suspensions
- fixed (linear or non linear) characteristics that can be optimized (by adjusting the shape of
the speed-effort rule (SER)) in order to orientate the vehicle towards comfort or road holding,
Oustaloup et al. (1996)

• Active suspensions
- the passive damper is replaced (or helped) by a controlled actuator, able to provide a force
whatever the deflection speed of the damper

• allows very good performances
• not economically viable
• limited dynamics, high weight
• only for up-market vehicles

• Semi-active suspensions
- the passive damper is replaced (or helped) by a controlled actuator, able only to dissipate
energy (i.e. modify the damping factor, by adjusting the shape of the speed-effort rule (SER))
in real time

• allows good performances (however, not as good as those of active ones)
• economically viable
• fast dynamics, weight comparable to passive ones
• for mid-range vehicles
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Modelling The quarter car model
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Figure: Simple quarter vehicle model for semi-active suspension control

Quarter vehicle dynamics{
ms z̈s =−kszde f −Fdamper
mus z̈us = kszde f +Fdamper− kt (zus− zr)

(1)

zde f = zs− zus : damper deflection, żde f = żs− żus : deflection velocity.

• The damper’s characteristics : Force-Deflection-Deflection Velocity relation

Fdamper = g
(
zde f , żde f

)
(2)

where g can be linear or nonlinear.



Modelling The quarter car model

Magneto-Rheological (MR) dampers - ITESM Mexique

• adaptive behavior through the application of a magnetic field
• fast time response and a low battery voltage consumption.
• but highly non linear: bi-viscosity, temperature dependency and hysteresis
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Modelling The quarter car model

Electro-Rheological (ER) dampers -GIPSA

Force-Displacement map of a semi-active damper Force-Velocity map of a semi-active damper
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Modelling The quarter car model

Magneto-Rheological (MR) dampers: a simulation model

• adaptive behavior through the application of a magnetic field
• fast time response and a low battery voltage consumption.
• but highly non linear: bi-viscosity, temperature dependency and hysteresis

Model developed in Lozoya et al 2009:

Fdamper =C1 tanh(C2ẋmr +C3xmr)+C4ẋmr +C5xmr (3)

+C6ẍmr +C7I tanh(C8ẋmr +C9xmr)

identified on the test-rig at Metalsa 1 with diffrent values in compression (ẋmr < 0) and extension
(ẋmr ≥ 0) modes

1www.metalsa.com.mx
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Modelling Controlled-oriented models

Controlled-oriented models

Semi-active LINEAR damper model (Method 1)

Fdamper = c0 żde f +u, c0 = (cmax + cmin)/2

used in most of control approaches (optimal, MPC, H∞, H2...), with Fdamper bounded.

Semi-active NON LINEAR MR/ER damper model (Method 2) [Gu et al., 2006]

Fdamper = c0 żde f + k0zde f︸ ︷︷ ︸
passive

+ fc · tanh
(
c1 żde f + k1zde f

)︸ ︷︷ ︸
semi−active

(4)

• tanh : allows to model the bi-viscous behavior.
• fc is a controllable force and depends on input current I (or voltage V ). Constraint on fc:

0≤ fcmin ≤ fc ≤ fcmax - passivity constraint. ( fcmin=soft damper, fcmax=hard damper).
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Modelling Controlled-oriented models

Model validation

Force-Displacement map validation Force-Velocity map validation
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Some suspension control approaches

Performance objectives

Comfort

• linked to the road vibration isolation of the chassis
• relating to the human sensitivity (between 0.5Hz and 20 Hz):

ISO 2631

F (C1) Comfort at high frequencies: z̈s/zr, [4-30]Hz

F (C2) Comfort at low frequencies: zs/zr, [0-5]Hz

Road holding

• concerns the wheel rebound (or tire deflection)... keep contact
between the wheel and the road

F (RH1) Road-holding: zus/zr, [0-20]Hz

Constraints

• End-stop, saturation

F (RH2) Suspension constraints: zde f /zr, [0-20]Hz
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Some suspension control approaches

Some suspension control approaches

Skyhook control (SH)
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The idea is to clip the body of the car to the
sky.

• Advantages : Simple, 2 degree of
freedom, improvement of comfort.

• Drawbacks : Cannot improve road
holding (comfort oriented only).

• (Karnopp et al. 1974), (Emura et al.
1994), (Sammier et al. 2003), (Poussot
et al. 2006), ...

Ideal
Skyhook
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• Advantages : Simple, 2 degree of
freedom, improvement of comfort.

