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What is a Linear Parameter Varying systems?

LPV systems

Definition of an Linear Parameter Varying system

Σ(ρ) :

 ẋ
z
y

=

 A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2(ρ) D21(ρ) D22(ρ)

 x
w
u


x(t) ∈Rn, ...., ρ = (ρ1(t),ρ2(t), . . . ,ρN(t)) ∈Ω, is a vector of time-varying parameters (Ω convex set),
assumed to be known ∀t
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Dampened mass-spring system:

�p+ c _p+ k(t) p = u; y = x

First-order state-space representation:

d

dt
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Only parameter is k(t)

System matrix depends affinely on this parameter

Could view c as another parameter - keep it simple for now ...
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What is a Linear Parameter Varying systems?

LPV systems (2)

Let the LPV system be:

Σ(ρ) :

 ẋ
z
y

=

 A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2(ρ) D21(ρ) D22(ρ)

 x
w
u


x(t) ∈ Rn, ...., ρ = (ρ1(t),ρ2(t), . . . ,ρN(t)) ∈Uρ , is a vector of time-varying parameters (Uρ convex
set)

• ρ(.) varies in the set of continously differentiable parameter curves ρ : [0,∞)→ RN .
It is assumed to be known or measurable.

• The parameters ρ are always assumed to be bounded:

ρ ∈Uρ ⊂ RN and Uρ compact (1)

defined by the minimal ρi, and maximal ρi values of ρi(t)

ρi(t) ∈ [ρi, ρi], ∀i

• The system matrices A(.) .... are continuous on Uρ
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What is a Linear Parameter Varying systems?

LPV systems (3): about the parameters

• Parameters are exogenous if they are external variables. The system is in that case non
stationary.
See the previous damped mass-sping system.

• Parameters are endogenous if they are function of the state variables, ρ = ρ(x(t), t), and, in
that case, the LPV system is referred to as a quasi-LPV system.
This case is encountered when approximating Nonlinear systems.
For instance:

ẋ(t) = x2(t) = ρ(t)x(t)

with ρ(t) = x(t).
• It is sometimes required that the derivative of the parameters are bounded, i.e:

ρ̇ ∈Uρ̇ ⊂ RN and Uρ̇ compact (2)

defined by the minimal νi, and maximal νi values of ρ̇i(t)

ρ̇i(t) ∈ [νi, νi], ∀i

This corresponds to the case of slow varying parameters
• Other representations can be considered if ρ is piecewise-constant, or varies in a finite set of

elements (ρ(t) ∈ {0,1} for switching systems)

Next, several classes of LPV models are presented, and some ways to go from one class to
another are given.
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What is a Linear Parameter Varying systems?

Some comments

• LPV systems can model uncertain systems (ρ fixed but unknown) or parameter-varying
models (ρ(t))

LPV=linear or nonlinear?

• What is often referred to as gain-scheduling control, corresponds to Jacobian linearization of
the nonlinear plant about a family of equilibrium points Shamma (90), Rugh & Shamma (2000)
In terms of control design this means, lineraization around operating conditiosn, design (at
each operating points) of a LTI controller, and interpolation of the LTI controllers in between
operating conditions (often used in Aerospace and Automotive industries).
Pros: Simplicity of design for a non linear system
Cons: No a priori guarantee of stability nor robustness

• But: this differs from quasi-LPV representations where nonlinearities are hiddden in some
parameter descriptions (as seen later in the course)

LPV=LTV

• Theoretical analysis of LPV system properties (stability, controllability, observability), often
falls into the framework of LTV systems or of nonlinear ones (for quasi-LPV representations),
see (Blanchini).

O.Sename-S.Fergani (GIPSA-lab - LAAS) LPV systems July 2-7, 2017 6/41



What is a Linear Parameter Varying systems?

Some references

Those not to be ignored

• Modelling, identification : (Bruzelius, Bamieh, Lovera, Toth) + 2011 TCST Special Issue on
"Applied LPV modelling and identification"

• Control (Shamma, Apkarian & Gahinet, Adams, Packard, Beker, Seiler, Grigoriadis ...)
• Stability, stabilization (Scherer, Wu, Blanchini ...)
• Geometric analysis (Bokor & Balas)
• Survey paper: Hoffmann & Werner, 2015
• Fault tolerant control: special issues by

• Balas, 2012: in International Journal of Adaptive Control and Signal Processing
• Casavola, Rodrigues & Theilliol, 2015: in International Journal of Robust and Nonlinear Control

Some recent books

• R. Toth, Modeling and identification of linear parameter-varying systems, Springer 2010
• J. Mohammadpour, C. Scherer, (Eds), Control of Linear Parameter Varying Systems with

