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Reference books

To be studied during the course

e S. Skogestad and |. Postlethwaite, Multivariable Feedback Control: analysis and design, John
Wiley and Sons, 2005.
www.nt .ntnu.no/users/skoge/book, chap 1 to 3 available

e K. Zhou, Essentials of Robust Control, Prentice Hall, New Jersey, 1998.
www.ece.lsu.edu/kemin, book slides available

e J.C. Doyle, B.A. Francis, and A.R. Tannenbaum, Feedback control theory, Macmillan
Publishing Company, New York, 1992.
https://sites.google.com/site/brucefranciscontact/Home/publications,,
book available

o Carsten Scherer’s courses
http://www.dcsc.tudelft.nl/ cscherer/., Lecture slides available (MSc Course
"Robust Control", MSc Course "Linear Matrix Inequalities in Control")

e + all the MATLAB demo, examples and documentation on the 'Robust Control toolbox’
(mathworks.com/products/robust)
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Some definitions

Definition of LTI systems

Definition (LTI dynamical system)

Given matrices A € R™", Be R™", C € R™*" and D € R™*", a Linear Time Invariant (LTI)
dynamical system (X;7;) can be described as:

) X(f) = Ax l)+BW t)
Errr e { () = ngt) +DW((f) v

where x(¢) is the state which takes values in a state space X € R", w(¢) is the input taking values in
the input space W € R™ and z(r) is the output that belongs to the output space Z € R’:.

v

The LTI system locally describes the real system under consideration and the linearization
procedure allows to treat a linear problem instead of a nonlinear one. For this class of problem,
many mathematical and control theory tools can be applied like closed loop stability, controllability,
observability, performance, robust analysis, etc. for both SISO and MIMO systems. However, the
main restriction is that LTI models only describe the system locally, then, compared to nonlinear
models, they lack of information and, as a consequence, are incomplete and may not provide
global stabilization.
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Some definitions Signal and system norms

Signal norms
Reader is also invited to refer to the famous book of Zhou et al., 1996, where all the following
definitions and additional information are given.

All the following definitions are given assuming signals x(¢) € C, then they will involve the conjugate
(denoted as x*(t)). When signals are real (i.e. x(t) € R), x*(t) =7 (1).

Definition (Norm and Normed vector space)
o LetV be a finite dimension space. Then V p > 1, the application ||.||, is a norm, defined as,

IMlp = (L il?) "7 @)

e Let V be a vector space over C (or R) and let ||.|| be a norm defined on V. Then V is a normed
space.

y
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Some definitions Signal and system norms

%, norms

Definition (.41, %, % norms)

e The 1-Norm of a function x(¢) is given by,

0l = [ ol

e The 2-Norm (that introduces the energy norm) is given by,

X, = Jor= e (1)x(e)dt
\/ o T2 X (jo)X (jo)dw

The second equality is obtained by using the Parseval identity.

e The «-Norm is given by,

[Fe()]l.. = sup |x(1)]

IXlle = sup [IX(s)]| =sup X (jo)]

Re(s)>0

if the signals that admit the Laplace transform, analytic in Re(s) > 0 (i.e. € 7).
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%, and J#, spaces

Definition (.%. space)

“Z. is the space of piecewise continuous bounded functions. It is a Banach space of matrix-valued
(or scalar-valued) functions on C and consists of all complex bounded matrix functions f(jw),
Vo € R, such that,

sup G{f (jo)] < o )

weR
v

Definition (.7, and Z.7¢ .. spaces)

M is a (closed) subspace in .%. with matrix functions f(jw), Yo € R, analytic in Re(s) > 0 (open
right-half plane). The real rational subspace of .7, which consists of all proper and real rational
stable transfer matrices, is denoted by %#.77 ...

Example

In control theory

1
me%%w

)
(sfls()J;(SJrG) ERH o (8)
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What is the 7 performance?

Outline

2. What is the JZ, performance?
@ The .7, norm definition
@ ., norm as a measure of the system gain ?
@ How to compute the .7, norm?
@ ., norm and stability issues
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What is the .# performance? The ## norm definition

J, norm

Definition (2, norm)

The %, norm of a proper LTI system defined as on (1) from input w(z) to output z(z) and which
belongs to #.7# ., is the induced energy-to-energy gain (induced .% norm) defined as,

)
Z(8
= SUPy(em W 9)
— maxw(;)eile\vzvil\zz

Remark

2 physical interpretations

o This norm represents the maximal gain of the frequency response of the system. It is also
called the worst case attenuation level in the sense that it measures the maximum
amplification that the system can deliver on the whole frequency set.

e For SISO (resp. MIMO) systems, it represents the maximal peak value on the Bode
magnitude (resp. singular value) plot of G(jw), in other words, it is the largest gain if the
system is fed by harmonic input signal.

o Unlike 5¢ , the %, norm cannot be computed analytically. Only numerical solutions can be
obtained (e.g. Bisection algorithm, or LMI resolution).

4
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What is the .# performance? Moo nOrM

Characterization of the ., norm as induced .% norm

Finally, in the case of a transfer matrix G(s) : (m inputs, p outputs) u vector of inputs, y vector of
outputs.