• Drawbacks : Cannot improve road
holding (comfort oriented only).

• (Karnopp et al. 1974), (Emura et al.
1994), (Sammier et al. 2003), (Poussot
et al. 2006), ...

• It can be approached by a realizable
version, where the SH damper force u is
represented by the following equation :

u =−csky ˙zde f − csky(1−α) ˙zus (5)
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Some suspension control approaches

Some suspension control approaches

Skyhook control (SH)
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• Advantages : Simple, 2 degree of
freedom, improvement of comfort.

• Drawbacks : Cannot improve road
holding (comfort oriented only).

• (Karnopp et al. 1974), (Emura et al.
1994), (Sammier et al. 2003), (Poussot
et al. 2006), ...

• It can be approached by a realizable
version, where the SH damper force u is
represented by the following equation :

u =−csky ˙zde f − csky(1−α) ˙zus (6)

leading to the following scheme : Approached
Skyhook



Some suspension control approaches

Some suspension control approaches

Skyhook two-state damper control (SH-2)

The two-state Skyhook control is an on/off strategy that switches between high and low damping
coefficients in order to achieve body comfort specifications.

Proposition (SH-2 state control)

This law is defined as :

cin =

{
cmin if żs żde f ≤ 0
cmax if żs żde f > 0 (7)

• Basically, it consists in a switching controller which deactivates the controlled damper when
the body speed żs and suspension deflection speed żde f have opposite signs.

• Only needs to have two damping coefficient states.
• Simple strategy but requires two sensors.

Many studies have concerned the Skyhook control strategy since it represents a simple but
efficient way to achieve good comfort requirement (see e.g. (Simon 2001), (Ahmadian et al. 2004).
Some extended versions of the Skyhook control have been also developed, such as the adaptive
one in (Song et al. 2007) or the gain-scheduled one in (Hong et al. 2002).
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Some suspension control approaches

Some suspension control approaches

Skyhook linear approximation damper control (SH-L)

An improved version of Skyhook control has been used to handle variable damping, either with
discrete damping coefficients, or with continuously variable damper, as illustrated in (Sohn et al.
2000), (Sammier et al. 2003). The linear approximation of the Skyhook control algorithm, adapted
to semi-active suspension actuators, is given as :

Proposition

The SH-L law is defined as:

cin =


cmin if żs żde f ≤ 0

sat
(

αcmax żde f +(1−α)cmax żs

żde f

)
if żs żde f > 0 (8)

where α ∈ [0;1] is a tuning parameter that modifies the closed-loop performances and sat()
denotes that cin ∈ [cmin;cmax].

As the SH-2, the SH-L modifies the damping factor according to żs and żde f , but the innovation
comes from the infinite number of possible damping coefficients.

• Equivalent to the Skyhook two-state control when α = 1.
• Requires a continuously variable controlled damper (e.g. an MR damper).
• Requires only two measurements and is simple to implement, but suffers of żde f zero crossing

as well (which is practically complex to measure).O.Sename-S.Fergani (GIPSA-lab - LAAS) LPV suspension control July 2-7, 2017 25/84



Some suspension control approaches

Some suspension control approaches

Acceleration Driven Damper control (ADD)

The ADD control (Savaresi et al. 2005) is a semi-active control which consists in changing the
damping factor using the body acceleration z̈s knowledge.

Proposition

The ADD law is defined as:

cin =

{
cmin if z̈s żde f ≤ 0
cmax if z̈s żde f > 0 (9)

• Strategy shown to be optimal (it minimizes z̈s when no road information is available).
• Very similar to the two-state approximation of the Skyhook algorithm, with the difference that

the switching law depends on z̈s, instead of żs (which is easier to measure in practice).
• Simple from the implementation point of view, since it requires the same number of sensors

as the SH-2 and SH-L control laws.
• ADD design well adapted to comfort improvement but not to road-holding.
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Some suspension control approaches

Some suspension control approaches

Power Driven Damper (PDD)

In (Morselli and Zanasi 2008), the authors propose a semi-active suspension control strategy
using the port Hamiltonian techniques, which provide powerful tools for modeling mechatronics
systems with dissipative components.

Proposition

The PDD control approach is described by:

cin =



cmin if kzde f żde f + cmin ż2
de f ≥ 0

cmax if kzde f żde f + cmax ż2
de f < 0

cmin + cmax

2
if zde f 6= 0 and żde f = 0

−
kzde f

żde f
otherwise

(10)

where k is the stiffness of the considered suspension.