Applications, Springer-Verlag New York, 2012
• O. Sename, P. Gaspar, J. Bokor (Eds), Robust Control and Linear Parameter Varying

Approaches: Application to Vehicle Dynamics, Springer, 2013
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Modelling and identification of LPV systems

Outline
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Modelling and identification of LPV systems

Different Models

According to the dependency on the parameter set, we may have several classes of models:
1 Affine parameter dependency: A(ρ) = A0 +A1ρ1 + ...+ANρN
2 Polynomial dependency: A(ρ) = A0 +A1ρ +A2ρ2 + ...+ASρS

3 Rational dependency:A(ρ) = [An0 +An1ρn1 + ...+AnNρnN ][I +Ad1ρd1 + ...+AdNρdN ]
−1

Brief insight in LFR Models

z∆w∆

zw P

∆

u y

Figure: System under LFT form

∆ is defined such as: z∆ = ∆(.)w∆.
It represents the parameter

variations. ∆(.) is a linear function
of the parameter vector.

Denoting the transfer matrix N(s) as:[
z∆

z

]
=

[
N11(s) N12(s)
N21(s) N22(s)

][
w∆

w

]
The Linear Fractional Representation (LFR) gives then the transfer
matrix from w to z, and is referred to as the upper Linear Fractional
Transformation (LFT) :

Fu(N,∆) = N22 +N21∆(I−N11∆)−1N12

This LFT exists and is
well-posed if (I−N11∆)−1 is invertible.

This will not be presented in the course. Please refer to (Apkarian
& Gahinet; Scherer, Rantzer) for the use of LFT for robust analysis
and design. This many need to study Integral Quadratic Constraints
(IQCs).
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Modelling and identification of LPV systems

Polytopic models

A polytopic system is represented as

Σ(ρ) =
Z

∑
k=1

αk(ρ)

[
Ak Bk
Ck Dk

]
, with

2N

∑
k=1

αk(ρ) = 1 , αk(ρ)> 0

where
[

Ak Bk
Ck Dk

]
are LTI systems.

This representation is often used to rewrite an affine LPV system. Indeed, assuming that the
parameters are bounded (ρi ∈

[
ρ

i
ρ i
]
), the vector of parameters evolves inside a polytope

represented by Z = 2N vertices ωi, as

ρ ∈ Co{ω1, . . . ,ωZ} (3)

It is then written as the convex combination:

ρ =
Z

∑
i=1

αiωi, αi ≥ 0,
Z

∑
i=1

αi = 1 (4)

where the vertices are defined by a vector ωi = [νi1, . . . ,νiN ] where νi j equals ρ j or ρ j.

The LTI system
[

Ak Bk
Ck Dk

]
here corresponds to the LPV system frozen at the vertex k.
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Modelling and identification of LPV systems

From a generic affine LPV systems to a poytopic model

For a LPV system with 2 parameters, boundend
[

ρ
1,2

ρ1,2

]
, the corresponding polytope onws

4 vertices as:
Pρ =

{
(ρ

1
,ρ

2
),(ρ

1
,ρ2),(ρ1,ρ2

),(ρ1,ρ2)
}

(5)

The polytopic coordinates are (αi) are obtained as:

ω1 = (ρ
1
,ρ

2
), α1 =

(
ρ1−ρ1

ρ1−ρ1

)
×

(
ρ2−ρ2

ρ2−ρ2

)

ω2 = (ρ
1
,ρ2), α2 =

(
ρ1−ρ1

ρ1−ρ1

)
×

(
ρ2−ρ2

ρ2−ρ2

)

ω3 = (ρ1,ρ2
), α3 =

(
ρ1−ρ1

ρ1−ρ1

)
×

(
ρ2−ρ2

ρ2−ρ2

)

ω4 = (ρ1,ρ2), α4 =

(
ρ1−ρ1

ρ1−ρ1

)
×

(
ρ2−ρ2

ρ2−ρ2

)
(6)

where ρ1 and ρ2 are the instantaneous values of the parameters (ρ(k)
i in the implementation step).

