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Computing control invariant sets is easy

Mirko Fiacchini, Mazen Alamir

Abstract—In this paper we consider the problem of computing
control invariant sets for linear controlled systems with con-
straints on the input and on the states. We focus in particular on
the complexity of the computation of the N-step operator, given
by the Minkowski addition of sets, that is the basis of many
of the iterative procedures for obtaining control invariant sets.

Set inclusions conditions for control invariance are presented
that involve the N-step sets and are posed in form of linear pro-
gramming problems. Such conditions are employed in algorithms
based on LP problems that allow to overcome the complexity
limitation inherent to the set addition and can be applied also
to high dimensional systems. The efficiency and scalability of the
method are illustrated by computing in less than two seconds an
approximation of the maximal control invariant set, based on the
15-step operator, for a system whose state and input dimensions
are 20 and 10 respectively.

I. INTRODUCTION

Invariance and contractivity of sets are central properties

in modern control theory. For a dynamical system, a set is

invariant if the trajectories starting within the set remain in

it. For controlled systems, if the state can be maintained by

an admissible input in the set, then it is referred as control

invariant. Although the first important results on invariance

date back to the beginning of the seventies [4], this topic

gained considerable interest in the recent years, mainly due to

its relation with constrained control and popular optimization-

based control techniques as Model Predictive Control. The

existence of an invariant set to be imposed as terminal con-

straint is, in fact, an essential ingredient to assure recursive

feasibility and constraints satisfaction for many classical MPC

control strategies [20] as well as more recent techniques [1].

The study of invariance and set theory methods for control

gained interest also thanks to the foundational works by

Blanchini and coauthors [6], [8], [9]. In these works, results are

provided that proves that the existence of polyhedral Lyapunov

functions, and then of contractive polytopes, are necessary and

sufficient for stability of parametric uncertain linear systems

[21], [7]. Moreover, iterative procedures are given for the

computation of control invariant sets that permit their practical

implementation. Most of those procedures are substantially

based on the one-step backward operator that associates to any

set the states that can be steered in it by an admissible input,

for every possible realizations of the eventual uncertainty.

Different algorithms based on the one-step operator exist for

computing control invariants, that substantially differs from

the initial set. For instance, if the algorithm are initialized with
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the state constraints set, [6], [17], [25], the one-step operator

generates a sequence of outer approximations of the maximal

control invariant that converges to it under compactness as-

sumptions, see [4]. Nevertheless, the finite determination of the

algorithm, that is ensured for autonomous systems [18], cannot

be assured in general in presence of control input. If, instead,

the procedure is initialized with a control invariant set, a non-

decreasing sequence of control invariant sets are obtained that

converges from the inside to the maximal control invariant set,

see the considerations on minimum-time ultimate boundedness

problem in [9]. A particular case of the latter approach, that

needs no preliminary knowledge of a control invariant set,

suggests to initialize the procedure with the set containing

the origin only (which is a control invariant in the general

framework), obtaining the sequence of i-step null-controllable

sets, that are control invariant and converges to the maximal

control invariant set, see [15], [12].

Thus, although the abstract iterative procedures for obtain-

ing control invariant sets apply also for nonlinear systems, and

some constructive results are given [13], [14], the practical

computation of the one-step set, that is the basis for them,

is often prohibitively complex for their application in high

dimension even in the linear context. A common solution

to circumvent this major practical issue has been fixing the

sets complexity to get conservative but more computationally

affordable results. For instance, by considering linear feedback

and ellipsoidal control invariant sets, see the monograph [11],

or by fixing the polyhedral set complexity [10], [2], [26].

In this paper we address the main problem related to the

complexity of the N-step operator, for discrete-time deter-

ministic controlled systems, with polyhedral constraints on

the input and on the state. Considering polyhedral sets, such

operator can be expressed in terms of Minkowski sum of

polyhedra and then as an NP-complete problem [27], hardly

manageable in high dimension. An algorithm is presented

for determining control invariant sets that is based on a set

inclusion condition involving the N-step set of a polyhedron

but does not require to explicitly compute the Minkowski

sum. Such condition is posed as an LP feasibility problem,

then solvable even in high dimension. Once the condition

is satisfied, the control invariant set is given by the convex

hull of several k-step sets that can be represented through a

set of linear equalities and inequality. A second algorithm,

based on the previous results on Minkowski sum and convex

hull, is also given. The methods, consisting in solving LP

problems, are proved to be applicable to high dimensional

systems. Examples that show the low conservatism and the

high scalability of the approach are provided.

Notations: Denote with R+ the set of nonnegative real

numbers. Given n ∈ N, define Nn = {x ∈ N : 1 ≤ x ≤ n}.
The i-th element of a finite set of matrices or vectors is
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denoted as Ai. Using the notation from [24], given a mapping

M : Rn
⇒R

m, its inverse mapping is denoted M−1 : Rn
⇒R

m.

If M is a single-valued linear mapping, we also denote, with

slight abuse of notation, the related matrices M ∈Rn×m and, if

M is invertible, M−1 ∈Rm×n. Given a∈Rn and b∈Rm we use

the notation (a,b) = [aT bT ]T ∈R
n+m. The symbol 0 denotes,

besides the zero, also the matrices of appropriate dimensions

whose entries are zeros and the origin of a vectorial space,

its meaning being determined by the context. The symbol

1 denotes the vector of entries 1 and I the identity matrix,

their dimension is determined by the context. The subset

of R
n containing the origin only is {0}. The symbol ⊕

denotes the Minkowski set addition, i.e. given C,D⊆R
n then

C⊕D = {x+y∈Rn : x ∈C, y ∈D}. To simplify the notation,

the propositions involving the existential quantifier in the def-

inition of sets are left implicit, e.g. {x∈ A : f (x,y)≤ 0, y ∈ B}
means {x ∈ A : ∃y ∈ B s.t. f (x,y)≤ 0}. The unit box in R

n is

denoted B
n.

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

The objective of this paper is to provide a constructive

method to compute a control invariant set for controlled linear

systems with constraints on the input and on the state. We

would like to obtain a polytopic invariant set that could be

computed through convex optimization problems. The main

aim is to provide a method to obtain admissible control

invariant sets for high-dimensional systems, thus no complex

computational operations are supposed to be allowed.

The system is given by

x+ = Ax+Bu (1)

with constraints

x∈X = {y∈Rn : Fy≤ f}, u∈U = {v∈Rm : Gv≤ g}. (2)

Assumption 1. The sets X and U are closed, convex and

contain the origin.

Note that Assumption 1 implies f ≥ 0 and g ≥ 0. Most of

the iterative methods for obtaining invariant sets involve the

image and the preimage of linear mappings.

Remark 1. Given a polyhedron Ω = {x ∈ R
n : Hx ≤ h}, its

preimage through the linear single-valued mapping A : Rn
⇒

R
n, denoted A−1Ω, is well defined, even if matrix A is singular.

Indeed, A−1Ω is the set of x ∈ R
n such that Ax ∈Ω and then

it is given by

A−1Ω = {x ∈ R
n : Ax ∈Ω}= {x ∈R

n : HAx≤ h},

while the image of Ω through A is

AΩ = {Ax ∈ R
n : x ∈Ω}= {Ax ∈ R

n : Hx≤ h}.

Moreover, for every γ ∈ R one has

γΩ = {γx ∈ R
n : x ∈Ω}= {γx ∈ R

n : Hx≤ h}

and, defining the mapping M : Rn
⇒ R

n through the matrix

M = γI, both the image and the preimage of Ω through M are

defined. That is MΩ = γΩ and

M−1Ω = {x ∈ R
n : γx ∈Ω}= {x ∈R

n : γHx≤ h}.