• The authors show that this strategy provides results comparable to those of the ADD control
law, while avoiding the chattering effect of the damping control value.

• The additional cost : the need for the knowledge of the spring stiffness k and a more complex
rule.
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Some suspension control approaches

Some suspension control approaches

Mixed Skyhook-Acceleration Driven Damper (SH-ADD)

The SH-ADD mixes the best behavior of SH and ADD, without increasing the computational effort
nor the hardware complexity. The Key idea is the use of a very simple frequency range selector,
which distinguishes the dynamical behavior of the suspension (SH selected for the low frequency
dynamics, otherwise ADD).

Proposition

The SH-ADD approach is described by:

cin =

 cmax if
[
(z̈s

2−α2 żs
2)≤ 0 and żs żde f > 0

]
or[

(z̈s
2−α2 żs

2)> 0 and żs żde f > 0
]

cmin otherwise
(11)

where α ∈ R+ is the only tuning parameter allowing for frequency range selector, i.e., it adjusts the
"switch" between the SH and the ADD.

• The amount (z̈s
2−α2 żs

2) is the simple "frequency-range selector" where α represents the
frequency limit between the low and the high frequency ranges (value set at the cross-over
frequency (in rad/s) between SH and ADD).

• Resulting control law very simple and requires the same apparatus as SH.
• A simplified version using one single sensor leads to very satisfactory results, (see (Savaresi

and Spelta, 2009).O.Sename-S.Fergani (GIPSA-lab - LAAS) LPV suspension control July 2-7, 2017 28/84



Some suspension control approaches

Some suspension control approaches

Ground-hook 2 state control (GH-2)

Very few studies have been devoted to the possible improvement of road-holding, using
suspension actuator. Since few years, the studies on Global Chassis Control have shown that the
suspension system may also help getting better road-handling.
In a dual way to the Skyhook case, the GH-2 control (Valasek et al. 1998) consists in a switching
control law depending now on the sign of the product between the suspension deflection speed
żde f and the speed of the unsprung mass żus.

Proposition

The GH-2 control approach is given by :

cin =

{
cmin if −żus żde f ≤ 0
cmax if −żus żde f > 0 (12)

• This control has globally the same properties as the SH-2 one, but focuses on the unsprung
mass mus instead of the body ms.
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Some suspension control approaches

Some suspension control approaches

Ground-hook linear (GH-L)

In this case, the semi-active damper allows to continuously change the damping coefficient.

Proposition

The GH-L control approach is defined by :

cin =


cmin if −żus żde f ≤ 0

sat
(

αcmax żde f +(1−α)cmax żus

żde f

)
if −żus żde f > 0 (13)

where α ∈ [0;1] is a tuning parameter that modifies the closed-loop performances and sat( )
denotes that cin ∈ [cmin;cmax].

• Equivalent to the Groundhook two-state control (GH-2) when α = 1.
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Some suspension control approaches

Some suspension control approaches

Semi-active suspensions : Clipped control

• The "clipped control" approach consists in designing an active control, mainly based on linear
(without taking into account passivity constraints), and then to make it semi-active by
saturating the control signal.

• So, many works have concerned the application of classical control methods (e.g. H∞, H2,
pole placement, disturbance rejection, optimal, active Skyhook ...). Then, the dissipative
constraint of the damper is usually handled using a simple projection (i.e. saturation, as
shown in the figure related to semi-active suspension), as in (Zin et al. 2008), (Karnopp
1983), (Margolis 1983).

• In the control step, the force applied by the semi-active damper is then chosen to be as close
as to the force required by the controller for a given suspension deflection speed and for the
possible range of forces the damper can deliver. This simple strategy has been then applied
in many cases (see, for instance Rossi and Lucente (2004), Du et al. (2005), Sename and
Dugard (2003).
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Some suspension control approaches

The semi-active control paradigm

• Usual "Clipped control" (design without constraint and saturation) : leads to unpredictable
behaviors

• Objective 1 : handle the semi-active constraintthrough an LPV model based approach with
non-linear damper model Do et al [IFAC WC 2011, Springer 2012]

• Objective 2 : account for loss of damping efficiency using an additional parameter
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Some suspension control approaches

Some suspension control approaches

Semi-active suspensions

• The question of optimality arises for clipped control which leads to unpredictable behaviors
and ensures neither closed-loop internal stability nor performances any longer (it is a
synthesize and try method). To cope with this last drawback, some modern control
techniques have been applied to the specific semi-active suspension problem.

What’s about the MPC approach ?