The LPV system is then rewritten under the polytopic representation:(
A(ρ1,2) B(ρ1,2)
C(ρ1,2) D(ρ1,2)

)
= α1

(
A(ω1) B(ω1)
C(ω1) D(ω1)

)
+α2

(
A(ω2) B(ω2)
C(ω2) D(ω2)

)
+α3

(
A(ω3) B(ω3)
C(ω3) D(ω3)

)
+α4

(
A(ω4) B(ω4)
C(ω4) D(ω4)

)
(7)
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Modelling and identification of LPV systems

From nonlinear to LPV using Linear Differential Inclusion

See (Boyd et al, 1994).
Let consider the nonlinear system

ΣN L :
{

ẋ = f (x(t),w(t))
z = g(x(t),w(t)) (8)

Suppose that, for each x, w and t, there is a matrix G(x,w, t) ∈Ω s.t.:[
f (x,w)
g(x,w)

]
= G(x,w, t)

[
x
w

]
(9)

where Ω ∈ R(nx+nz)×(nx+nu).
As said in (Boyd et al, 1994):
"Then of course every trajectory of the nonlinear system (8) is also a trajectory of the LDI defined
by (9). If we can prove that every trajectory of the LDI defined by (9) has some property (e.g.,
converges to zero), then a fortiori we have proved that every trajectory of the nonlinear system (8)
has this property."
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Modelling and identification of LPV systems

LPV modelling of a quarter car vehicle suspension model
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Figure: Simple quarter vehicle model for semi-active suspension control

Quarter vehicle dynamics{
ms z̈s =−kszde f −Fdamper
mus z̈us = kszde f +Fdamper− kt (zus− zr)

(10)

zde f = zs− zus : damper deflection, żde f = żs− żus : deflection velocity.

• The damper’s characteristics : Force-Deflection-Deflection Velocity relation

Fdamper = g
(
zde f , żde f

)
(11)

where g can be linear or nonlinear.



Modelling and identification of LPV systems

LPV modelling of a quarter car vehicle suspension model (cont.)

A Semi-active nonlinear MR damper model [Gu et al., 2006, Nino-Juarez et al., 2008]

Fdamper = c0 żde f + k0zde f + fI tanh
(
c1 żde f + k1zde f

)
(12)

• The tanh function allows to model the bi-viscous behavior.
• 5c0, k0, c1, k1): constant parameters. k0, k1 dedicated to the hysteresis behavior.
• fI is a controllable force and depends on input current I.

LPV model

Choosing ρ = tanh
(
c1 żde f + k1zde f

)
, and denoting u = fI the control input, the quarter car model

can be represented as: {
ẋ(t) = Ax(t)+B(ρ)u(t),

y(t) =Cx(t)+Du(t)
(13)
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Modelling and identification of LPV systems

A brief insight in identification of LPV models

Global approaches - input/output models (y(k) =−
na
∑

i=1
ai(ρ(k))y(k− i)+

nb
∑
j=1

bi(ρ(k))u(k− j))

(Bamieh & Giarre 99, 02): characterisation of persistency of excitation conditions for input-output
LPV models

Previdi & Lovera 03, 04): NLPV model class (LFT feeded by a neural network model for the
scheduling policy)

(Toth, 07 + book 2010): An LPV system can be viewed as a collection of "local" behaviours
(associated with constant parameter values

Global approaches - state space models

(Lee & Poolla): maximum likelihood (ML) algorithm for the identification of MIMO LPV-LFT
models (PEM algorithm)

(Verhaegen et al, 02, 07, 09...): Supspace methods

Local approaches

Interpolation of locally identified LTI models... need to pay attention to:
• Input/output form (Toth, 07 + book 2010): interpolating transfer function coefficients
• State space form (Steinbuch et al, 03): consistency of state space basis
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Some properties of LPV systems

LPV systems properties

Let consider the LPV syetsm

Σρ

{
ẋ(t) = A(ρ(t))x(t)+B(ρ(t))u(t), x(0) = x0
y(t) =C(ρ(t))x(t)+D(ρ(t))u(t) (14)

What kind of properties we should pay attention to?

When ρ is fixed (constant) the previous system is LTI and
• controllability, observability, stability, are uniquely defined
• controllability⇔ reachabillity, observability⇔ reconstructibility
• these properties are equivalent by a state change of basis.

But when ρ(t) is time varying .....

• these facts may not be true (asymptotic and exponential stabilty may differ)
• need to study properies of Linear Time-Varying systems.
• A generalization of the exp(At) is needed, defining the state transition matrix Φ(t, t0,ρ(t))

• For a change of basis T (t) with x(t) = T (t)xnew(t) then, ẋ(t) = Ṫ (t)xnew(t)+T (t)ẋnew(t)
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Some properties of LPV systems

Illustration for observability

In an analogous way the unobservability property is defined as : a state x(t) is not observable if
the corresponding output vanishes, i.e. if the following holds: y(t) = ẏ(t) = ÿ(t) = . . .= 0. In the
case of LTV systems it corresponds to:

Definition

The LPV system (14) is completely observable if rankO = n ∀t, where

O =
[

oT
1 oT

2 . . . oT
n
]T

where o1 =C(ρ) and oi+1 = oiA+ ȯi, i > 1 (for instance o2 = ρ̇
∂C(ρ)

∂ρ
+C(ρ)A(ρ)).
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A weaker notion of observability can be
defined for the LPV systems (14) in the
functional sense O function of ρ(t).