Note that, also in this case, M−1Ω is well defined even for

γ = 0: M−1Ω = R
n if 0 ∈Ω and M−1Ω = /0 if 0 /∈Ω.

The one-step backward operator is defined as

Q(Ω) = A−1(Ω⊕ (−BU)) = {x ∈R
n : Ax = y−Bu, u ∈U,

y ∈Ω}= {x ∈R
n : Ax+Bu∈Ω, u ∈U}

and provides the set of points in the state space that can be

mapped into Ω by an admissible input with dynamics (1).

Considering X = R
n, one way to obtain a control invariant

set is by iterating the one-step operator starting from a given

initial set Ω, compact, convex set containing the origin in

its interior, and then checking whether the union of the sets

obtained at iteration k contains Ω. Thus the sketch of the

algorithm is:

Algorithm 1 Control invariant

Input: matrices A,B, sets Ω, U

1: Ω0←Ω
2: k← 0

3: repeat

4: Ωk+1← A−1(Ωk⊕ (−BU))
5: k← k+ 1

6: until Ω⊆ co

(

k
⋃

j=1

Ω j

)

7: N← k

Output: Ω∞← co

(

N
⋃

k=1

Ωk

)

In practice, a bound on the maximal number of iteration

should be imposed to avoid an infinite loop. Considering the

alternative, direct, definition of Ωk

Ωk = A−k

(

Ω⊕
k−1
⊕

i=0

(−AiBU)

)

= {x ∈ R
n : Akx+

k−1

∑
i=0

AiBui+1 ∈Ω, ui ∈U ∀i ∈ Nk},

(3)

the algorithm above reduces to search, given Ω, for the

minimal N such that

Ω⊆ co

(

N
⋃

k=1

Ωk

)

= co

(

N
⋃

k=1

A−k

(

Ω⊕
k−1
⊕

i=0

(−AiBU)

))

. (4)

As a matter of fact, all the N for which (4) holds, lead

to a control invariant set. Moreover, if (4) is satisfied, then

it is satisfied for every K ≥ N, leading to a non-decreasing

sequence of nested control invariant sets.

Thus, the algorithm computes the preimages of Ω until the

stop condition (4) holds. Then all the states in Ω∞ defined

Ω∞ = co

(

N
⋃

k=1

Ωk

)

(5)

can be steered in Ω, thus in Ω∞ itself, in N steps at most,

by means of admissible controls, as proved in the following

proposition.

Proposition 1. Given Ω and Ω j as defined in (3) if condition

(4) holds for k ∈ N then the set Ω∞ defined in (5) is control

invariant for the system (1) under the constraint u ∈U.



3

Proof: Given x ∈ Ω∞ we prove that there exists u ∈U

such that Ax+Bu ∈ Ω∞. From the definition (5) of Ω∞, x ∈
Ω∞ implies the existence of xk ∈ Ωk and λk ≥ 0, with k ∈
NN , such that x = ∑N

k=1 λkxk and ∑N
k=1 λk = 1. Moreover, by

definition of Ωk, for every y ∈Ωk there exists uk(y) ∈U such

that Ay+Buk(y) ∈ Ωk−1, for all k ∈ NN (and with Ω0 = Ω).

Then denoting uk = uk(xk) and defining u(x) = ∑N
k=1 λkuk, one

has that u(x) ∈U from convexity of U , and

Ax+Bu(x) = A
N

∑
k=1

λkxk +B
N

∑
k=1

λkuk

=
N

∑
k=1

λk (Axk +Buk) ∈ co

(

N−1
⋃

k=1

Ωk ∪Ω

)

⊆Ω∞

from condition (4).

This means that the set given by (5) is control invariant, in

the absence of state constraints, if (4) is satisfied.

To take into account the constraints on the state x ∈ X ,

recall that, under Assumption 1, if Ω is a control invariant

set, then also αΩ is a control invariant set, in absence of state

constraints. Thus a first method would consists, given a control

invariant set Ω∞ in absence of state constraints, in computing

the greatest α ∈ [0, 1] such that αΩ∞ ⊆ X . This method,

together with a less conservative one which takes explicitly

into account X in the computation of Ω∞, are illustrated in

Section IV-C. Both methods are based on the results valid in

absence of state constraints.

Remark 2. The algorithm sketched above is not the standard

one for obtaining a control invariant set. Usually, in fact,

one should start with Ω = X and intersect the preimages

with X at every iteration and then check if the inclusion

Ωk ⊆Ωk+1 holds, see [9]. This approach provides a sequence

of non-increasing nested sets that are outer approximations

of the maximal control invariant set and whose intersection

converges to it, if X and U are compact, see [4]. Unfortu-

nately, nevertheless, the maximal control invariant set is in

general not finitely determined and the sets generated by the

iteration are not control invariant. An alternative, related to

the approach presented here, is to start with Ω that is already

control invariant, which leads to a non-decreasing sequence of

nested control invariant sets. The algorithm presented here has

the benefit of not requiring the a priori knowledge of a control

invariant set Ω, but, on the other hand, does not assure that

the stop condition is satisfied at some iteration for a given Ω.

A scaling procedure will be employed in order to guarantee

that the stop condition holds.

Given the initial set Ω, an alternative condition characteriz-

ing an invariant set is the following

Ω⊆ A−N

(

Ω⊕
N−1
⊕

i=0

(−AiBU)

)

, (6)

which is equivalent to the fact that every state in ΩN can be

steered in Ω in exactly N steps.

This means that (6) implies, but is not equivalent to, (4) and

the resulting invariant set would be Ω∞ as in (5). Condition

(6), which will be referred to as N-step condition in what

follows, is just sufficient for (4) to hold but it does not require

the computation of the convex hull of several sets at every

iteration. The related algorithm follows, in which the N-step

condition and the explicit representation of Ωk (3) have been

used.

Algorithm 2 N-step condition control invariant

Input: matrices A,B, sets Ω, U

1: k← 0

2: repeat

3: k← k+ 1

4: until Ω⊆ A−k

(

Ω⊕
k−1
⊕

i=0

(−AiBU)

)

5: N← k

Output: Ω∞← co

(

N
⋃

k=1

Ωk

)

The main issue which impedes the application of both

algorithms in high dimension is the fact that computing the

Minkowski set addition is a complex operation, as it is an NP-

complete problem, see [27]. Moreover the addition leads to

sets whose representation complexity increases. Considering,

in fact, two polytopic sets Ω and ∆, their sum has in general

more facets and vertices those of Ω and ∆. Thus, the algorithm

given above requires the computation of the Minkowski sum,

hardly manageable in high dimension, and generates polytope

with an increasing number of facets and vertices. Another

source of complexity is the convex hull in (4) or (5), as

the explicit computation of the convex hull is a non-convex

operation whose complexity grows exponentially with the

dimension, see [3].

The main objective of this paper is to design a method for

testing conditions (4) and (6) by means of convex optimization

problems, then applicable also to relatively high dimensional

systems, for obtaining a control invariant set.

III. N-STEP CONDITION FOR CONTROL INVARIANCE

As noticed above, a first main issue is related to check

whether the sum of several polytopes contains a polytope,

see the N-step stop condition (6). Then, also the fact that the

convex hull computation could be required, as in condition (4),

would introduce additional complexity. We consider first the

N-step stop condition used in Algorithm 2 and the computation

of the induced control invariant Ω∞. The stop condition (4) of

Algorithm 1 is based on these results and will be illustrated

afterward.