. llz(@)ll,
o(G(jw)) < @), <

6(G(jo))

Example of A two-mass/spring/damper systemr e
largest singular

2 inputs: Fyand B>, 2 outputs: x; and x; valle |,_—rHinfnom (11,4664 = 21.18 0B

\

Fi X4
L L
%/ i /
H smallest singular
—
= k b
Fa <|> 1 L|—l 1 X5
%/
2

...f': . L. & G=ss(A,B,C,D): LTl systerﬁmm
{; 2 2 normhinf (G) : Compute Hinf norm
z norm (G, inf): Compute Hinf norm

sigma (G) : plot max and min SV
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What is the .# performance? M norm computation

How to compute the 7, norm?

As said before, .7, norm cannot be computed analytically. Only numerical solutions can be
obtained (e.g. Bisection algorithm, or LMI resolution).
Method 1: Since ||G(j)||.. = supyer 0 (G(j®)), the intuitive computation is to get the peak
on the Bode magnitude plot, which can be estimated using a thin grid of
frequency points, {®,..., oy}, and then:

IG(jo)ll., =~ lrgngNG{G(ka)}

Method 2: Let the dynamical system G = (A,B,C,D) € ZH « :
[|Gll < yif and only if & (D) < y and the Hamiltonian H has no eigenvalues on
the imaginary axis, where

_ A+BR'DTC BR™'BT B T
Hf( —CT(I,+DR™'DT)C  —(A+BR™'DTC) andR=y" —D'D

Use norm(sys, inf)or hinfnorm(sys, tol)in Matlab.
Method 3 (Bounded Real Lemma): A dynamical system G = (A,B,C,D) is internally stable and

with an [|G||.. < v if and only if there exists a positive definite symmetric matrix P
(.eP=P">0st

ATP+PA PB (T
BT P —yI DT | <0, P>0. (10)
o) D —yI
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What is the 7 performance?

Small Gain theorem

Consider the so called M — A loop.

Vi

Figure: M — A form

Theorem

Suppose M(s) in RH.. and y a positive scalar. Then the system is well-posed and internally stable
for all A(s) in RH.. such that ||A||,, < 1/y if and only if

M. <y
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Input-Output Stability

Definition (BIBO stability)

A system G (& = Ax+Bu; y = Cx) is BIBO stable if a bounded input u(.) (||« < =) maps a bounded

output y(.) ([[ylle < o).

Now, the quantification (for BIBO stable systems) of the signal amplification (gain) is evaluated as:

(¥l

Ypeak =
e 0< || c0 <00 HMH‘X’

and is referred to as the PEAK TO PEAK Gain.
Definition (%, stability)
A system G (i = Ax+Bu; y = Cx) is & stable if ||u||], < oo implies ||y|2 < eo.

Now, the quantification of the signal amplification (gain) is evaluated as:

Y112

Yonergy = ¢
T o <o 112

and is referred to as the ENERGY Gain, and is such that:
Yenergy = SllpCO”G(]CO)” = HG”"“

For a linear system, these stability definitions are equivalent (but not the quantification criteria).
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Introduction to LMIs

Outline

3. Introduction to LMIs
@ Background in Optimisation
@ LMl in control
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Introduction to LMIs Background in Optimisation

Brief on optimisation

Definition (Convex function)
A function f: R™ — R is convex if and only if for all x,y € R"™ and A € [0 1],

JAx+(1=2A)y) <Af(x)+(1=2)f() (11)
Equivalently, f is convex if and only if its epigraph,
epi(f) = {(x,A)|f(x) <1} (12)

is convex.

Definition ((Strict) LMI constraint)
A Linear Matrix Inequality constraint on a vector x € R™ is defined as,
m
F(x)=F+ Y Fix; = 0(~0) (13)
i=1

where Fy = F] and F; = FT € R™" are given, and symbol F > 0(> 0) means that F is symmetric
and positive semi-definite (= 0) or positive definite (= 0), i.e. {Vulu” Fu(>) > 0}.
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Introduction to LMIs Background in Optimisation

Convex to LMIs

Example

Lyapunov equation. A very famous LMI constraint is the Lyapunov inequality of an autonomous
system x = Ax. Then the stability LMI associated is given by,

P > 0
xT(ATP+PA)X < 0 (14)
which is equivalent to,

-P 0

FP)=1 0 atpim

<0 (15)

where P = PT is the decision variable. Then, the inequality F(P) < 0 is linear in P.

LMI constraints F(x) > 0 are convex in x, i.e. the set {x|F(x) = 0} is convex. Then LMI based
optimization falls in the convex optimization. This property is fundamental because it guarantees
that the global (or optimal) solution x* of the the minimization problem under LMI constraints can
be found efficiently, in a polynomial time (by optimization algorithms like e.g. Ellipsoid, Interior
Point methods).
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LMI problem

Two kind of problems can be handled

Feasibility: The question whether or not there exist elements x € X such that F(x) <0 is
called a feasibility problem. The LMI F(x) < 0 is called feasible if such x exists,
otherwise it is said to be infeasible.