Definition

The LPV system (14) is structurally
observable if rankO = n

This does not guarantee that O is invertible
∀t and for all parameter values.

Finally the above notion differ from the direct
extension of the observability matrix for LTI

systems, i.e O =


C(ρ)

C(ρ)A(ρ)
...

C(ρ)An−1(ρ)

 .
This definition is ONLY valid if ρ is constant,
i.e. it corresponds to the observability of the
LTI systems frozen at the values of the
constant parameter vector ρ.



Some properties of LPV systems

Example
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Σ1(ρ) :
{

ẋ(t) = A(ρ)x(t)
y(t) = C(ρ)x(t)

with

A =

(
1 1

ρ(t) 2

)
,C =

(
ρ(t) 1

)
Observability matrix with ρ f is a frozen value
of ρ(t):

O =

(
ρ f 1
2ρ f ρ f +2

)
which is of rank 2 apart for ρ f = 0.
Therefore the LTI frozen systems are
observable.

However the observaility matrix of the
considered time-varying system is given by:

O =

(
ρ(t) 1

ρ̇(t)+2ρ(t) ρ(t)+2

)
which is of rank 2 in the functional sense.
Therefore the structural rank of Σ1(ρ) is 2.
However it is of rank 1 if ρ satisfies
ρ̇(t) = ρ(t)2. The system is then not
completely observable.
Therefore, for some specific parameter
definitions, the parameter variations may
therefore induce a loss of observability.
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Stability of LPV systems

Problem statement and facts

Recall

For LTI systems all notions of stability are equivalent: global/local, asymptotic/exponential,
time-domain (Lyapunov)/frequency-domain (Bode, poles...).

Why stability analysis fo LPV systems is not an easy task?

Let consider ẋ = A(ρ(t))x. Stability analysis is more involved (as for LTV systems) since:
• there is a set of solutions for a given x0 (family of systems from ρ variations)
• the system may be stable for frozen parameter values and unstable for varying parameters

(as for switching systems)
• asymptotic and exponential stability are no more equivalent and cannot be characterized by

the eigenvalues of A(ρ(t)).
• In term of design, we will often rely on the notion of quadratic stability (using quadratic

Lyapunov function V (x) = xT PX) which is stronger but easier to check for stability and simpler
to use for control and observer design, see (Wu, PhD 95)

Robust or LPV? (Blanchini,00 & 07)

• Robust analysis and control: dedicated to LTI systems subject to time-varying uncertainties
• LPV (or gain-scheduling) analysis and control: dedicated to LTV systems or to linearizations

of non linear systems along the trajectory of ρ
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Stability of LPV systems

Recall: robust stability with time-invariant uncertainties

This concept is very useful for the stability analysis of uncertain systems.
Let us consider an uncertain system

ẋ = A(δ )x

where δ is an parameter vector that belongs to an uncertainty set ∆.

Problem statement

Is the system asymptotically stable for all δ in ∆?

Definition

The considered system is said to be quadratically stable for all uncertainties δ ∈ ∆ if there exists a
(single) Lyapunov function V (x) = xT Px with P = PT > 0 s.t

A(δ )T P+PA(δ )< 0, for all δ ∈ ∆ (15)

Computation

For polytopic uncertaities (convex set), i.e. if ρ ∈ Co{ω1, . . . ,ωZ}, then, the problem becomes
feasible since it remains to find P = PT > 0 such that:

A(ωi)
T P+PA(ωi)< 0, i = 1, . . . ,Z
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Stability of LPV systems

Quadratic stability for time-varying parameters

Let us consider the LPV system
ẋ = A(ρ(t))x

where ρ(t) is an time-varying parameter vector that belongs to an uncertainty set Ω.

Use of a single Lyapunov function

If there exists P = PT > 0 such that:

A(ρ(t))T P+PA(ρ(t))< 0,∀ρ(t) ∈Ω

then the system is stable for arbitrarily fast time-varying uncertainties

Remarks

• Quadractic stability imples exponential stability (Wu, 95)
• It is an infinite dimension problem (can be relaxed for polytopic uncertainties)
• It could be conservative since stability is checked for any variation of the parameters !

Pay attentation in what follows: LPV system means TIME-VARYING parameters so a polytopic
LPV system is not an uncertain polytopic system (in the latter case the coefficient αi of the
polytopic description are constant even if unknown)
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Stability of LPV systems

Parameter Varying Lyapunov functions

Let consider now a parameter dependent Lyapunov function Vρ (x(t)) = x(t)T P(ρ)x(t)> 0 for every
x 6= 0 and V (0) = 0.