A. Minkowski sum and inclusion

Consider the N-step condition (6), characterized by the

Minkowski sum of several sets. The explicit definition of

the Minkowski sum of sets could be avoided by employing

its implicit representation. Indeed, given two polyhedral sets

Γ = {x ∈ R
m : Hx ∈ h} and ∆ = {y ∈ R

p : Gy ≤ g} and

P ∈ R
n×m and Q ∈ R

n×p we have that PΓ⊕T ∆ = {x ∈ R
n :

x = Py+Tz, Hy≤ h, Gz≤ g}. Thus, the explicit hyperplane

or vertex representation of the sum can be replaced by the

implicit one, given by the projection of a polyhedron in
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higher dimension. On the other hand, one might wonder if the

stop condition Ω⊆ΩN could be checked without the explicit

representation of ΩN .

The first remark to do is that the inclusion condition is

testable through a set of LP problems provided the vertices

of Ω are available. Such an assumption is not very restrictive,

since Ω is a design parameter that could be determined such

that both the hyperplane and vertices representation should

be available, a box for instance. Nevertheless, and since we

are aiming at invariant sets for high dimensional systems, the

use of vertices should be avoided if possible. Consider for

instance, in fact, a system with n = 20. The unit box in R
20 is

characterized by 40 hyperplanes, but it has 220≃ 106 vertices.

Then checking if it is contained in a set could require to solve

more than a million of LP problems.

We consider then the possibility of testing whether a poly-

hedron is included in the sum of polyhedra by employing

only their hyperplane representations and without the explicit

representation of the sum of sets. The following result, based

on the Farkas lemma and widely used on set theory and

invariant methods for control, is useful for this purpose.

Lemma 1. Two polyhedral sets Γ = {x ∈ R
n : Hx≤ h}, with

F ∈R
p×n, and ∆ = {x ∈ R

n : Gx≤ g}, with G ∈ R
q×n, satisfy

Γ ⊆ ∆ if and only if there exists a non-negative matrix T ∈
R

q×p such that
TH = G,
Th≤ g.

Consider now the stop condition (6), which is suitable for

applying the Lemma 1, as illustrated below.

Remark 3. The right-hand side term in (6) cannot be ex-

pressed directly as the Minkowski sum of several sets, unless

A is nonsingular. In fact, given A ∈R
n×n with det(A) 6= 0 and

Γ,∆⊆ R
n then the matrix A−1 is defined and thus

A−1Ω = {x ∈ R
n : Ax ∈Ω}= {A−1x ∈ R

n : x ∈Ω}, (7)

which implies that

A−1(Γ⊕∆) = {x ∈R
n : Ax ∈ Γ⊕∆}= {x ∈R

n : Ax =

y+ z, y ∈ Γ, z ∈ ∆}= {x ∈ R
n : x = A−1y+A−1z,

y ∈ Γ, z ∈ ∆}= {A−1y+A−1z ∈ R
n : y ∈ Γ, z ∈ ∆}

= {y+ z ∈ R
n : Ay ∈ Γ, Az ∈ ∆}= A−1Γ⊕A−1∆,

since the matrix A−1 exists. On the contrary, if det(A) = 0 then

we have that A−1(Γ⊕∆) 6= A−1Γ⊕A−1∆ in general. Indeed,

considering for instance

Γ = {x ∈ R
2 : 1≤ x(1) ≤ 2, −1≤ x(2) ≤ 1},

∆ = {x ∈R
2 : −3≤ x(1) ≤−1, −1≤ x(2) ≤ 1},

and A =

[

0 0

0 1

]

, it follows that A−1Γ = A−1∆ = /0 but

Γ⊕∆ = {x ∈ R
2 : −2≤ x(1) ≤ 1, −2≤ x(2) ≤ 2},

A−1(Γ⊕∆) = {x ∈ R
2 : −2≤ x(2) ≤ 2}.

The main issue for applying Lemma 1 is the fact that

obtaining the explicit hyperplane representation of the set

at right-hand side of (6) is numerically hardly affordable,

mainly in relatively high dimension. In fact, given two poly-

hedra Γ ⊆ R
m and ∆ ⊆ R

p, to determine L and l such that

PΓ⊕Q∆ = {x ∈ R
n : Lx ≤ l} is an NP-complete problem,

see [27]. Nevertheless, a sufficient condition in form of LP

feasibility problem is given below for testing if a polyhedral

set Ω is contained in PΓ⊕Q∆.

Proposition 2. Consider the sets Ω = {x ∈Rn : Hx≤ h}, Γ =
{y∈Rm : Fy≤ f}, ∆= {z∈Rp : Gz≤ g} and with H ∈Rnh×n,

F ∈ R
n f×m,G ∈ R

ng×m and the matrices P ∈ R
n×m and Q ∈

R
n×p. Then Ω⊆ PΓ⊕Q∆ if there exist T ∈ R

nḡ×nh̄ and M ∈
R
(n+m+p)×(n+m+p), with nḡ = 2n+n f +nG and nh̄ = nh+2m+

2p such that






T H̄ = ḠM

T h̄≤ ḡ
[

I 0 0
]

=
[

I 0 0
]

M

(8)

holds with

Ḡ =









I −P −Q

−I P Q

0 F 0

0 0 G









∈ R
nḡ×(n+m+p) ḡ =









0

0

f

g









∈R
nḡ .

(9)

and

H̄ =













H 0 0

0 I 0

0 −I 0

0 0 I

0 0 −I













∈ R
nh̄×(n+m+p) h̄ =













h

0

0

0

0













∈R
nh̄ .

(10)

Proof: The Minkowski sum of PΓ and Q∆ has an implicit

hyperplane representation given by

PΓ⊕Q∆ = {x ∈R
n : x = Py+Qz, y ∈ Γ, z ∈ ∆} ⊆ R

n

which is equivalent to the projection on R
n of a polyhedron

in R
n+m+p, that is

PΓ⊕Q∆ = projx Ω⊕ (11)

where projx is the projection on the subspace of x, i.e.

projx Ω⊕ = [I 0 0]Ω⊕, and

Ω⊕ = {(x,y,z) ∈ R
n+m+p : x = Py+Qz, Fy≤ f , Gz≤ g}

= {x̄ ∈R
n+m+p : Ḡx̄≤ ḡ} ⊆ R

n+m+p,

with x̄ = (x,y,z) ∈ R
n+m+p and Ḡ, ḡ as in (9). Thus, to

prove that Ω ⊆ PΓ⊕Q∆ without computing the hyperplane

representation of the set PΓ⊕ Q∆ is equivalent to check

whether the projection of Ω⊕ on R
n contains Ω⊆R

n. This is

equivalent to consider the set

Ω̄ = Ω×{0}×{0}= {(x,y,z) ∈R
n+m+p : Hx≤ h,

y = 0, z = 0}= {x̄ ∈ R
n+m+p : H̄x̄≤ h̄} ⊆ R

n+m+p

with x̄ = (x,y,z) and H̄, h̄ as in (10), and test if

projxΩ̄⊆ projxΩ⊕, (12)

since Ω = projxΩ̄ and from (11). Unfortunately, condition (12)

is not suitable for using Lemma 1 and then we search for a

sufficient condition for (12) to hold such that the lemma can

be applied directly.
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Consider any linear single-valued mapping M : Rn+m+p
⇒

R
n+m+p, characterized by a, possibly non-invertible, matrix

M ∈R
(n+m+p)×(n+m+p), such that the value of x through M is

preserved, i.e. projxM((x,y,z)) = x for all (x,y,z) ∈ R
n+m+p.