Optimization: Let an objective function f : S — R where S = {x|F(x) < 0}. The problem to
determine
Vnpt = infxesf(x)

is called an optimization problem with an LMI constraint. This problem involves
the determination of V,,, the calculation of an almost optimal solution x (i.e., for
arbitrary € > 0 the calculation of an x € S such that V,,, < f(x) <V, + €, or the
calculation of a optimal solutions x,,; (elements x,,; € S such that V,,; = f(xop))-
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Introduction to LMIs Background in Optimisation

Examples of LMI problem

Stability analysis is a feasability problem.
LQ control is an optimization problem, formulated as:

LQ control

Consider a controllable system x = Ax+ Bu. Find a state feedback u(r) = —Kx(r) s.t
J =[5 (xT Qx +uT Ru)dt is minimum (given Q > 0 and R > 0) is an optimisation problem whose
solution is obtained solving the Riccati equation:

Find P> 0, s.t. ATP+PA—PBR™'BTP+Q=0
and then the state feedback is given by:
u(t) = —R~'BT Px(r)
which is equivalent to: find P > 0 s.t

ATP+PA+Q PB

BTP R |0
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Semi-Definite Programming (SDP) Problem

LMI programming is a generalization of the Linear Programming (LP) to cone positive
semi-definite matrices, which is defined as the set of all symmetric positive semi-definite matrices
of particular dimension.

Definition (SDP problem)
A SDP problem is defined as,

min  ¢’x

under constraint F(x) >0 (16)
where F(x) is an affine symmetric matrix function of x € R” (e.g. LMI) and ¢ € R™ is a given real
vector, that defines the problem objective.

SDP problems are theoretically tractable and practically:

e They have a polynomial complexity, i.e. there exists an algorithm able to find the global
minimum (for a given a priori fixed precision) in a time polynomial in the size of the problem
(given by m, the number of variables and n, the size of the LMI).

e SDP can be practically and efficiently solved for LMIs of size up to 100 x 100 and m < 1000 see
ElGhaoui, 97. Note that today, due to extensive developments in this area, it may be even
larger.
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Introduction to LMIs LMl in control

The state feedback design problem

Stabilisation

Let us consider a controllable system x = Ax -+ Bu. The problem is to find a state feedback
u(t) = —Kx(r) s.t the closed-loop system is stable.

Using the Lyapunov theorem, this amounts at finding P =P” > 0 s.t:

(A—BK)"P+P(A—BK) <0
o AP +PA—-K"B"P-PBK <0

which is obviously not linear...
Solution; use of change of variables
First, left and right multiplication by P~! leads to

P lAT + AP~ ! —P'KTBT —BKP~' <0
N QAT +AQ+YT'BT +BY <0

with@Q=P 'and Y= —kP L.

The problem to be solved is therefore formulated as an LMI | and without any conservatism !
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Introduction to LMIs LMl in control

The Bounded Real Lemma

The %-norm of the output z of a system X;7; is uniformly bounded by y times the -#>-norm of the
input w (initial condition x(0) = 0).

A dynamical system G = (A,B,C,D) is internally stable and with an ||G||. < 7 if and only is there
exists a positive definite symmetric matrix P (i.e P=P7 >0 s.t

ATP+PA PB (T
BT P —yI D' | <0, P>0. (17)
C D —yI

The Bounded Real Lemma (BRL), can also be written as follows (see Scherer)

T

<0 (18)

(@ E=11F
O ~wo
co|lwmo
coloT
~o|loc o
[@ =11
U ~lwo

Note that the BRL is an LMI if the only unknown (decision variables) are P and vy (or ?).
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Quadratic stability

This concept is very useful for the stability analysis of uncertain systems.
Let us consider an uncertain system

x=A(0)x
where § is an parameter vector that belongs to an uncertainty set A.
Definition

The considered system is said to be quadratically stable for all uncertainties & € A if there exists a
(single) "Lyapunov function" P= P’ >0 s.t

A(8)TP+PA(8) <0,forall § € A (19)

This is a sufficient condition for ROBUST Stability which is obtained when A(d) is stable for all
deA
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Introduction to LMIs LMl in control

Interest of LMIs

LMls allow to formulate complex optimization problems into "Linear" ones, allowing the use of
convex optimization tools.

Usually it requires the use of different transformations, changes of variables ... in order to linearize
the considered probimems: Congruence, Schur complement, projection lemma, Elimination
lemma, S-procedure, Finsler's lemme ...

Examples of handled criteria

stability

H.., H>, H, /H.. performances

robustness analysis: Small gain theorem, Polytopic uncertianties, LFT representations...
Robust control and/or observer design

pole placement

stability, stabilization with input constraints

Passivity constraints

Time-delay systems
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Outline

@ The LMI approach for .7, control design

4. How to define and solve an H.. control problem?
@ What is .#, control?
@ The Static State feedback case

@ The Dynamic Output feedback case
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How to define and solve an He control problem? What is .# control?

Towards 77, control: the General Control Configuration

This approach has been introduced by Doyle (1983). The formulation makes use of the general
control configuration.

Disturbance

and reference " e Controlled Output

Control Input v y  Measured output

P is the generalized plant (contains the plant, the weights, the uncertainties if any) ; K is the
controller. The closed-loop transfer matrix from w to z is given by:

Tyw(s) = Fi(P,K) = Py + PoK(I — PnK) ™' Py

where F;(P,K) is referred to as a lower Linear Fractional Transformation.
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How to define and solve an He control problem? What is .# control?

Problem definition

The overall control objective is to minimize some norm of the transfer function from w to z , for
example, the %, norm.