Uncertain systems (ρ is time-invariant)

The uncertain system ẋ = A(ρ)x is exponentially stable if there exists Vρ such that (classical
approach for polytopic uncertain systems):

A(ρ)T P(ρ)+P(ρ)A(ρ)< 0, ∀ ρ ∈

LPV systems (ρ is time-varying)

The uncertain system ẋ = A(ρ(t))x is exponentially stable if there exists Vρ such that:

A(ρ)T P(ρ)+P(ρ)A(ρ)+
N

∑
i=1

ρ̇i
∂P(ρ)

∂ρi
< 0 ∀ ρ(t) ∈

which, in addition to bounded parameters, needs to consider rate-bounded parameter variations.
Such a condition is more complex since:

• It involves the partial differentiation of P

• it has to be checked for all ρ(t) ∈
• It implies to choose a parametrization of P(ρ): from affine to polynomial
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Stability of LPV systems

L2 stability of LPV systems (Wu, 95)

Definition

Given a parametrically dependent stable LPV system Σρ = (A(ρ),B(ρ),C(ρ),D(ρ)) for zero initial
conditions x0. The induced L2 norm is defined as:

||Σρ ||i,2 = sup
ρ(t)∈Ω

sup
w(t)6=0∈L2

‖y‖2
‖u‖2

which is often referred to as (by abuse of langage) the H∞ gain ||Σρ ||∞ of the LPV system.

Theorem

A sufficient condition for the L2 stability of system Σρ is the generalized BRL, using parameter
dependent Lyapunov functions, i.e assuming |ρ̇i|< νi, ∀i, if there exists P(ρ)> 0, ∀ρ s.t A(ρ)T P(ρ)+P(ρ)A(ρ)+∑

N
i=1 νi

∂P(ρ)
∂ρi

P(ρ) B(ρ) C(ρ)T

B(ρ)T P(ρ) −γ I D(ρ)T

C(ρ) D(ρ) −γ I

< 0, ∀i. (16)

then ||Σρ ||i,2 ≤ γ
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LPV Control & Observation

Towards LPV control

The "gain scheduling" approach

System (ρ)Controller (ρ)

Adaptation
strategy

Measured or estimated
Parameters

References Control
Inputs

Outputs

External
parameters

Some references

• Modelling, identification : (Bruzelius, Bamieh, Lovera, Toth)
• Control (Shamma, Apkarian & Gahinet, Adams, Packard, Beker ...)
• Stability, stabilization (Scherer, Wu, Blanchini ...)
• Geometric analysis (Bokor & Balas)
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LPV Control & Observation The Dynamic Output feedback case

The H∞/LPV control problem

Definition

Find a LPV controller C(ρ) s.t the closed-loop system is stable and for γ∞ > 0, sup ‖z‖2‖w‖2
< γ∞,

• Unbounded set of LMIs (Linear Matrix Inequalities) to be solved (ρ ∈Ω)
• Some approaches: polytopic, LFT, gridding. See Arzelier [HDR, 2005], Bruzelius [Thesis,

2004], Apkarian et al. [TAC, 1995]...

A solution: The "polytopic" approach [C. Scherer et al. 1997]

• Problem solved off line for each vertex of a polytope (convex optimisation) (using here a
single Lyapunov function i.e. quadratic stabilization).

• On-line the controller is computed as the convex combination of local linear controllers

C(ρ) =
2N

∑
k=1

αk(ρ)

[
Ac(ωk) Bc(ωk)
Cc(ωk) Dc(ωk)

]
,

2N

∑
k=1

αk(ρ) = 1 , αk(ρ)> 0

6

-

ρ2

ρ1ρ
1

ρ
2

ρ2

ρ1

C(ω1)

C(ω2) C(ω4)

C(ω3)

C(ρ)

• Easy implementation !!
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LPV Control & Observation The Dynamic Output feedback case

LPV control design

Generalized 
plant       

w z 

y u 

Controller 
S (ρ) 

∑ (ρ) 

Problem on standard form 

CL (ρ) 

w: exagenous input 
u: control input 

z: output to minimize 
y: measurement 
 

Dynamical LPV generalized plant:

Σ(ρ) :

 ẋ
z
y

=

 A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2(ρ) D21(ρ) D22(ρ)

 x
w
u

 (17)

LPV controller structure:
S(ρ) :

[
ẋc
u

]
=

[
Ac(ρ) Bc(ρ)
Cc(ρ) Dc(ρ)

][
xc
y

]
(18)

LPV closed-loop system:

C L (ρ) :
[

ξ̇

z

]
=

[
A (ρ) B(ρ)
C (ρ) D(ρ)