Clearly, the value of x is preserved also through the inverse

mapping of M, that is projxM−1((x,y,z)) = x for all (x,y,z) ∈
R

n+m+p. This means that projxΩ⊕ = projxM−1Ω⊕ and then

(12) is equivalent to

projxΩ̄⊆ projxM−1Ω⊕. (13)

Then, the existence of M preserving the x and such that

Ω̄⊆M−1Ω⊕ (14)

holds, is a sufficient condition for (13), and thus also for (12),

to be satisfied. Notice that necessity of (14) for (13) is not

straightforward, since projxΓ⊆ projx∆ does not imply Γ⊆ ∆,

in general.

The condition on the matrix M such that projxM((x,y,z)) = x

for all (x,y,z) ∈ R
n+m+p is

[

I 0 0
]

=
[

I 0 0
]

M (15)

and then, from Lemma 1 and Remark (1), it follows that

conditions (14) and (15) are equivalent to the existence of

T ∈ R
nḡ×nh̄ and M ∈ R

(n+m+p)×(n+m+p) satisfying (8). Then

(8) is a sufficient condition for Ω⊆ PΓ⊕Q∆.

Thus, the inclusion of a set in the sum of sets can be tested

by solving an LP feasibility problem. This results is applied

to the stop condition for control invariance.

B. N-step invariance condition as an LP problem

Consider now condition (6) with

Ω = {x ∈ R
n : Hx≤ h}, U = {u ∈ R

m : Gu≤ g} (16)

where H ∈ R
nh×n and G ∈ R

ng×m. Following the reasonings

of the proof of Proposition 2, a tractable condition for the set

inclusion (6) to hold is given.

Theorem 1. Consider Ω and U as in (16), with H ∈ R
nh×n

and G ∈ R
ng×m, and suppose that 0 ∈ Ω and 0 ∈ U. Then

the set Ω∞ as in (5) is a control invariant set if there exist

T ∈Rnḡ×nh̄ and M ∈Rn̄×n̄, with nḡ = nh+Nng, nh̄ = nh+2Nm

and n̄ = n+Nm, such that







T H̄ = ḠM

T h̄≤ ḡ
[

I 0 0 . . . 0
]

=
[

I 0 0 . . . 0
]

M

(17)

hold with

Ḡ =













HAN HB HAB . . . HAN−1B

0 G 0 . . . 0

0 0 G . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . G













, ḡ =













h

g

g

. . .
g













(18)

where Ḡ ∈ R
nḡ×n̄ and ḡ ∈ R

nḡ , and

H̄ =

























H 0 0 . . . 0

0 I 0 . . . 0

0 −I 0 . . . 0

0 0 I . . . 0

0 0 −I . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . I

0 0 0 . . . −I

























, h̄ =

























h

0

0

0

0

. . .
0

0

























(19)

where H̄ ∈ R
nh̄×n̄ and h̄ ∈R

nh̄ .

Proof: Consider condition (6), sufficient for Ω∞ to be a

control invariant set. The proof follows the lines of the one

of Proposition 2. From Remark 1, the right-hand side term of

(6) is given by

ΩN = A−N

(

Ω⊕
N−1
⊕

i=0

(−AiBU)

)

= {x ∈ R
n : ANx = y−Bu1

−ABu2− . . .−AN−1BuN , Hy≤ h, Gui ≤ g ∀i ∈ NN}

= {x ∈R
n : HANx+HBu1+HA1Bu2 + . . .

+HAN−1BuN ≤ h, Gui ≤ g ∀i ∈ NN}

and then is the projection on R
n of the set

Ω⊕ = {(x,u1,u2, . . . ,uN) ∈ R
n̄ : HANx+HBu1+HABu2 . . .

+HAN−1BuN ≤ h, Gui ≤ g ∀i ∈ NN}= {x̄ ∈R
n̄ : Ḡx̄≤ ḡ},

with x̄ = (x,u1,u2, . . . ,uN) ∈ R
n̄ and Ḡ and ḡ as in (18). The

set Ω̄ in this case would result in

Ω̄ = {(x,u1,u2, . . . ,uN) ∈R
n̄ : Hx≤ h, ui = 0 ∀i ∈NN}

= {x̄ ∈R
n̄ : H̄x̄≤ h̄} ⊆ R

n̄

with H̄ and h̄ as in (19). From Proposition 2, the condition

(6) is satisfied if there are T ∈Rnḡ×nh̄ and M ∈Rn̄×n̄ such that

(17) holds

Finally, given the set Ω and U , to obtain the greatest

multiple of Ω, i.e. Ωα = αΩ such that (6) holds, that is the

greatest α ∈ R such that

αΩ = Ωα ⊆Ωα
N , (20)

with

Ωα
k = A−k

(

Ωα ⊕
k−1
⊕

i=0

(−AiBU)

)

, ∀k ∈N, (21)

is equivalent to compute the smallest nonnegative β , with β =
α−1, such that

Ω⊆ A−N

(

Ω⊕
N−1
⊕

i=0

(−AiBβU)

)

.

This consists in replacing g with β g in (18) and leads to the

following LP problem in T , M and β

α−1 = βN = min
β∈R+

β

s.t. T H̄ = ḠM

T h̄≤ β ĝ+ g̃
[

I 0 0 . . . 0
]

=
[

I 0 0 . . . 0
]

M

(22)
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with ĝ = (0, g, g, . . . , g) and g̃ = (h, 0, 0, . . . , 0), sufficient

for the N-step invariant condition

β−1
N Ω⊆ A−N

(

β−1
N Ω⊕

N−1
⊕

i=0

(−AiBU)

)

with α = β−1
N ,

to hold. Note that using directly α would yield to replacing h

by αh in (18) and (19) and then to a nonlinear optimization

problem.

IV. CONTROL INVARIANT SET

AND STATE CONSTRAINTS

If the stop condition (6) is satisfied after appropriately

scaling Ω, i.e. with Ω = Ωα satisfying (22), the set Ωα
N is

such that if x ∈Ωα
N then it can be steered in Ωα in N steps by

a sequence of admissible control inputs ui ∈U with i ∈ NN .

Recall that, until now, the constraints on the state have not

been taken into account, they will in Section IV-C.

Once Ωα is computed, one possible choice to obtain a

control invariant set is considering Ω∞ as in (3) and (5). This

would require to compute the convex hull of the union of

several sets, each one given by the Minkowski sum of sets,

but the convex hull operation is numerically demanding.

For this, given an arbitrary collection of non-empty convex

sets Γi ⊆ R
n with I ∈ N and i ∈ NI , note that

co

(

⋃

i∈NI

Γi

)

=
⋃

λ≥0

1T λ=1

(

⊕

i∈NI

λiΓi

)

and λ
⊕

i∈NI

Γi =
⊕

i∈NI

λ Γi,

see Chapter 3 in [23]. Then, provided condition (20) is satisfied

and with definition of Ω and U as in (16), the invariant set is

given by

Ωα
∞ = co

(

N
⋃

k=1

Ωα
k

)

=
⋃

λ≥0

1T λ=1

(

N
⊕

k=1

λkΩα
k

)

=
⋃

λ≥0

1T λ=1

(

N
⊕

k=1

λkA−k

(

Ωα ⊕
k−1
⊕

i=0

(−AiBU)

))

.

(23)

Before proceeding, it is essential to notice that, given a convex

set Ω, the set γA−1Ω is well defined for all γ ∈R and A∈Rn×n,

even for γ = 0 and singular matrices A. In fact, it is given by

γA−1Ω = {γx ∈ R
n : x ∈ A−1Ω}= {γx ∈ R

n : Ax ∈Ω}.