• MPC for quarter car model [Canale TCST06], [Giorgetti IJC06]
• MPC for full car model [Sawodny 2014] (active dampers + road preview)
• MPC full car [Nguyen et al CDC16]

• Take into account explicitly the input constraints by a MIMO MPC
• MPC design with considering the road disturbance effects using estimation

⇒ Enhance passenger comfort and handling

However, often "not sufficiently fast" for practical implementation
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Some suspension control approaches An LPV semi-active suspension control strategy

LPV Controller structure philosophy

Principle

The idea is to design a controller
• where the control input is limited when the required force is achievable by the semi-active

actuator
• synthesized on the quarter vehicle model

Methodology

The proposed strategy is designed so that it minimizes the H∞ performance criteria while
guaranteeing the dissipative constraint, thanks to a specific parameter dependent structure and a
scheduling strategy design.
We use the H∞ synthesis, extended to LPV systems Shamma et al. [Automatica, 1991], Scherer
et al. [TAC, 1997] and Scherer [IJRNLC, 1996].

• H∞ synthesis: frequency based performance criteria, ||z||2||w||2
(as pole placement, disturbance

rejection)
• LPV: Linear Parameter Varying, to handle nonlinearity or derive adaptive controller
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Some suspension control approaches An LPV semi-active suspension control strategy

Implementation scheme & principle
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Some suspension control approaches An LPV semi-active suspension control strategy

Scheduling strategy

Scheduling strategy
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• ρ(ε) ∈
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LPV control design (1)
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Some suspension control approaches An LPV semi-active suspension control strategy

LPV control design (2)

⇒Wu(ρ) is a ρ-parameter dependent weight

System & Weights

The system is LTI, and the parameter dependency comes in the weight functions. . .

• Wzs =
s

ω11
+1

s
ω12

+1 , chassis performance objective

• Wzde f =
1

s
ω21

+1 , suspension performance objective

• Wzr = 7.10−2 , road model
• Wn = 10−4 , noise model
• Wu(ρ) = ρ

1
s

1000 +1 , control attenuation

• ρ ∈
[

0.01 10
]
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LPV control design (2)

⇒Wu(ρ) is a ρ-parameter dependent weight

System & Weights
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Bode diagram for frozen ρ
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Performance evaluation on the nonlinear model

Criteria used for evaluation (frequency based)

PSD{ f1 ,a1}→{ f2 ,a2}(x) =

√∫ f2

f1

∫ a2

a1

x2( f ,a)da ·d f

Performances & PSD metric

Fk

kt

ms

mus

u
>

zs

zus

zr

• (C1) Comfort at high frequencies: z̈s/zr, [4-30]Hz
• (C2) Comfort at low frequencies: zs/zr, [0-5]Hz
• (RH1) Road-holding: zus/zr, [0-20]Hz
• (RH2) Suspension constraints: zde f /zr, [0-20]Hz
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Performance evaluation on the nonlinear model

Improvement rate

Improvement rate =
PSDpassive−PSDcontrolled

PSDpassive

Results for nonlinear simulation

Signal Active H∞ Clipped H∞ LPV H∞ ADD SH-ADD
(C1) z̈s/zr [4-30]Hz 4.8% 3.8% -4.4% 10% 10.8%
(C2) zs/zr [0-5]Hz 52.8% 23.5% 18.9% 16.9% 36.2%
(RH1) zus/zr [0-20]Hz 3.2% 4.2% 9.9% −4.9% −5.8%
(RH2) zde f /zr [0-20]Hz 5.3% 5.7% 10.4% −7.8% −4.5%
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Nonlinear simulation - time
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The case of semi-active suspension FTC LPV Models for faulty semi-active suspension

MR damper and oil leakage effects

Force-Velocity map of a semi-active damper (low and high damping) subject to different leakages.
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m
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e 
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e 
[N

]

An oil leakage on a semi-active damper is modelled as:

Fdamper = αFdamper (14)

α ∈ [0,1] is the oil leakage degree,
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Figure: Simple quarter vehicle model for semi-active suspension control

Quarter vehicle dynamics

• Dynamical equations {
ms z̈s =−kszde f −Fdamper
mus z̈us = kszde f +Fdamper− kt (zus− zr)

(15)

zde f = zs− zus : damper deflection, żde f = żs− żus : deflection velocity.
• Damper’s characteristics : Force / (Deflection-Deflection Velocity) relation

Fdamper = g
(
zde f , żde f

)
(16)

where g can be linear or nonlinear.