Definition (.7 optimal control problem)

3, control problem: Find a controller K(s) which based on the information in y, generates a
control signal u which counteracts the influence of w on z, thereby minimizing the closed-loop norm
from w to z.

y

Definition (7%, suboptimal control problem)

Given v a pre-specified attenuation level, a %, sub-optimal control problem is to design a
stabilizing controller that ensures :

ITw(s)l. = maxo(Tw(jo) < 7

The optimal problem aims at finding 7., (done using hinfsyn in MATLAB).
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How to define and solve an He control problem? The Static State feedback case

A first case: the state feedback control problem

Let consider the system:

x(t) = Ax(r)+Biw(t)+Bou(r) (20)
Z(t) = Cx(t)+Duw(t)+Diou(t)
The objective is to find a state feedback control law u = —Kx s.t:
Tl < ¥

The method consists in applying the Bounded Real Lemma to the closed-loop system, and then
try to obtain some convex solutions (LMI formulation).
This is achieved if and only is there exists a positive definite symmetric matrix P i.e P=PT >0 s.t

(A-B,K)TP+P (A—-BK) PB; (T
* —yI DT | <0, P>0. (21)
* * -yl

Use of change of variables
First, left and right multiplication by diag(P~",1,,1,), and use @=P~! and Y = —KP~!. It leads to
[ AQ+BY+QAT+YB] B Qc’-Y'DI,

* -yl DT, <0, @>0. (22)
* * —v1

ate feedback controller is then: Q!
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How to define and solve an He control problem? The Dynamic Output feedback case

The Dynamic Output feedback case

It will be shown how to formulate such a control problem using "classical" control tools. The
procedure will be 2-steps:

Get P: Build the General Control Configuration scheme s.t. the closed-loop system
matrix does correspond to the tackled H.. problem (for instance the mixed
sensitivity problem). Use of Matlab, sysic tool.

A state space representation of P, the generalized plant, is needed.

Compute K: Use an optimisation algorithm that finds the controller K solution of the
considered problem.
The calculation of the controller, solution of the 7%, control problem , can then be
done using the Riccati approach or the LMI approach of the . control problem
(Zhou et al., 1996; Skogestad & Postlwaite 1996)

Notations:
X =Ax+B\w-+Byu A ‘ B By
P z=Cix+Dyyw+Djpu =P= C Dy Dip
y=Cx+Dyyw+Dxu G Dy Da
x € R": { plant state variables U state variables of weights}
with  w e R™: external inputs u € R™ control inputs
z € R"™: controlled outputs y € R™ measured outputs (inputs of the controller)
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How to define and solve an He control problem? The Dynamic Output feedback case

Problem formulation

Let K(s) be a dynamic output feedback LTI controller defined as

f k() = Ag xx(1)+Bk y(0),
K(s) { MI((t) - chg(t)JrDI;y(t)

where xx € R", and Ak, Bk, Ckx and Dk are matrices of appropriate dimensions.

Remark. The controller will be considered here of the same order (same number of state variables)
n than the generalized plant, which here, in the 7., framework, the order of the optimal controller.
With P(s) and K (s), the closed-loop system N(s) is:

. Xe (t) = oo xe (t)+=@ W(t),
Wy { o) 2 el w0 @3)

where x (1) = [xT () x%(¢)] and
Ay = A+B, Dx C; B, Ck
cL = Bx Cs Ax ;
By + By Dk Day
By — ,
et < Bk Dy )
%= ( Ci+D1 Dk G, DinCk ),
DcL = Bi+By Dk Day.

The aim is of course to find matrices Ak, Bk, Ckx and Dk s.t. the ., norm of the closed-loop
system (23) is as small as possible, i.e. ¥,y = miny s.t. [|[N(s)||e < 7.
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The LMI approach for .7, control design- Solvability

Assumption: (A,B;) stabilizable and (C,,A) detectable: necessary for the existence of stabilizing
controllers.

The solution is base on the use of the Bounded Real Lemma, and some relaxations that leads to
an LMI problem to be solved Scherer & Wieland, 2004.

when we refer to the JZ, control problem, we mean: Find a controller K for system P such that,
given %,

(171 (P.K) e < oo (24)
The minimum of this norm is denoted as ¥, and is called the optimal .. gain. Hence, it comes,
Yo = min [T ()]s (25)

(Ak Bk .Ck Dk )s.1.09c, CC~

As presented in the previous sections, this condition is fulfilled thanks to the BRL. As a matter of
fact, the system is internally stable and meets the quadratic .7 performances iff. 3 22 = 27 ~ 0
such that,

JZ/CTLy + P, P PBer ngL

BL, P -nl 95 | <0 (26)
CcL DL -1

where </cr, Ber, ber, Yo are given in (23). Since this inequality is not an LMI and not tractable
for SDP solver, relaxations have to be performed (indeed it is a BMI), as proposed in Scherer et al.
1997.
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How to define and solve an Heo control problem? The LMI approach for 7 control design

The LMI approach for .7, control design- Problem solution

Theorem (LTI/.#, solution Scherer & Wieland, 2004)

Ak | Bk
Ckx | Dk
problem, is obtained by solving the following LMis in (X, Y, A, B, C and D), while minimizing 1.,

A dynamical output feedback controller of the form K (s) = [ ] that solves the 7, control