This means, for instance, that, for n = 1, if γ = 0 and A = 0

one has γA−1Ω = {0} if 0 ∈Ω, even if A−1Ω = R.

Lemma 2. For every Ω⊆R
n, if γ 6= 0, with γ ∈R, or det(A) 6=

0 then γA−1Ω = A−1γΩ.

Proof: If γ 6= 0, one has

x ∈ γA−1Ω ⇔ x = γy, y ∈ A−1Ω ⇔ x = γy, Ay ∈Ω

⇔ γ−1x = y, Ay ∈Ω ⇔ Aγ−1x ∈Ω ⇔ γ−1Ax ∈Ω

⇔ Ax = γy, y ∈Ω ⇔ Ax ∈ γΩ ⇔ x ∈ A−1γΩ,

whereas if det(A) 6= 0 it follows that

x ∈ γA−1Ω⇔ x = γy, y ∈ A−1Ω ⇔ x = γy, Ay ∈Ω ⇔

x = γA−1z, z ∈Ω ⇔ x = A−1γz, z ∈Ω ⇔ x ∈ A−1γΩ.

This means, in practice, that the operators γ and A−1

actuating on Ω can be switched, if either γ 6= 0 or det(A) 6= 0.

Note that, if γ = 0 and A is singular, then the equality

γA−1Ω = A−1γΩ does not hold in general, as illustrated in

the following example.

Example 1. Consider λ = 0, A =

[

0 0

0 1

]

and Ω = B
n.

Then A−1γΩ = {x ∈ R
n : Ax ∈ {0}}= {x ∈R

n : x(2) = 0} and

γA−1Ω = {λ x ∈ R
n :−1≤ x(2) ≤ 1}= {0}.

The cases of nonsingular and singular matrix A are consid-

ered individually.

A. Invariant for nonsingular A

If A is nonsingular the invariant set is the polyhedron give

below.

Proposition 3. Let Ω and U as in (16). If det(A) 6= 0 then Ωα
∞

defined in (23) is equal to Ω̌α
∞ where

Ω̌α
∞ = {x ∈R

n : x =
N

∑
k=1

zk, HAkzk +
k−1

∑
i=0

HAiBvi+1,k ≤ λkαNh,

Gvi,k ≤ λkg ∀i ∈Nk ∀k ∈NN , λ ≥ 0,
N

∑
k=1

λk = 1}.

(24)

Proof: From (23) and Lemma 2 it follows

Ωα
∞ = {x ∈R

n : x =
N

∑
k=1

zk, zk ∈ λkΩα
k ∀k ∈ NN , λ ≥ 0,

N

∑
k=1

λk = 1}= {x ∈ R
n : x =

N

∑
k=1

zk, zk ∈ A−kλk

(

Ωα

⊕
k−1
⊕

i=0

(−AiBU)

)

∀k ∈NN , λ ≥ 0,
N

∑
k=1

λk = 1}= {x ∈ R
n :

x =
N

∑
k=1

zk, Akzk ∈

(

λkΩα ⊕
k−1
⊕

i=0

(−AiBλkU)

)

∀k ∈ NN ,

λ ≥ 0,
N

∑
k=1

λk = 1}= {x ∈ R
n : x =

N

∑
k=1

zk, Akzk = yk

−
k−1

∑
i=0

AiBvi+1,k, yk ∈ λkΩα , vi,k ∈ λkU ∀i ∈ Nk ∀k ∈ NN ,

λ ≥ 0,
N

∑
k=1

λk = 1}= {x ∈ R
n : x =

N

∑
k=1

zk, Akzk = yk−

k−1

∑
i=0

AiBvi+1,k, Hyk ≤ λkαNh, Gvi,k ≤ λkg ∀i ∈ Nk

∀k ∈ NN , λ ≥ 0,
N

∑
k=1

λk = 1}= Ω̌α
∞

where the second equality holds since A is nonsingular and

then λk and A−k can be switched.

Note that the invariant set Ωα
∞ is then characterized by linear

equalities and inequalities, that is by a polytope in higher

dimension. This means that testing if a state is in Ωα
∞ reduces

to solve a feasibility problem with linear constraints. Also

the problem of enforcing state constraints, see Section IV-C

below, can be solved through convex optimization by using
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the representation (24). Moreover, such a representation is

particularly suitable to be used in optimization-based control,

as model predictive control for instance, since it reduces to

enforcing the linear constraints characterizing Ωα
∞.

B. Invariant for singular A

In the other case, namely if A is singular, the polyhedral

form of the invariant set is less straightforward.

Proposition 4. Let Ω and U as in (16). If det(A) = 0 then Ωα
∞

defined in (23) is equal to Ω̂α
∞ where

Ω̂α
∞ = {x ∈ R

n : x =
N

∑
k=1

λkwk, HAkwk +
k−1

∑
i=0

HAiBvi+1,k ≤ αNh,

Gvi,k ≤ g ∀i ∈Nk ∀k ∈ NN , λ ≥ 0,
N

∑
k=1

λk = 1}.

(25)

Proof: The set Ωα
∞ is given by

Ωα
∞ = {x ∈ R

n : x =
N

∑
k=1

zk, zk ∈ λkΩα
k ∀k ∈NN ,λ ≥ 0,

N

∑
k=1

λk = 1}= {x ∈R
n : x =

N

∑
k=1

zk, zk ∈ λkA−k

(

Ωα

⊕
k−1
⊕

i=0

(−AiBU)

)

∀k ∈ NN , λ ≥ 0,
N

∑
k=1

λk = 1}= {x ∈ R
n :

x =
N

∑
k=1

zk, zk = λkwk, wk ∈ A−k

(

Ωα ⊕
k−1
⊕

i=0

(−AiBU)

)

∀k ∈NN ,λ ≥ 0,
N

∑
k=1

λk = 1}= {x ∈ R
n : x =

N

∑
k=1

λkwk,

Akwk = yk−
k−1

∑
i=0

AiBvi+1,k, yk ∈Ωα , vi,k ∈U ∀i ∈ Nk

∀k ∈NN ,λ ≥ 0,
N

∑
k=1

λk = 1}= {x ∈ R
n : x =

N

∑
k=1

λkwk,

Akwk = yk−
k−1

∑
i=0

AiBvi+1,k, Hyk ≤ αNh, Gvi,k ≤ g ∀i ∈ Nk

∀k ∈NN ,λ ≥ 0,
N

∑
k=1

λk = 1}= Ω̂α
∞.

Unfortunately, this representation of Ωα
∞ is not suitable to

be directly tested through an LP feasibility problem, due to the

nonlinearities λkwk. This means that checking whether a state

is contained in Ω̂α
∞ could not be solved through LP problems,

as for nonsingular A. Neither the problem of computing the

biggest copy of Ω̂α
∞ satisfying the state constraints (treated

in Section IV-C, see (34)) could be addressed by convex

optimization problems.

What we are going to prove is that the expression of Ωα
∞ as

in (24) holds also when A is a singular matrix, that is Ωα
∞ =

Ω̂α
∞ = Ω̌α

∞. For notational simplicity we define

Ω̄k = Ωα ⊕
k−1
⊕

i=0

(−AiBU), (26)

so that Ωα
k = A−kΩ̄k, for all k ∈ NN . Then the sets Ω̌α

∞ and

Ω̂α
∞ defined in (24) and (25) become

Ω̌α
∞ =

⋃

λ≥0

1T λ=1

(

N
⊕

k=1

A−kλkΩ̄k

)

,

Ω̂α
∞ = co

(

N
⋃

k=1

A−kΩ̄k

)

=
⋃

λ≥0

1T λ=1

(

N
⊕

k=1

λkA−kΩ̄k

)

,

(27)

which are equal if A is nonsingular. We prove that they are

equal also for singular A. For this aim, some preliminary

results are to be recalled or introduced here.