The case of semi-active suspension FTC Fault estimation

Estimation of α

Can be tackled using several methods:

Fast Adaptive Fault Estimation

see (Zhang, K., Jiang, B., and Cocquempot, V. (2008)) for additive fault

f̂ (t) = ΓU
(

ey(t)+σ

∫ t

t f

ey(τ)dτ

)
where ey(t) = y(t)− ŷ(t). (17)

→ combines a proportional term with an integral one to improve the fault estimation speed.

Use of parity space equation (Sename et al, SYSTOL 2013)

Estimate Fdamper (LTI formulation) and deduce α as: α ≈

√
∑

N
i=1 F̂

2
sai

∑
N
i=1 F2

sai
∈ [0,1]

Use of LPV switched observer (Nguyen & Sename & Dugard, IFAC LPVS2015)

• The actuator fault is modeled in a multiplicative way by using a constant coefficient (α ∈ [0 1])
• estimation is based on an LPV extended observer
• The theoretical formulation can be done in several framework for switching (using dwell time

or average dwell time characteristics).
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The case of semi-active suspension FTC The LPV fault-scheduling suspension control problems

Performance objectives
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Comfort

linked to the road vibration isolation of the
chassis evaluated using the chassis
movement: z̈s/zr and zs/zr

Road holding

• concerns the wheel rebound (or tire
deflection)... keep contact between the
wheel and the road

• evaluated using zus/zr on [0-20]Hz
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Figure: Semi-active suspension performances at
different manipulations, by considering a fault
α = 0.5.
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LPV fault-scheduling suspension control strategy (Method 1)
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Idea: design a controller with model 1 (Fdamper = c0 żde f +u), where the control input
u = uH∞ (ρ) is limited when the required force is not achievable by the semi-active faulty
damper

Σ

żde f

zde f

u

zr zs

y

- - z1Wzs

- Wzde f
z2-

Wzr
--w1

Wu(ρ)
z3

u

Wn �
w2n?

-

�+

--

-C(ρ)

−+

?

v

�
FDD

ε

�-

6

6

ρ

ρ(ε)

Wu(ρ) = ρ
1

s
1000 +1 withρ(ε) ∈

[
0.1 10

]

D f̂ (u, żde f , f̂ )

allows to account for the
change of damper
abilities in case of fault



The case of semi-active suspension FTC The LPV fault-scheduling suspension control problems

Time domain analysis (Method 1)
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Simulations performed using the quarter-car model with the non
linear damper simulation model (validated on real data).
Scenario: oil leakage, 50% of reduction of the nominal damping
force (α = 0.5), from t = 0. a 3cm bump on the wheel from t = 1
to 1.5s.
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Figure: Comfort performance: Transient response
of the sprung mass displacement.
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The case of semi-active suspension FTC The LPV fault-scheduling suspension control problems

Conclusion about method 1

Interest

• The design model P is a LTI one
• Wu(ρ) is LPV
• The controller is LPV and adapts to the damper capabilities scheduled by the fault-estimation

(needed of damper faulty characteristics): a kind of fault tolerant anti-windup
• this adaptation will degrade the CL performances

Drawback

• The closed-loop performances depend on the quality of the characteristic map of the faulty
damper (may be conservative).

• Do not handle explicitely the state and input constraints of the suspension system : see Do et
al [CDC 2011] or Nguyen et al [CDC 2015] for such a theoretical formulation
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The case of semi-active suspension FTC The LPV fault-scheduling suspension control problems

LPV fault-scheduling suspension control strategy (Method 2)

Use of a more accurate damper model

• Define two new scheduling parameter tanh
(
c1 żde f + k1zde f

)
)−→ ρ1

I ∈ [Imin, Imax]−→ ρ2

• The LPV model for the semi-active suspension FTC problem is :

Σ

{
ẋ = A(ρ1,ρ2,α)x+Buc +B1w
y =Cx

where the 3 varying parameters are bounded (α ∈ [0,1], ρ1 ∈ [−1,1] and ρ2 ∈ [0,1])

LPV/H∞ control design

The generalized plant P(θ) is the LPV system:

 ξ̇

z∞

y

 =

A (α,ρ1,ρ2) B1Wr B2
C∞(α,ρ1,ρ2) 0 0

C 0 0

ξ

w
uc


where ξ = [χvert χw]

T with χvert the states of the LPV QoV model and χw the weighting functions
states, z∞ = [z1 z2]

T , y = [zde f żde f ]
T and uc = uH∞ .