My (T (9T (0
My My (*)T (*)T -0
My My Mz (x)T

27
My My My Myy ( )
X I,
L Y =0
where,
e ~ 7
M11:AX+X4T+320+C Bg M21:A+AT+C5D Bg
- 7 ~f
My =YA+ATY+BC,+CIB M3 =Bl +D},D B}
~T
My =B Y+ DB My = —Yuln, (28)
My =Ci1X+D1,C My =Ci1+ D2 DCy
My3 = D1y +D12DDy Mys = —Yooln,
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How to define and solve an Heo control problem? The LMI approach for 7 control design

Controller reconstruction

Once A, B, C, D, X and Y have been obtained, the reconstruction procedure consists in finding
non singular matrices M and N s.t. M NT = —X Y and the controller K is obtained as follows

Dk = D
_ Pa _ —-T
Ce = (C-D.OXM (29)
Bx = N (§ — YBch)
Ax = N Y(A—YAX-YB,D.C;X —NB.C;X—YB,C. M )M~ T

where M and N are defined such that MN” = I, — XY (that can be solved through a singular value
decomposition plus a Cholesky factorization).

Remark. Note that other relaxation methods can be used to solve this problem, as suggested by
Gabhinet & Apkarian(1994).
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Outline

5. Why %, control is adapted to control engineering?
@ Performance analysis using the sensitivity
functions

@ Performance specifications in view of .7, control
design

@ The mixed sensitivity .77, control design
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Why #: control is adapted to control engineering?

Introduction

Objectives of any control system Skogestad & Postlethwaite, 2005

shape the response of the system to a given reference and get (or keep) a stable system in
closed-loop, with desired performances, while minimising the effects of disturbances and
measurement noises, and avoiding actuators saturation, this despite of modelling uncertainties,
parameter changes or change of operating point.

This is formulated as:

Nominal stability (NS): The system is stable with the nominal model (no model uncertainty)

Nominal Performance (NP): The system satisfies the performance specifications with the nominal
model (no model uncertainty)

Robust stability (RS): The system is stable for all perturbed plants about the nominal model, up to
the worst-case model uncertainty (including the real plant)

Robust performance (RP): The system satisfies the performance specifications for all perturbed
plants about the nominal model, up to the worst-case model uncertainty
(including the real plant).

O.Sename-S.Fergani (GIPSA-lab - LAAS) Robustness and Hso control July 2-7, 2017 35/63



Why .7 control is adapted to control engineering? Sensitivity functions

A 1 d-o-f control scheme

m controft
inputs

Figure: Complete control scheme

The output & the control input satisfy the following equations :

(I, +G(s)K(s))y(s) = (GKr+dy,—GKn+ Gd;)
(In +K(s)G(s))u(s) = (Kr—Kdy,—Kn—KGd;)

BUT : K(s)G(s) # G(s)K(s) !
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Why . control is adapted to control engineering?

Definition of the sensitivity functions: MIMO case

Definitions
Output and Output complementary sensitivity functions:

Sy = (I, +GK)™', T, = (I, +GK)"'GK, S$,+T,=1I,
Input and Input complementary sensitivity functions:

Sy = (In+KG)™", T, = KG(,+KG)™" .S, +T, =1,

Properties
T, = GK(I, +GK)™!
T, = (In+KG)"'KG
S.K =KS,

The SISO case

o)

"Output" Sensitivity function (s) = H%W
Complementary Sensitivity function T (s) = 1f§,((() 5
"Controller" Sensitivity function KS(s

() = Trexw
"Input” Sensitivity function G(s) = 1 +GK(

0O.Sename-S.Fergani (GIPSA-lab - LAAS) Robustness and He control
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Why . control is adapted to control engineering?

MIMO Input/Output performances

Defining two new ’sensitivity functions’:
Plant Sensitivity: S,G = Sy(s).G(s)
Controller Sensitivity: KS, = K(s).Sy(s)

() ()
—— KS§, T,
GO 1)
” e uf —L 58 L0
() e
y 3
- _KSJ’ y—» Sy
n(t)
. ks, 0
B4
Input performance Output performance

u =3 = wae

0O.Sename-S.Fergani (GIPSA-lab - LAAS) Robustness and He control



Why .7 control is adapted to control engineering? Performance specifications

Weighting functions for performance specifications

Method

|

Define WEIGHTS W,(s) with
the objective M

IsGoy KGo)|

& WSl <1 ‘

for the selected sensitivity: A
functions.

v
Definition
SISO systems: weights are usually simple first or second order filters.
MIMO systems: weights are diagonal matrices made of individual weights for inputs/outputs of

1 .
interest, as for instance for a 2 input systems: W, (s) = ( W"O(S) W? (s) ) where each Wi(s) is
u

defined according to the actuator specification

v
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Why .7 control is adapted to control engineering? The mixed sensitivity .7 control design

The mixed sensitivity .7, control design - Problem definition

The corresponding .7, suboptimal control problem is therefore to find a controller K(s) such that

WS .
= <
Ton(6)lo = || s | <7 with
Tow(s) = Fi(P,K) = Py + PoK(I — PpK) ™' Py
| W —W,G 1
= 0 }4— W, }K(I-i-GK) 1
— e
W.KS
inMatlab
% Generalized plant P is found with function sysic
systemnames = 'G We Wu';
inputvar = '[ r(1);u(1)]"';
outputvar = '[We; Wu; r-G]';
input to G = '[u]’';
input to We = '[r-G]';
input to Wu = '[u]';
sysoutname = 'P';
cleanupsysic = 'yes';
sysic;

% Find H-infinity optimal controller
nmeas=1; nu=l;
[K,CL,GAM,INFO] = hinfsyn(P,nmeas,nu, 'DISPLAY','ON');

gopt
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Why .7 control is adapted to control engineering? The mixed sensitivity .7 control design

What about disturbance attenuation ?