Definition 1. [5] Given a nonempty convex set C, the vector d

is a direction of recession of C if x+αd ∈C for all x ∈C and

α ≥ 0. The set of all directions of recession is a cone contain-

ing the origin, called the recession cone of C. The lineality

space of C, denoted LC, is the set of directions of recession d

whose opposite, −d, are also directions of recession. Given a

subspace S, S⊥ is its orthogonal complement.

Theorem 2. [23] A subset of Rn is a convex cone if and only if

it is closed under addition and positive scalar multiplication.

Theorem 3. [23] If K1 and K2 are convex cones containing

the origin then K1⊕K2 = co(K1∪K2).

Lemma 3. Given the subspaces S1,S2 ⊆ R
n, we have S1 =

S1⊕ S1 and S1⊕ S2 = co(S1∪S2).

Proof: It follows from Theorems 2 and 3 and the fact

that every subspace is a convex cone containing the origin.

Proposition 5. (Decomposition of a Convex Set [5]) Let C

be a nonempty convex subset of Rn. Then, for every subspace

S that is contained in the lineality space LC, we have C =
(C∩S⊥)⊕ S.

Lemma 4. Given the nonempty convex set C ⊆ R
n, for every

subspace S ⊆C, we have C⊕ S =C.

Proof: From Proposition 5 and Lemma 3, and since S⊆
LC, it follows that C⊕S =(C∩S⊥)⊕S⊕S = (C∩S⊥)⊕S =C.

Finally, given K ⊆ NN and defined K̄ = Nn/K and

Λ(K) = {λ ∈ R
n : λk > 0 ∀k ∈ K, λk = 0 ∀k ∈ K̄}

(note that λk is strictly positive if and only if k ∈ K) one has

{λ ∈R
n : λk ≥ 0 ∀k ∈ Nn, 1T λ = 1}

=
⋃

K⊆NN

{λ ∈ Λ(K) : 1T λ = 1} (28)

where K denotes the set of indices such that λk is not zero,

in practice. In fact, for every λ in the l.h.s. of (28), there

exists a K, that is the set of indices for which λk > 0, such

that λ ∈Λ(K). Analogously, every λ in the r.h.s. of (28), also
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satisfies λ ≥ 0 and then it is contained in the l.h.s. set. Equality

(28) implies that

Ω̌α
∞ =

⋃

λ≥0

1T λ=1

(

N
⊕

k=1

A−kλkΩ̄k

)

=
⋃

K⊆NN

⋃

λ∈Λ(K)

1T λ=1

(

⊕

k∈K

A−kλkΩ̄k

⊕
⊕

k∈K̄

A−kλ0Ω̄k

)

,

Ω̂α
∞ =

⋃

λ≥0

1T λ=1

(

N
⊕

k=1

λkA−kΩ̄k

)

=
⋃

K⊆NN

⋃

λ∈Λ(K)

1T λ=1

(

⊕

k∈K

λkA−kΩ̄k

⊕
⊕

k∈K̄

λ0A−kΩ̄k

)

,

(29)

with λ0 = 0.

Lemma 5. Given the sets C,D,E ⊆R
n, one has (C∪D)⊕E =

(C⊕E)∪ (D⊕E).

Proof: From the definition of Minkowski sum, it follows

(C∪D)⊕E = {x ∈ R
n : x ∈C or x ∈ D}⊕E = {x+ y∈ R

n :

(x ∈C, y ∈ E) or (x ∈D, y ∈ E)}= {x+ y ∈ R
n : x ∈C,

y ∈ E}∪{x+ y∈ R
n : x ∈ D, y ∈ E)}= (C⊕E)∪ (D⊕E).

Now we are in the position of proving that Ωα
∞ = Ω̂α

∞, even

for singular A.

Theorem 4. Let Ω and U as in (16) be non-empty and such

that 0 ∈ Ω and 0 ∈U. Then the sets Ω̌α
∞ and Ω̂α

∞, defined in

(27), are equal.

Proof: If A is nonsingular, the equality follows directly

from Lemma 2. Consider now the case of A singular. The sets

λkA−kΩ̄k and A−kλkΩ̄k, involved in (27), are equal for every

k ∈ NN provided λk > 0, from Lemma 2. On the other hand,

this is no more true if λk = λ0 = 0, in fact

λ0A−kΩ̄k = {λ0x ∈R
n : x ∈ A−kΩ̄k}

= {λ0x ∈R
n : Akx ∈ Ω̄k}= {0},

A−kλ0Ω̄k = {x ∈ R
n : Akx ∈ λ0Ω̄k}

=
{

x ∈ R
n : Akx ∈ {0}

}

= ker(Ak),

(30)

as the set of x such that Akx ∈ Ω̄k is non-empty from 0 ∈ Ω
and 0 ∈U . Moreover, for every k ∈ NN one has

ker(Ak) = {x ∈ R
n : Akx ∈ {0}}

⊆ {x ∈ R
n : Akx ∈ λkΩ̄k}= A−kλkΩ̄k,

(31)

since 0 ∈ λkΩ̄k for every λk ≥ 0, from 0 ∈ Ω and 0 ∈ U .

Inclusion (31) with λk = 1 implies

N
⋃

k=1

ker(Ak) ⊆
N
⋃

k=1

A−kΩ̄k

and then

N
⊕

k=1

ker(Ak) = co

(

N
⋃

k=1

ker(Ak)

)

⊆ co

(

N
⋃

k=1

A−kΩ̄k

)

= Ω̂α
∞,

(32)

where the first equality follows from Lemma 3 and the fact

that ker(Ak) are subspaces. Moreover, (31) yields

N
⊕

k=1

ker(Ak) =
⋃

λ≥0

1T λ=1

(

N
⊕

k=1

ker(Ak)

)

⊆
⋃

λ≥0

1T λ=1

(

N
⊕

k=1

A−kλkΩ̄k

)

= Ωα
∞.

(33)

Then, denoting the value λ0 = 0, one has

Ω̂α
∞ = co

(

N
⋃

k=1

A−kΩ̄k

)

= co

(

N
⋃

k=1

A−kΩ̄k

)

⊕
N
⊕

k=1

ker(Ak)

=
⋃

λ≥0

1T λ=1

(

N
⊕

k=1

λkA−kΩ̄k

)

⊕
N
⊕

k=1

ker(Ak)

=
⋃

K⊆NN

⋃

λ∈Λ(K)

1T λ=1

(

⊕

k∈K

λkA−kΩ̄k⊕
⊕

k∈K̄

λ0A−kΩ̄k

)

⊕
N
⊕

k=1

ker(Ak)

=
⋃

K⊆NN

⋃

λ∈Λ(K)

1T λ=1

(

⊕

k∈K

λkA−kΩ̄k

)

⊕
N
⊕

k=1

ker(Ak)

=
⋃

K⊆NN

⋃

λ∈Λ(K)

1T λ=1

(

⊕

k∈K

A−kλkΩ̄k

)

⊕
N
⊕

k=1

ker(Ak)

=
⋃

K⊆NN

⋃

λ∈Λ(K)

1T λ=1

(

⊕

k∈K

A−kλkΩ̄k⊕
N
⊕

k=1

ker(Ak)

)

=
⋃

K⊆NN

⋃

λ∈Λ(K)

1T λ=1

(

⊕

k∈K

A−kλkΩ̄k⊕
N
⊕

k=1

ker(Ak)⊕
⊕

k∈K̄

ker(Ak)