Synthesis: solving the LMI problem for a polytopic set of parameters. The global LPV-FTC is a
convex combination of 8 local controllers.
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The case of semi-active suspension FTC The LPV fault-scheduling suspension control problems

LPV fault-scheduling suspension control strategy (Method 2)

P ( ρ1 ,ρ2 )

ρ1, ρ2
FDDα

K( ρ1, ρ2,α)

Wr
Wzs

Wzus

zs
zus

zdef
żdef

u c

u f

zr
z1
z2

w

u
Wfilter

α

(α)

(α)
,

• uses a varying parameter (α) associated to the fault to schedule the suspension actuator
work according to new damping characteristics.

• parameter dependent weighting functions allowing to modify on-line the performance
specifications according to the state of health of the damper
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The case of semi-active suspension FTC The LPV fault-scheduling suspension control problems

Time domain analysis (Method 2)

Simulations performed using the quarter-car model with the non linear damper simulation model
(validated on real data).
Scenario: 3cm bump on the wheel from t = 1s to t = 1.5s. Damper leakage: 50% of reduction of
the nominal damping force (α = 0.5) at t = 0.
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The case of semi-active suspension FTC The LPV fault-scheduling suspension control problems

Time domain analysis (Method 2) (cont..)
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Figure: Controller output in the semi-active suspension.
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The case of semi-active suspension FTC The LPV fault-scheduling suspension control problems

Conclusion about method 2

Interest

• The design model P is LPV
• The performance weighting functions Wzs (α) and Wzus (α) are LPV to adapt the CL

performances to the damper capabilities (and accordingly degrade them)

Drawback

• Do not handle explicitely the state and input constraints of the suspension system : see Do et
al [CDC 2011] or Nguyen et al [CDC 2015] for such a theoretical formulation

• the controller includes 3 varying parameters which may be a problem for the synthesis and
implementation

O.Sename-S.Fergani (GIPSA-lab - LAAS) LPV suspension control July 2-7, 2017 54/84



A motion-scheduled LPV control of full car vertical dynamics

Outline

1. Introduction

2. About suspensions

3. Modelling
The quarter car model
Controlled-oriented models

4. Some suspension control approaches
An LPV semi-active suspension control strategy

5. The case of semi-active suspension FTC
LPV Models for faulty semi-active suspension
Fault estimation
The LPV fault-scheduling suspension control problems

6. A motion-scheduled LPV control of full car vertical dynamics
Vehicle Modelling
Motion detection
Controller synthesis
Simulation results
Experimental results

7. Conclusions and future work

O.Sename-S.Fergani (GIPSA-lab - LAAS) LPV suspension control July 2-7, 2017 55/84



A motion-scheduled LPV control of full car vertical dynamics

Problem
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Suspension system:

Ensure comfort and road holding

Problem: Comfort improvement

Mitigate the body motions (bounce,
roll, pitch) induced by road effects
using only the suspension actuators.
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Suspension system:

Ensure comfort and road handling

Problem: Comfort improvement

Mitigate the body motions (bounce,
roll, pitch) induced by road effects
using only suspension actuators.

Existing solution:
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Problem
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Suspension system:

Ensure comfort and road holding

Problem: Comfort improvement

Mitigate the body motions (bounce,
roll, pitch) induced by road effects
using only suspension actuators.

Existing solution:

A solution without road preview nor identification: A MIMO controller scheduled according
to vehicle motion

Step 1: Motion detection strategy (bounce, roll, pitch)
Step 2: LPV suspension controller design
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A 7 dof full vertical vehicle model [zs θ φ zus f l zus f r zusrl zusrr]:
ms z̈s =−Fs f l −Fs f r−Fsrl −Fsrr +Fdz
Ixθ̈ = (−Fs f r +Fs f l)t f +(−Fsrr +Fsrl)tr +mhay +Mdx
Iyφ̈ = (Fsrr +Fsrl)lr− (Fs f r +Fs f l)l f −mhax +Mdy
mus z̈usi j =−Fsi j +Ftzi j

(18)

Suspension force:
Fsi j = ki j(zsi j − zusi j )+ ci j(żsi j − żusi j )+uH∞

i j (19)

Tire force:
Ftzi j =−kti j (zusi j − zri j ) (20)
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A 7 dof full vertical vehicle model [zs θ φ zus f l zus f r zusrl zusrr]:
ms z̈s =−Fs f l −Fs f r−Fsrl −Fsrr +Fdz
Ixθ̈ = (−Fs f r +Fs f l)t f +(−Fsrr +Fsrl)tr +mhay +Mdx
Iyφ̈ = (Fsrr +Fsrl)lr− (Fs f r +Fs f l)l f −mhax +Mdy
mus z̈usi j =−Fsi j +Ftzi j