New scheme

d
ext) l &

Wy(s) This corresponds to the
closed-loop system.

()

u(t), +
- T e N
v | WKS,  WaLW,

(1)
- ext)

More generally...
To include multiple objectives in a SINGLE .7, control problem, there are 2 ways:
@ add some external inputs (reference, noise, disturbance, uncertainties ...)

@ add new controlled outputs
Of course both ways increase the dimension of the problem to be solved....thus the complexity as
well. Moreover additional constraints appear that are not part of the objectives ....
General rule: first think simple !!
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Outline

6. Robustness analysis

Introduction

Representation of uncertainties

Definition of Robustness analysis
Robustness analysis: the unstructured case
Robustness analysis: the structured case
Robust control design
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Robustness analysis Introduction

Introduction

e A control system is robust if it is insensitive to differences between the actual system and the
model of the system which was used to design the controller

o How to take into account the difference between the actual system and the model ?
e A solution: using a model set BUT : very large problem and not exact yet
A method: these differences are referred as model uncertainty.
The approach
@ determine the uncertainty set: mathematical representation
@ check Robust Stability
@ check Robust Performance

Lots of forms can be derived according to both our knowledge of the physical mechanism that
cause the uncertainties and our ability to represent these mechanisms in a way that facilitates
convenient manipulation.

Several origins :

o Approximate knowledge and variations of some parameters
o Measurement imperfections (due to sensor)
e At high frequencies, even the structure and the model order is unknown (100
e Choice of simpler models for control synthesis
e Controller implementation
Two classes: parametric uncertainties / neglected or unmodelled dynamics
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Robustness analysis Representation of uncertainties

Example 1: uncertainties

Let consider the example from (Sokestag & Postlewaite, 1996).

G(s) = 1fr e 2<k h, T<3
S

Let us choose the nominal parameters as, k = h = v = 2.5 and G the according nominal model.
We can define the 'relative’ uncertainty, which is actually referred as a MULTIPLICATIVE
UNCERTAINTY, as

Relative uncertainties (Gp-G)/G

G(s) = G(s)(I + Wi (5)A(s))

with Wm(s) — 3.5&;0.25 10
and [A]l. < 1

Magnitude

Parametric
variations |:

Frequency
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Robustness analysis Representation of uncertainties

Example 2: parametric uncertainties in state space equations

Let us consider the following uncertain system:

X1 = (—2+51)x1+(—3+52)x2
G:{ X = (—1+&)x+u (30)
y = X

In order to use an LFT, let us define the uncertain inputs:

up, = 61x1, up, = &xz, Uup, = 8x2

Then the previous system can be rewritten in the following LFR:
where A and y, are given as:

900 s§ 0 0 X
U A=10 & 0|, = =
00 4 0 0 & X
u, Va
and N given by the state space representation:
Y5 = 23 tu
U —» 3% = Iy tutu Ly X1 = —2x1 = 3x2 +up, +up,
N: X2 = —X2 + U+ Up,
s E y = X1
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Towards LFR (LFT)

The previous computations are in fact the first step towards an unified representation of the
uncertainties: the Linear Fractional Representation (LFR).
Indeed the previous schemes can be rewritten in the following general representation as:

~ Controlled

External A
ouputs

inputs

Figure: NA structure

This LFR gives then the transfer matrix from w to z, and is referred to as the upper Linear
Fractional Transformation (LFT) :

Fu(N,A) = Ny +NayA(I— Ny A) " INpp

This LFT exists and is well-posed if (I —Nj;A)~! is invertible
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LFT definition

In this representation N is known and A(s) collects all the uncertainties taken into account for the
stability analysis of the uncertain closed-loop system.
A(s) shall have the following structure:

A(S) = diag {A](S),“- 7Aq(s)7611r1a"‘ 76rlr,7£1151 s 7851&}

with A;(s) € Z°%% | §; e Rand g € C.
Remark: A(s) includes

e ¢ full block transfer matrices,

o rreal diagonal blocks referred to as 'repeated scalars’ (indeed each block includes a real
parameter §; repeated r; times),

e ¢ complex scalars ¢; repeated ¢; times.
Constraints: The uncertainties must be normalized, i.e such that:

Al <1, [§ <1, |& <1
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Robustness analysis Representation of uncertainties

Uncertainty types

We have seen in the previous examples the two important classes of uncertainties, namely:

e UNSTRUCTURED UNCERTAINTIES: we ignore the structure of A, considered as a full
complex perturbation matrix, such that ||A]|. < 1.

We then look at the maximal admissible norm for A, to get Robust Stability and Performance.
This will give a global sufficient condition on the robustness of the control scheme.

This may lead to conservative results since all uncertainties are collected into a single matrix
ignoring the specific role of each uncertain parameter/block.