][
ξ

w

]
(19)
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LPV Control & Observation The Dynamic Output feedback case

LPV control design

H∞ criteria Apkarian et al. [TAC, 1995]

Stabilize system CL(ρ) (find K > 0) while minimizing γ∞. A (ρ)T K +KA (ρ) KB∞(ρ) C∞(ρ)
T

B∞(ρ)
T K −γ2

∞I D∞(ρ)
T

C∞(ρ) D∞(ρ) −I

< 0

Infinite set of LMIs to solve (ρ ∈Ω) (Ω is convex)

LPV control designs Arzelier [HDR, 2005], Bruzelius [Thesis, 2004]

LFT, Gridding, Polytopic
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LPV Control & Observation The Dynamic Output feedback case

LPV control design

Polytopic approach

Solve the LMIs at each vertex of the polytope formed by the extremum values of each varying
parameter, with a common K Lyapunov function.

C(ρ) =
2N

∑
k=1

αk(ρ)

[
Ac(ωk) Bc(ωk)
Cc(ωk) Dc(ωk)

]
where,

αk(ρ) =
∏

N
j=1 |ρ j−C c(ωk) j|
∏

N
j=1(ρ j−ρ

j
)

,

where C c(ωk) j = {ρ j if (ωk) j = ρ
j

or ρ
j
} otherwise.

2N

∑
k=1

αk(ρ) = 1 , αk(ρ)> 0
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-

ρ2

ρ1ρ
1

ρ
2

ρ2

ρ1
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LPV Control & Observation The Dynamic Output feedback case

LPV/H∞ control synthesis

Proposition - feasibility (brief) Scherer et al. (1997)

Solve the following problem at each vertices of the parametrized points (illustration with 2
parameters):

γ
∗ = min γ

s.t. (21) |ρ1 ,ρ2

s.t. (21) |ρ1 ,ρ2

s.t. (21) |ρ1 ,ρ2

s.t. (21) |ρ1 ,ρ2

(20)


AX+B2C̃(ρ1,ρ2)+(?)T (?)T (?)T (?)T

Ã(ρ1,ρ2)+AT YA+ B̃(ρ1,ρ2)C2 +(?)T (?)T (?)T

BT
1 BT

1 Y+DT
21B̃(ρ1,ρ2)

T −γI (?)T

C1X+D12C̃(ρ1,ρ2) C1 D11 −γI

≺ 0

[
X I
I Y

]
� 0

(21)
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LPV Control & Observation The Dynamic Output feedback case

LPV/H∞ control synthesis

Proposition - reconstruction (brief) Scherer et al. (1997)

Reconstruct the controllers as,
solve (23) |ρ1 ,ρ2

(23) |ρ1 ,ρ2

(23) |ρ1 ,ρ2

(23) |ρ1 ,ρ2

(22)


Cc(ρ1,ρ2) = C̃(ρ1,ρ2)M−T

Bc(ρ1,ρ2) = N−1B̃(ρ1,ρ2)

Ac(ρ1,ρ2) = N−1(Ã(ρ1,ρ2)−YAX−NBc(ρ1,ρ2)C2X
− Y B2Cc(ρ1,ρ2)MT )M−T

(23)

where M and N are defined such that MNT = I−XY which may be chosen by applying a singular
value decomposition and a Cholesky factorization.
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LPV Control & Observation LPV observer design

Definition LPV observers

Definition

Let consider the LPV system:

ẋ(t) = A(ρ)x(t)+B(ρ)u(t)
y(t) = C(ρ)x(t) (24)

The following LPV state space representation

˙̂x(t) = A(ρ)x̂(t)+B(ρ)u(t)+L(ρ)(y(t)−C(ρ)x̂(t))
x̂0to be defined (25)

is said to be an observer for (24) if

lim
t→∞

(x̂(t)− x(t))→ 0 ∀ρ(t) ∈Ω

where x̂(t) ∈ Rn is the estimated state of x(t) and L(ρ) is the n× p observer gain matrix to be
designed.
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LPV Control & Observation LPV observer design

Some issues for LPV observer design

The estimated error, e(t) := x(t)− x̂(t), satisfies:

ė(t) = (A−LC)(ρ)e(t) (26)

The two main problems to be handle are then
• What observability property shall we consider?
• What parameter dependency should we define for L(ρ)?