(18)

Rewrite (18) in the state space representation form:

ẋ(t) = Ax(t)+B1w(t)+B2u (4)

where: x = [zs θ φ zus f l zus f r zusrl zusrr żs θ̇ φ̇ żus f l żus f r żusrl żusrr]
T ,

w = [Fdz Mdx Mdy zr f l zr f r zrrl zrrr]
T , u = [uH∞

f l ,u
H∞

f r ,u
H∞

rl ,uH∞
rr ]T .
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The vehicle dynamic scheme with semi-active suspension:

Figure: Vehicle dynamic scheme

Semi-active suspension using the "clipped strategy":

Figure: Clipped Strategy
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Motion detection based on the load transfer distribution
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The motion detection is based on the calculation of the load transfer distribution coefficients. The
coefficients are used as the scheduling parameters of the weighting functions (detailed in the sequel).

Roll monitoring by the lateral load transfer (ρ1)

ρ1 = |
(Fzl −Fzr )

(Fzl +Fzr )
| (a)

with: {
Fzl = ms× g

2 +ms×h× ay
l f

Fzr = ms× g
2 −ms×h× ay

lr

(19)

where Fzl and Fzr are the vertical forces, ay is the lateral acceleration. When
ρ1 → 0, no lateral load transfer, no roll motion.
Conversely when ρ1 6= 0, the vehicle is in roll motion.
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Motion detection based on the load transfer distribution

O.Sename-S.Fergani (GIPSA-lab - LAAS) LPV suspension control July 2-7, 2017 61/84

The motion detection is based on the calculation of the load transfer distribution coefficients. The
coefficients are used as the scheduling parameters of the weighting functions (detailed in the sequel).

Pitch monitoring by the longitudinal load transfer (ρ2)

ρ2 = |
(Fz f ×

L
lr
−Fzr × L

l f
)

(Fz f ×
L
lr
+Fzr × L

l f
)
| (b)

where the front and rear forces are given by:{
Fz f = ms× ( lr

L .cos(φ)+ h
L .sin(φ))−ms×ax× h

L

Fzr = ms× (
l f
L .cos(φ)− h

L .sin(φ))+ms×ax× h
L

(19)

where ax is the longitudinal acceleration. When ρ2 → 0, no longitudinal load
transfer, no pitch motion.
Conversely when ρ2 6= 0, the pitch motion is detected.
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Motion detection based on the load transfer distribution
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The motion detection is based on the calculation of the load transfer distribution coefficients. The
coefficients are used as the scheduling parameters of the weighting functions (detailed in the sequel).

Bounce monitoring (ρ3)

Thanks to the lateral and longitudinal load transfers, one defines ρ3 as:

ρ3 = |(1−ρ1−ρ2)| (c)

When ρ3 6= 0, the bounce motion is taken into account.

ρ1,ρ2,ρ3 are varying parameters for the LPV system.
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General structure for the LPV suspension controller:
LTI system + parameter dependant weighting functions = generalized LPV system
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General structure for the LPV suspension controller:
LTI system + parameter dependant weighting functions = generalized LPV system
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General structure for the LPV suspension controller:
LTI system + parameter dependant weighting functions = generalized LPV system

The controller K is synthesized in the H∞/LPV framework
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Design of the LPV control in the H∞/LPV framework:

The use of parameter dependant weighting functions allows to modify on-line the
performance specifications according to the vehicle motion:

• Wzs (ρ3) = ρ3
3

s/(2π f1)+1 : ⇒ bounce motion

• Wθ (ρ1) = ρ1
2

s/(2π f2)+1 : ⇒ roll motion

• Wφ (ρ2) = ρ2
2

s/(2π f3)+1 : ⇒ pitch motion

Remember that: ρ1,ρ2,ρ3 ∈ [0 1]
Ex: if ρ3 −→ 1, the gain of the weighting function is high, bounce (zs) is penalized.
Conversely, when ρ3 −→ 0, bounce motion is not limited.
Other weighting functions (for actuator constraints)

• Wu = 10−2: avoids too large control signals.
• Wzri j = 3.10−2: shapes the road profiles (zri j).
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Simulation results
INOVE Automotive Toolbox at GIPSA Lab - Grenoble INP.