STRUCTURED UNCERTAINTIES: we take into account the structure of A, (always such that
l[Allo < 1).

The robust analysis will then be carried out for each uncertain parameter/block.

This needs to introduce a new tool: the Structured Singular Value. We then can obtain more
fine results but using more complex tools.

The analysis is provided in what follows for both cases.
In Mat 1abthis analysis is provided in the tools robuststab and robustpertf.
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Robustness analysis Definition of Robustness analysis

Robustness analysis: problem formulation

Since the analysis will be carried you for a closed-loop system, N should be defined as the
connection of the plant and the controller. Therefore, in the framework of the H.. control, the
following extended General Control Configuration is considered:

UA yﬂ

External ,, e

Inputs Controlled outputs

Control input ¢ Y Measured outputs
N

Figure: P — K — A structure

and N is such that
N = F(PK)
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Robust analysis: problem definition

In the global P — K — A General Control Configuration, the transfer matrix from w to z (i.e the
closed-loop uncertain system) is given by:

=Fu(N,A)w,
with F,(N,A) = Ny +Nat A(I — Ny A) ™' Ny,
and the objectives are then formulated as follows:
Nominal stability (NS): N is internally stable
Nominal Performance (NP): [Nl < 1 and NS
Robust stability (RS): F,(N,A) is stable VA, ||A]l, <1 and NS
Robust performance (RP): ||F,(N,A)|l., <1 VA, ||All, <1 and NS
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Robustness analysis Definition of Robustness analysis

Towards Robust stability analysis

Robust Stability= with a given controller K, we determine wether the system remains stable for all
plants in the uncertainty set.

According to the definition of the previous upper LFT, when N is stable, the instability may only
come from (I —Nj1A). Then it is equivalent to study the M — A structure, given as:

Ya

Figure: M — A structure

This leads to the definition of the Small Gain Theorem

Theorem (Small Gain Theorem)

Suppose M € RH... Then the closed-loop system in Fig. 5 is well-posed and internally stable for all
A € RH., such that :

1Al < 8(resp. < 8) if and onlyif [M(s)]., < 1/3(resp. [M(s)].. < 1)
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Robustness analysis Robustness analysis: the unstructured case

Definition of the uncertainty types

Additive

u,

u

Additive inverse

Output Multiplicative

Input Multiplicative

ud yA Ui
u
R | TR
+
Output Inverse Multiplicative Input Inverse Multiplicative
u, Vi u, Vi
: 7 —[E8-

0O.Sename-S.Fergani (GIPSA-lab - LAAS)

Figure: 6 uncertainty representations
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Robustness analysis Robustness analysis: the unstructured case

General results

Theorem (Small Gain Theorem)

Consider the different uncertainty types, and assume that NS is achieved, i.e M € RH.. for each

type. Then the closed-loop system is robustly stable, i.e. internally stable for all A; € RH.. (for

k=A, 0, I, iO, il) such that :
Additive :
Additive Inverse:
Output Multiplicative:
Input Multiplicative:
Output Inverse Multiplicative:
Input Inverse Multiplicative:

WAKS, ||, <1

MAS}'Hm <1
WoTy ||, <1
[WiTl., <1
[WioS, .. <1
([WirSull.. <1

Il

This gives some robustness templates for the sensitivity functions. However this may be

conservative.
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Robustness analysis Robustness analysis: the unstructured case

A first insight in Robust Performance

Objective: applying the Small Gain Theorem to these unstructured uncertainty representations.

Let us consider the following simple control

scheme as:

: (%)

()
AT, o T

We wish to d:équre: Control scheme

Va

0O.Sename-S.Fergani (GIPSA-lab - LAAS)
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Robustness and He. control

Case of Output Multiplicative uncertainties:
G(s) = (I +Wo(s)Ao(s))G(s).
Computing the N — A form gives

N(s)

[NU ()
Ny (S)

- |

The objectives are then formulated as
follows:

le(s)}
N (s)

—WoT, WoT,
WSy WLS,

NS: N is internally stable

NP: [[W.S,||,, <1 and NS

RS: HWOYZ"Hw < 1land NS

RP: ||F(N,A)|l.. < L YA, [[A]l, <1,
Sulfficient condition: NS and
6(WoTy) +6(W,S,) < 1, Yo
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Robustness analysis Robustness analysis: the unstructured case

lllustration on the SISO case
Here Robust Performance is analyzed through the Nyquist plot. For illustration, let us consider the
case of Multiplicative uncertainties (Input and Output case are identical for SISO systems), i.e
G =G(I+WyAy)
Then the loop transfer function is given as:

L=GK = GK(I+WyAn) =L+ Wy LAy;

First NP is achieved when:
W(/a)j Im W.S| <1 Vo, & |W,|<|[1+L], Vo.

m Therefore RP is achieved if
! R¢ ~ ~
€ WS <1, ¥5Vo

& Wl <|1+L]|, VLVe

/ Since |1+L| > |1+L| — [W,LA,l, a sufficient
: )condition is actually:
!

|1+ L jeo) Bl

[We|+ Wl <|1+L|, Vo
.1 & WS WaT| <1, VYo
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Robustness analysis Robustness analysis: the structured case

The structured case

A= {dlag{Ah 7Aq7611r1 PR a6r1r,}€1161a“' 7€CIC(} S (Cka} (32)

with A; € Ckiin, 5 ER, geC,

where A;(s),i = 1,...,q, represent full block complex uncertainties, &;(s),i =1,...,r, real parametric
uncertainties, and g(s),i =1,...,c, complex parametric uncertainties.