Quadractic detectability (Wu, 95)

A simple solution is to consider a single Lyapunov function in order to guarantte the quadratic
detectability, i.e:

(A(ρ)−L(ρ)C(ρ))T P+P (A(ρ)−L(ρ)C(ρ))< 0

Some remarks:
• The previous problem can be solved using a polytopic approach only if C(ρ) =C, a constant

matrix
• If this is not solvable, one can try using Parameter dependent Lyapunov functions, but the

coupling between L(ρ) and P(ρ) will lead to soved non affine LMIs (a polynomial or a gridding
approach is then needed).
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LPV Control & Observation LPV observer design

Some issues for LPV observer design (2)

On key issue in observer implementation concerns the knownledge of ρ(t). While previously the
result is valid if ρ(t) is perfectly known, such a following observer description must be used if ρ(t)
is estimated:

˙̂x(t) = A(ρ̂)x̂(t)+B(ρ̂)u(t)+L(ρ̂)(y(t)−C(ρ̂)x̂(t)) (27)

Denoting ∆A = A(ρ)−= A(ρ̂), ∆B = B(ρ)−B(ρ̂), ∆C =C(ρ)−C(ρ̂), and ∆L = L(ρ)−L(ρ̂), this
leads for the estimation error equation:

ė(t) = (A−LC)(ρ̂)e(t)+(∆A+L(ρ̂).∆C)x+∆Bu(t) (28)

If C(ρ) =C and B(ρ) are constant matrices, then we get the uncertain estimated error system

ė(t) = (A(ρ̂)−L(ρ̂)C)e(t)+∆Ax(t) (29)

The stability analysis is indeed more involved due to the state vector x (see (Daafouz et al, 2010)
for the discrete-time case). Either ∆Ax(t) should be considered as a disturbance, or a state
augmentation approach is to be used (which has to be done in closed-loop control).

Observer-based control

For control design in the latter case, the following state feedback should be used:

u(t) =−F(ρ̂)x̂(t)
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Summary of LPV approach interests

Interest of the LPV approach

LPV is a key tool to the control of complex systems.

Some examples :

Modelling of complex systems (non linear)

• Use of a quasi-LPV representation to include non linearities in a linear state space model
(even delays)

• Transformation of constraints (e.g. saturation) into an ’external’ parameter
• Modelling of LTV, hybrid (e.g. switching control)

BUT :

A q-LPV system is not equivalent to the non linear one:
• stability: ρ = ρ(x(t), t) is assumed to be bounded... so are the state trajectories
• controllability: some non controllable modes of a non linear system may vanish according to

the LPV representation
• observability: unobservability may occur for some specific parameter variations
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Summary of LPV approach interests

Interest of the LPV approach

Some of works using LPV approaches - former PhD students

Gain-scheduled control

• Account for various operating conditions using a variable "equilibrium point": (Gauthier 2007)
• Control with real-time performance adaptation using parameter dependent weighting

functions from endogenous or exogenous parameters (Poussot 2008, Do 2011)
• Analysis and control of LPV Time-Delay Systems: delay-scheduled control Briat 2008
• Control under computation constraints: H∞ variable sampling rate controller with sampling

dependent performances (Robert 2007, Roche 2011, Robert et al., IEEE TCST 2010))

Coordination of several actuators for MIMO systems

• An LPV structure for control allocation Poussot et al. (CEP 2011)
• Selection of a specific parameter for the control activation (of each actuator) Poussot et al.

(VSD 2011), Doumiati et al (EJC 2013), Fergani et al (IEEE TVT 2015)

Incorporate fault-(diagnosis, accomodation, tolerant control) properties

• LPV fault-scheduling control: see Sename et al (Systol 2013, ICSTCC 2015).
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Summary of LPV approach interests

Some Grenoble PhD students on LPV control

• Manh Quan Nguyen, "LPV approaches for modelling and control of vehicle dynamics: application to a small car pilot plant with ER dampers", PhD
GIPSA-lab, Univertisté Grenoble Alpes, 2016.

• Waleed Nwesaty, " LPV/H∞ control design of on-board energy management systems for electrical vehicles", PhD GIPSA-lab, Univertisté Grenoble
Alpes, 2015.

• Soheib Fergani, "Robust LPV/H∞ MIMO control for vehicle dynamics, PhD GIPSA-lab, Univertisté Grenoble Alpes, 2014.

• Maria Rivas, "Modeling and Control of a Spark Ignited Engine for Euro 6 European Normative", PhD, GIPSA-lab / RENAULT, Grenoble INP, 2012.

• Ahn-Lam Do, "LPV Approach for Semi-active Suspension Control & Joint Improvement of Comfort and Security", PhD, GIPSA-lab, Grenoble INP,
2011.

• David Hernandez, "Robust control of hybrid electro-chemical generators", PhD, GIPSA-lab / G2Elab, Grenoble INP, 2011.

• Emilie Roche, "Commande Linéaire à Paramètres Variants discrète à échantillonnage variable : application à un sous-marin autonome", PhD,
GIPSA-lab, Grenoble INP, 2011.