Using a full nonlinear vehicle model, validated on a real car "Renault Mégane Coupé " coll. MIPS
lab [Basset]
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[Simulation scenario:]

• The vehicle runs at 45km/h, and accelerates from t = 3s to t = 3.5s which induces a
pitch motion (traction induced pitch motion).

• A 5cm bump occurs simultaneously on the left and right wheels (from t = 0.5s to
t = 1s) to excite the bounce motion.

• A double lines change is performed from t = 2s to t = 6s).
• And a 5cm bump on the left wheels (from t = 5s to t = 5.5s) during the manoeuvre that

causes the roll vibration
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Motion detection and scheduling parameters:
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Figure: Scheduling parameters
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Comparison of:

• H∞/LPV : Renault Mégane Car equipped with a semi-active suspension
controlled by the proposed methodology.

• Passive (Uncontrolled suspension): Renault Mégane Car equipped with an
optimized nonlinear passive suspension (uH∞

i j = 0).
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Uncontrolled suspension

⇒ Bounce motion in the controlled case is reduced w.r.t the uncontrolled case.
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⇒ Mitigation of the roll and pitch motions thanks to the motion
detection strategy, associated to the gain scheduling LPV
controller.
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INOVE testbed
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Equipment
• 4 semi-active Electro-Rheological dampers

• independent road profile, 4 DC motors

• Sensors: an inertial measurement unit, 4
accelerometers for the wheel vertical
behaviors, 4 suspension deflection sensors,
pitch and yaw angle sensors, 4 force sensors
at the tyre/road contact; 4 ER damper force
sensors.

Studies
• Modelling of semi-active dampers

• Modelling of the 7 DOF vertical dynamics

• Estimation of the road impact and observation
of the vertical dynamics state variables

• Detection of sensors and actuators faults
using observers and parity equations
methods

• Control of semi-active dampers and of the
vertical dynamics using Linear Parameter
Varying approaches
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INOVE test
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Monitoring parameters

Fact: in the testbed lateral acceleration is very small and the roll motion, detected by the load
transfer approach, may be then neglected.
Alternative solution: take into account the differences between suspension deflections at the left
and right sides (roll) and at front and rear axle (pitch)

• Roll monitoring parameter:

ρ1 =

∣∣∣∣∣∣ (zde f f l + zde frl )− (zde f f r + zde frr )∣∣∣zde f f l

∣∣∣+ ∣∣zde frl

∣∣+ ∣∣∣zde f f r

∣∣∣+ ∣∣zde frr

∣∣
∣∣∣∣∣∣ (19)

• Pitch monitoring parameter:

ρ2 =

∣∣∣∣∣∣ (zde f f l + zde f f r )− (zde frl + zde frr )∣∣∣zde f f l

∣∣∣+ ∣∣zde frl

∣∣+ ∣∣∣zde f f r

∣∣∣+ ∣∣zde frr

∣∣
∣∣∣∣∣∣ (20)

• Bounce monitoring parameter: For the bounce motion supervision, one still chooses as
previously, i.e:

ρ3 =
2−ρ1−ρ2

2
(21)
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Implemented Control scheme
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Figure: Suspension control Implementation scheme

Force-PWM map
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Experimental scenario 1: bumps
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In order to assess the LPV controller, a five consecutive bumps road profile is
send to the four corners of the car (delayed phases between the front and
rear corners) that induce the pitch motion

Five bumps road profile
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Motion detection: roll and pitch motions
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It emphasizes the motion detection of the SOBEN car, in particular the pitch
motion which is the main motion of the car in this excitation.
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Experimental scenario 1: bumps
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Pitch motions
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Promising results but need to include
the damper modelling in control
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Experimental scenario 2: chirp
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The SOBEN Car is excited by a chirp signal road profile from 0-3Hz (also
delayed phases between the front and rear corners):

Five bumps road profile
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It emphasizes the motion detection of the SOBEN car that is quite perturbed
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Experimental scenario 2: chirp

O.Sename-S.Fergani (GIPSA-lab - LAAS) LPV suspension control July 2-7, 2017 76/84

Pitch motions
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Roll motions
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Bounce motions
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Conclusions

About today’s presentation:

Many interests of the LPV approach

+ Modelling of complex systems ( but still less than nonlinear formulation)

+ Control design with varying performances, ensuring internal stability and robust-like
performances

+ LPV Observer/Filter design... for FDI

+ A tool to design adaptive FTCS

+ Can be extended to mixed-objectives problems (e.gH∞, H2...) through LMI (and/or
nonsmooth) tools
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