Taking into account the uncertainties leads to the following General Control Configuration,

VA, ZA,

Figure: General control configuration with uncertainties

where A € A.
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Robustness analysis Robustness analysis: the structured case

The structured singular value or u-analysis

To handle parametric uncertainties, we need to introduce pu, the structured singular value, defined
as:

Definition (i)
For M € C"*", the structure singular value is defined as:

1
HalM) = G (A) - A € &, det(l —AM) £0}

In other words, it allows to find the smallest structured A which makes det(I — MA) = 0.

Theorem (The structured Small Gain Theorem)

Let M(s) be a MIMO LTI stable system and A(s) a LTI uncertain stable matrix, (i.e. € #.¢ ). The
system in Fig. 5 is stable for all A(s) in (32) if and only if:

Vo eR  pa (M(jo)) <1, with M(s) := Nay(s)

More generally both following statements are equivalent
e Foru €R, N(s) and A(s) belong to # .5 -, and

Vo R, pyM(jo)) <m

o the system represented in figure 5 is stable for any uncertainty A(s) of the form (32) such that :
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Robustness analysis Robustness analysis: the structured case

Build the whole control scheme

Fictive uncertainties: full
complex matrix representing L
the H,, norm specifications uncertainties

Real
uncertainties:
block diagonal

matrix

Disturbances
& references —

e
Controlled outputs
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Robustness analysis Robustness analysis: the structured case

Introduction of a fictive block

Usually only real parametric uncertainties (given in A,) are considered for RS analysis. RP
analysis also needs a fictive full block complex uncertainty, as below,

A(s)
FA‘ -

[ r M- === hl
| L |
I I
I I
I I
I I
I I
I I
I I
| VA, ZA, |
I I
) N(S) e !
| SRS —

Figure: NA

Nii(s)  Nia(s)

where N(s) = Noi(s)  Noas) , and the closed-loop transfer matrix is:

Tons(5) = Na () + Nai (8)A(s) (T = N1 (5)) ™' Nia (s) (33)
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Robustness analysis Robustness analysis: the structured case

Robust analysis theorem

For RS, we shall determine how large A (in the sense of H..) can be without destabilizing the
feedback system. From (33), the feedback system becomes unstable if det(I — Ny (s) = 0 for some
s € C,R(s) > 0. The result is then the following.

Theorem (Skogestad & Postlethwaite, 2005)

Assume that the nominal system N,,, and the perturbations A are stable. Then the feedback
system is stable for all allowed perturbations A such that ||A(s)||.. < 1/B if and only if
Vo R, up(Nu(jo)) <B.

Assuming nominal stability, RS and RP analysis for structured uncertainties are therefore such
that:

NP & E(sz) = ,U,ﬂ(Ngz) <1, Vo
RS & (V) <1, Vo

—| A 0
RP < uA(N)<1,Va),A7[ 0 Ar:|

Finally, let us remark that the structured singular value cannot be explicitly determined, so that the
method consists in calculating an upper bound and a lower bound, as closed as possible to .
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Robustness analysis Robustness analysis: the structured case

Summary

The steps to be followed in the RS/RP analysis for structured uncertainties are then:
o Definition of the real uncertainties A, and of the weighting functions
o Evaluation of “(NZZ)A,-v“(Nll)A, and u(N),

o Computation of the admissible intervals for each parameter

Remark: The Robust Performance analysis is quite conservative and requires a tight definition of
the weighting functions that do represent the performance objectives to be satisfied by the
uncertain closed-loop system. Therefore it is necessary to distinguish the weighting functions
used for the nominal design from the ones used for RP analysis.
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Robustness analysis Robust design

Brief overview

In order to design a robust control, i.e. a controller for which the synthesis actually accounts for
uncertainties, some of the methods are:

¢ Unstructured uncertainties: Consider an uncertainty weight (unstructured form), and
include the Small Gain Condition through a new controlled output. For example, robustness
face to Ouptut Multiplicative Uncertainties can be considered into the design procedure
adding the controlled output e, = Wpy, which, when tracking performance is expected, leads
to the condition || WoT,, [|< 1.

e Structured uncertainties: the design of a robust controller in the presence of such
uncertainties is the u — synthesis. It is handled through an interactive procedure, referred to as
the DK iteration. This procedure is much more involved than a "simple" H.. control design and
often leads to an increase of the order of the controller (which is already the sum of the order
of the plant and of the weighting functions).

o Use other mathematical representation of parametric uncertainties, Scherer & Wieland, 2004,
as for instance the polytopic model. In that case the set of uncertain parameters is assumed
to be a polytope (i.e. a convex) set. The stability issue in that framework is referred to as the
'Quadratic stability’ i.e find a single Lyapunov function for the uncertainty set. While in the
general case this is an unbounded problem, in the polytopic case (or in the affine case), the
stability is to be analyzed only at the vertices of the polytope, which is a finite dimensional
problem.

This approach can then be applied to find a single controller, valid over the potyopic set. Note
that this approach gives rise to the LPV design for polytopic systems, as described next.
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Robustness analysis Robust design
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