• Sébastien Aubouet, "Semi-active SOBEN suspensions modelling and control", PhD, GIPSA-lab / SOBEN, INP Grenoble, 2010.

• Charles Poussot-Vassal, "Robust LPV Multivariable Global Chassis Control", PhD , GIPSA-lab, INP Grenoble, 2008.

• Corentin Briat, "Robust control and observation of LPV time-delay systems", PhD, GIPSA-lab, INP Grenoble, 2008.

• Christophe Gauthier, "Commande multivariable de la pression d’injection dans un moteur Diesel Common Rail", PhD, LAG / DELPHI, Grenoble INP,
2007.

• David Robert, "Contribution à l’interaction commande/ordonnacement", PhD, LAG, Grenoble INP, 2007.

• Alessandro ZIN, "Sur la commande robuste de suspensions automobiles en vue du contrôle global de châssis", PhD, LAG / Grenoble INP, 2005.
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Summary of LPV approach interests

Some references

• W. Nwesaty, A. Iuliana Bratcu and O. Sename, "Power sources coordination through multivariable Linear Parameter-Varying/ Hin f ty control with
application to multi-source electric vehicles," in IET Control Theory & Applications, vol. 10, no. 16, pp. 2049-2059, 10 31 2016.

• S. Fergani, O. Sename and L. Dugard, "An LPV/H∞ Integrated Vehicle Dynamic Controller," in IEEE Transactions on Vehicular Technology, vol. 65,
no. 4, pp. 1880-1889, April 2016.

• O. Sename, "The LPV approach: the key to controlling vehicle dynamics ?", pleanry talk at 19th International Conference on System Theory, Control
and Computing (ICSTCC), Cheile Gradistei, Romania, 2015.

• Doumiati, M., Sename, O., Dugard, L., Martinez-Molina, J.-J., Gaspar, P., Szabo, Z., "Integrated vehicle dynamics control via coordination of active
front steering and rear braking", (2013) European Journal of Control, 19 (2), pp. 121-143.;
Among the 3 Most Cited Articles published since 2011, extracted from Scopus.

• O. Sename, J. C. Tudon-Martinez and S. Fergani, "LPV methods for fault-tolerant vehicle dynamic control," plenary paper, 2013 Conference on
Control and Fault-Tolerant Systems (SysTol), Nice, 2013, pp. 116-130.

• C. Poussot-Vassal, O. Sename, L. Dugard, P. Gaspar, Z. Szabo & J. Bokor, "Attitude and Handling Improvements Through Gain-scheduled
Suspensions and Brakes Control", Control Engineering Practice (CEP), Vol. 19(3), March, 2011, pp. 252-263.

• C. Poussot-Vassal, O. Sename, L. Dugard, S.M. Savaresi, "Vehicle Dynamic Stability Improvements Through Gain-Scheduled Steering and Braking
Control", Vehicle System Dynamics (VSD), vol 49, Nb 10, pp 1597-1621, 2011

• Briat, C.; Sename, O., "Design of LPV observers for LPV time-delay systems: an algebraic approach", International Journal of Control, vol 84, nb 9,
pp 1533-1542, 2011

• Robert, D., Sename, O., and Simon, D. (2010). An H∞ LPV design for sampling varying controllers: experimentation with a T inverted pendulum.
IEEE Transactions on Control Systems Technology, 18(3):741–749.

• C. Briat, O. Sename, and J.-F. Lafay, ""Memory-resilient gain-scheduled state-feedback control of uncertain LTI/LPV systems with time-varying delays"
Systems & Control Let., vol. 59, pp. 451-459, 2010.

• C. Briat, O. Sename, and J. Lafay, "Hinf delay-scheduled control of linear systems with time-varying delays," IEEE Transactions in Automatic Control,
vol. 42, no. 8, pp. 2255-2260, 2009.

• Poussot-Vassal, C.; Sename, O.; Dugard, L.; Gaspar, P.; Szabo, Z. & Bokor, J. "A New Semi-active Suspension Control Strategy Through LPV
Technique", Control Engineering Practice, 2008, 16, 1519-1534

• Zin A., Sename O., Gaspar P., Dugard L., Bokor J. "Robust LPV - Hinf Control for Active Suspensions with Performance Adaptation in view of Global
Chassis Control", Vehicle System Dynamics, Vol. 46, No. 10, 889-912, October 2008

• Gauthier C., Sename O., Dugard L., Meissonnier G. "An LFT approach to Hinf control design for diesel engine common rail injection system", Oil &
Gas Science and Technology, vol 62, nb 4, pp. 513-522 (2007)
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