)

=
⋃

K⊆NN

⋃

λ∈Λ(K)

1T λ=1

((

⊕

k∈K

A−kλkΩ̄k⊕
⊕

k∈K̄

ker(Ak)

)

⊕
N
⊕

k=1

ker(Ak)

)

=
⋃

K⊆NN

⋃

λ∈Λ(K)

1T λ=1

(

⊕

k∈K

A−kλkΩ̄k⊕
⊕

k∈K̄

A−kλ0Ω̄k

)

⊕
N
⊕

k=1

ker(Ak)

=
⋃

λ≥0

1T λ=1

(

N
⊕

k=1

A−kλkΩ̄k

)

⊕
N
⊕

k=1

ker(Ak)

=
⋃

λ≥0

1T λ=1

(

N
⊕

k=1

A−kλkΩ̄k

)

= Ω̌α
∞

where: the second equality holds from Lemma 4 and (32); the

forth from (29); the fifth from (30); the sixth from Lemma 2;

the seventh from Lemma 5; the eighth from Lemma 4; the

tenth from (30); the eleventh from (29); the twelfth and the

last one from Lemma 4 and (33).

Theorem 4 implies that checking if x ∈Ωα
∞ resorts to solve

an LP feasibility problem in the variables x,zk,vi,k,λk for all

i ∈ Nk and k ∈ NN , then in a space of dimension n+Nn+
0.5N(N + 1)m+N.

Remark 4. From Theorem 4, also the stop condition (4),

employed in Algorithm 1, can be posed as an LP problem,

once αN is fixed. In fact, by reasonings analogous to those of

Theorem 1, the inclusion αNΩ⊆Ωα
∞ can be posed in form of
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the LP problem (17), by appropriately defining the matrices Ḡ,

ḡ, H̄, h̄ from (24). Such an LP problem could be also used to

approximate the optimal αN , by griding it for instance. This

would also have the benefit of leading to smaller values of

N, since the the stop condition (4) holds if the N-step one

(6) is satisfied, but the inverse is not true in general. On the

other hand, the dimension of such an LP problem might be

much bigger than for the N-step condition, in fact: n̄ would be

(1+N)n+ 0.5N(N + 1)m+N instead of n+Nm defined for

the N-step; nḡ = 2n+Nnh + 0.5N(N + 1)ng +N + 1 instead

of nh +Nng and nh̄ = nh + 2nN +N(N + 1)m+ 2N instead of

nh + 2Nm.

C. State constraints

Concerning the state constraints, recall first that every

smaller multiple of Ωα
∞, i.e. every σΩα

∞ with σ ∈ [0, 1], is

still control invariant, under Assumption 1 and if 0 ∈Ω. Then

the greatest invariant multiple of Ωα
∞ contained in X is given

by Ωα ,σ
∞ = σΩα

∞ with

σ = max
δ∈[0,1]

δ

s.t. δΩα
∞ ⊆ X ,

which is equivalent, for X as in (2), to

σ = min

{

1,
f1

δ1

, . . . ,
fn f

δn f

}

with
δi = max

x
Fix

s.t. x ∈Ωα
∞,

(34)

for every i ∈ Nn f
. Then the scaling factor σ can be obtained

by computing δi solving (34), which are n f LP problems, in

both cases of A singular and nonsingular, from Theorem 4.

In fact, the constraint x ∈Ωα
∞ is a set of linear constraints in

a space of dimension (1+N)n+ 0.5N(N+ 1)m+N, see (24)

and Remark 4.

The method presented above does not explicitly take into

account the shape of X in computing Ωα ,σ
∞ , and then could

lead to some conservatism. Alternatively, the state constraints

could be considered by defining the analogous of the preimage

set Ωα
k as in (21). Given the constraint sets X ⊆R

n and U ∈Rm

and σ ∈ R+, the set defined by

Ωσ
k (X ,U) = {x ∈ R

n : Akx+
k

∑
i=1

Ai−1Bui ∈ σΩ,

Ak−1x+Ak−2Buk + . . .+Bu2 ∈ X , . . . Ax+Buk ∈ X ,
x ∈ X , ui ∈U ∀i ∈ Nk}

(35)

is the set of initial states x∈ X for which a sequence of length

k of input ui ∈U , with i ∈ Nk, exists such that the generated

trajectory is maintained in X and ends in σΩ at time k. Hence,

the set given by

Ωσ
∞(X ,U) = co

(

N
⋃

k=1

Ωσ
k (X ,U)

)

is the set of states that can be steered in σΩ in N steps at most

through an admissible trajectory that does not violate the state

constraints X , if σΩ⊆Ωσ
∞(X ,U). Hence, solving the problem

σ̂ = max
σ∈R+

σ

s.t. σΩ⊆Ωσ
∞(X ,U),

(36)

leads to the control invariant set Ωσ̂
∞(X ,U) contained in X .

The problem (36) does not yield to a convex problem, as for

the sufficient condition (20) and the considerations that follow

it. Nevertheless, the following problem

µN = min
µ∈R+

µ

s.t. Ω⊆Ω1
∞(µX ,µU),

(37)

leads to an LP analogous to (22) and equivalent to (36),

with µ = σ−1, since it can be proved that σ−1Ωσ
k (X ,U) =

Ω1
k(µX ,µU) for all k ∈ N.

Finally, note that Ω1
k(µX ,µU) as in (35) is the projection on

R
n of a polytope on a space of dimension n+km+1. Then the

constraint Ω ⊆ Ω1
∞(µX ,µU) would lead to linear constraints

analogous to those of Theorem 1 but with n̄ = (1+N)n+
0.5N(N + 1)m+N, nḡ = 2n+Nnh + 0.5N(N + 1)ng +N + 1

and nh̄ = nh+2nN+N(N+1)m+2N, see also Remark 4. The

solution of the lower dimensional optimization problem

µN = min
µ∈R+

µ

s.t. Ω⊆Ω1
N(µX ,µU),

(38)

leads to a more conservative control invariant set contained in

X . Note that (38) yields to an LP problem analogous of the

N-step condition in absence of state constraints (22).

V. NUMERICAL EXAMPLES

The different results presented in this paper are illustrated

through numerical examples.

A. Example 1

The first example concerns a system with n = 2 and m = 1.

The main interest relies in fact that both the Minkowski sum

and the convex hull can be computed efficiently in this low

dimensional system, using for instance the MPT toolbox for

managing polytopes, [16]. This would allow us to explicitly

compute outer approximations of the maximal invariant set and

the sets Ωα
N and Ωα

∞ and then to give a graphical illustration

of our results in terms of conservatism.

We consider the systems (1) with

A =

[

1.2 1

0 1.2

]

, B =

[

0.5
0.3

]

(39)

and constraints on the input U = {u ∈ R : ‖u‖ ≤ 2}. We

consider first no constraints in the state. The initial set Ω has

been chosen to be the unitary box, i.e. Ω = B
2. Then the

maximal value of α such that sets Ωα and Ωα
N satisfy (20)

is obtained for different values of N, by solving (22). Given

such α , the set Ωα
∞, defined in (23), is a control invariant

set. To give an intuition of the method results and of the

conservatism with respect to the maximal control invariant,

a sequence of non-increasing nested outer approximations of

the maximal control invariant set is computed, by starting with

Σ0 big enough (i.e. containing the maximal control invariant

set) and iterating Σk = Σ0 ∩A−1(Σk ⊕ (−BU)), [9]. The sets

Σ0 and Σ10k for k ∈ N5 are depicted in Figure 1 in thin lines

while Σ60 is the white polytope with thick borders. The set

Ωα is the dark-gray box and both Ωα
N and Ωα

∞ are represented
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in light gray, for N = 5. As can be noticed, the sets Ωα
N and

Ωα
∞ are very close, where clearly Ωα

N ⊆Ωα
∞.

−15 −10 −5 0 5 10 15

−2

0

2

Fig. 1. Sets Σ0 and Σ10k for k ∈ N5 in thin lines; Σ60 in white with thick
lines; Ωα in dark gray; Ωα

N and Ωα
∞ in light gray, for N = 5.

The sets Σ60 and Ωα
∞ for N = 5,10,15,20 are drawn in

Figure 2, in white the former and gray the latter.

−10 −5 0 5 10

−2

0

2

Fig. 2. Set Σ60 in white with thick lines and Ωα
∞ in light gray, for N = 5

(inner), N = 10,15 and N = 20 (outer).

Finally, the sets Σ0 and Σ10k for k ∈ N6 are depicted in

Figure 1, in white, together with Ωα , in dark gray, and Ωα
∞, in

light gray, for N = 40. The set Ωα
∞ is very close to the outer

approximation of the maximal control invariant set Σ60.

−15 −10 −5 0 5 10 15

−2

0

2

Fig. 3. Sets Σ0 and Σ10k for k ∈ N5 in thin lines; Σ60 in white with thick
lines; Ωα in dark gray; Ωα

N and Ωα
∞ in light gray, for N = 40.

B. Example 2: singular matrix

Consider the systems (1) with singular transition matrix

A =

[

1.2 1

0 0

]

, B =

[

0.5
0.3

]

(40)

and input constraints sets and initial set as for Example 1, U =
{u ∈ R : ‖u‖ ≤ 2} and Ω = B

n. The sets Σi for i ∈ N60 have

been computed starting with Σ0 = 1000B
2. Figure 4 shows the

outer approximations of the maximal control invariant set Σi

with i = 40,50,60, the control invariant sets Ωα
∞ for different

values of N, in particular N ∈N10, and Ωα related to N = 10.

−15 −10 −5 0 5 10 15

−10

0

10

Fig. 4. Sets Σ40 and Σ50 in thin lines; Σ60 in white with thick lines; Ωα
∞ in

light gray, for N ∈ N10, and Ωα for N = 10 in dark gray.

The inner and outer approximation of the maximal invariant

appear to be rather close for N = 10.

C. Example 3: state constraints

In this example we consider the same dynamics and same

sets Ω and U of Example 1 and the state constraint set

given by X = {x ∈ R
2 : −10 ≤ x1 ≤ 5, −1 ≤ x2 ≤ 2}. Both

method for taking into account the state constraints illustrated

in Section IV-C are applied using N = 15. Figure 5 shows the

set Ωα ,σ
∞ obtained by solving (34) in middle shade gray and

also Ωσ
∞ induced by the solution to (38) in light gray (besides

the sets X , Σk and σΩ).

−10 −8 −6 −4 −2 0 2 4

−1

0

1

2

Fig. 5. Sets Σ0 = X and Σ10k with k ∈ N5 in thin lines; Σ60 in white with
thick lines; Ωσ

∞ in light gray; Ωα,σ
∞ in middle shade gray, and σΩ in dark

gray, for N = 15.

Note how the conservatism with respect to the scaling

procedure (34) is reduced by taking into account the shape of

X as in the method based on (38). The latter, in fact, provides

a good approximation of the maximal control invariant set for

N = 15.

D. Example 4: high dimensional system

We apply now the proposed method to an high dimensional

system, in particular with n= 20 and m= 10. To provide some

hints on the conservatism of the control invariant obtained

with respect to the maximal control invariant set, we build

a system for which the latter can be computed, or, at least,

approximated. Indeed the classical algorithms for computing

or approximating the maximal control invariant set are too

computationally demanding to be applied to high dimensional
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systems in general. Then, a particular structure has to be

imposed to the system dynamics to apply them and obtain an

estimation of the maximal control invariant set to be compared

with our results. In particular, we consider system (1) with

A =









A1 0 . . . 0

0 A2 . . . 0

. . . . . . . . . . . .
0 0 . . . A10









, B =









B1 0 . . . 0

0 B2 . . . 0

. . . . . . . . . . . .
0 0 . . . B10









where Ai ∈R
2×2 and Bi ∈R

2, for i ∈N10, are matrices whose

entries are randomly generated such that all Ai have instable

poles and the pairs (Ai,Bi) are controllable. This means

that the whole system is controllable and it is, in practice,

composed by 10 decoupled two-dimensional subsystems with

one control input each. Hence, the maximal control invariant

set for the overall system, Σ∞, is given by the Cartesian product

of the maximal control invariant sets of the 10 subsystems, that

is Σ∞ =∏10
i=1 Σi,∞ where Σi,∞ are the maximal control invariant

set (or an outer approximation of it) for the i-th subsystem.

Then Σ∞ can be computed by computing Σi,∞, being (Ai,Bi)
a two-dimensional controllable system, for all i ∈ N10.

The linear problem (22) has been posed with N = 3,5,9,15

and solved with YALMIP interface [19] and Mosek optimizer

[22]. In Table I, the dimensions and solution times for the LP

problems are reported.

N = 3 N = 5 N = 9 N = 15

LP dimension 10002 19602 48402 115602
Solution time 0.9s 0.99s 1.25s 1.71s

TABLE I

To quantify the difference between the outer approximation

of the maximal control invariant set Σ∞ and the set Ωα
∞, 100

vectors v∈Rn are generated randomly. Then, (a lower approx-

imation of) the maximal values of rΣ and rΩ are computed such

that rΣv ∈ Σ∞ and rΩv ∈ Ωα
∞, through dichotomy method. In

practice, we search for (approximations of) the intersections

between the ray vr = {rv ∈Rn : r ≥ 0} and the boundaries of

the sets Σ∞ and Ωα
∞. The ratio between rΩ/rΣ is an indicator of

the mismatch between the outer approximation of the maximal

control invariant set Σ∞ and Ωα
∞, the closer to one, the closer

are the intersections between the ray vr and the two sets.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

0 0.2 0.4 0.6 0.8 1
0

20

40

0 0.2 0.4 0.6 0.8 1
0

20
40
60
80

0 0.2 0.4 0.6 0.8 1
0

20
40
60
80

Fig. 6. Histograms of the values rΩ/rΣ for N = 3,5,9,15 (from top to bottom).

Figure 6 shows the histograms of the ratio rΩ/rΣ for the

different values of N. As expected, the higher is the horizon

N, the closer are the sets Σ∞ and Ωα
∞.

VI. CONCLUSIONS

In this paper we addressed the problem of computing control

invariant sets for linear systems with state and input polyhedral

constraints. In particular we considered the computational

complexity inherent to the explicit determination of polyhedral

one-step sets, that are the basis of many iterative procedures

for obtaining control invariant sets. Invariance conditions are

given, that are set inclusions involving the N-step sets, which

are posed in form of LP optimization problems, instead of

Minkowski sum of polyhedra. Then the procedures based on

those conditions are applicable even for high dimensional

systems.
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510, Zürich, Switzerland, July 17–19 2013.

[17] E. C. Kerrigan. Robust constraint satisfaction: Invariant sets and

predictive control. PhD thesis, Citeseer, 2001.
[18] I. Kolmanovsky and E. G. Gilbert. Theory and computation of dis-

turbance invariant sets for discrete-time linear systems. Mathematical

Problems in Engineering, 4:317–367, 1998.
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