Evaluating the Implication of COP21 for Energy Security in EU28

Speaker: STOLYAROVA Elena (CNRS, Grenoble Applied Economics Lab)

S. Mima (CNRS), S. Mathy (CNRS)

2nd AIEE Energy Symposium, Rome, 03/11/2017

Content

1. Introduction

2. Scenarios

3. Energy security indicators

Content

1. Introduction

2. Scenarios

3. Energy security indicators

Context and motivation

RIPPLES project: Results and Implications for Pathways and Policies for Low Emissions European Societies.

- What is the impact of Nationally Determined Contributions (NDC) on economy and climate?
- Which steps are needed to attain deeper, more ambitious decarbonisation targets.
- Socio-economic consequences of climate policy and COP21 objectives.

Energy security:

- What is the impact on energy security?
- Which of climate scenario is the most suitable for European countries?

Energy Security definition

• Energy security policies must ensure (IEA):

O Uninterrupted availability of energy sources at an affordable price.
 O Cover or reduce risks that affect energy sector.
 O Sustainable development of economy.

• The best way of approaching the question of energy security is to identify and to describe the energy security dimensions.

Energy Security dimensions

- 1) Availability the availability of energy resources, diversification and the energy (in)dependency.
- 2) Affordability "the capacity to produce energy services at the lowest cost, to have predictable energy prices and to enable equitable access to energy services" (Sovacool and Mukherjee, 2011)
- **3)** Sustainability preserve and protect the environment and living conditions, tackle climate change. The effects should persist over time.
- **4)** Resilience to risks "How the energy services can survive unexpected events that disrupt efficient operation?" (Sovacool and Sanders, 2014)
- 5) Economic development the ability of domestic economy to maintain or raise the standards of living
- 6) Electricity grid reliability the capacity of power system to maintain the supplydemand equilibrium at any time.

POLES: year-by-year recursive simulation process

Security dimensions (3) and indicators (18)

Availability

• Energy diversity indexes, where p_i is a share of energy source or supplier:

 $\,\circ\,$ Shannon-Wiener Index.

$$SWI = -\sum_{i=1}^{n} p_i \log(p_i)$$

 \circ Herfindahl–Hirschman Index.

$$HHI = \sum_{i=1}^{n} p_i^2$$

- Energy intensity.
- Import dependency (ratio).

Affordability

• Energy bill per dwelling

Electricity

- Capacity factor
 - \circ Biomass
 - $\circ \, \text{Oil}$
 - \circ Coal
 - \circ Natural gas
- Share of solar and wind

1. Introduction

2. Scenarios

3. Energy security indicators

Scenarios up to 2050

Baseline: no climate policy scenario, used for benchmarking.

INDC +30: Until 2030 countries limit their ambition to the NDCs. The strong acceleration in climate policy and a significant breakthroughs of investment costs are necessary after 2030 to reach 2°C/3°C target.

Early action: early climate policy action is combined with a significant breakthroughs of investment costs in 2020.

1.5°C : no-RIPPLES scenario, that reaches 1.5°C in 2100, relying on very high carbon prices and a high share of solar and wind in electricity generation.

Scenarios:

	Туре	Carbon price 2050 (\$/tCO2)	Emissions 2050 / 2000	World carbon budget 2011-2050 (GtCO2)
Baseline	7°C	0 DEV * 0 INDEV*	-29% EU28 +97% World	1700
INDC + 2030	3°C	586 DEV* 351 INDEV**	-87% EU28 -65% World	1150
Early action	2°C	586 DEV* 351 INDEV**	-90% EU28 -79% World	815
1.5°C	1.5°C	2045 DEV * 2045 INDEV	-88% EU28 -103% World	760 400 (for 2011-2100)

* DEV – all developed countries, EU28, Russia, South Korea

** INDEV – other countries (Africa, Asia, South America, Mexica)

CO2 emissions in EU28 (GtCO2)

Worldwide CO2 emissions (GtCO2)

World in Baseline scenario

Compared to 2010:

- Primary energy, coal and gas consumption +70%
- Oil consumption remains stable.
- High increase of biomass consumption (+220%).
- Solar and wind account for 22% in electricity generation.

World profile in Baseline scenario

1. Introduction

2. Scenarios

3. Energy security indicators

Diversity : Primary Energy consumption

- Primary consumption remains stable in Baseline scenario and decreases in mitigation scenarios (-29%).
- Increased diversity in all scenario (in average +25%) → primary energy diversity does not the result of a strong climate policy (in EU28).
- **1.5°C** scenario has the lowest increase of diversity.

	EU15	EU other	World
Baseline	2 nd best	3 rd	2^{nd}
INDC + 2030	2 nd best	2^{nd}	1 st
Early action	1 st best	1 st	1 st
1.5°C	3 rd best	4 th	2^{nd}

Primary energy consumption in EU28 (Gtoe)

Diversity : Electricity production

- Electricity production increases in all scenarios because electricity is a key lever to reduce GHG emissions.
- Electricity diversity increases between 2010 and 2050 in all scenarios, except for 1.5C° (high share of intermittent renewables).
- The highest diversity of European electricity is in Baseline scenario, but higher in INDC+30 and Early action scenarios for the rest of the World.

	EU15	EU other	World
Baseline	1 st	1 st	2^{nd}
INDC + 2030	2^{nd}	3 rd	1 st
Early action	3 rd	2^{nd}	1 st
1.5°C	4 th	4 th	3 rd

Electricity generation in EU28 (TWh)

Diversity : Natural gas imports

- Gas imports to Consumption ratio: 70% in INDC+30 and 80% in other scenarios
- Share of Russian gas imports: 48%-55%
- The best diversity of imports is in **Early action** scenario, however there is little difference compared to **Baseline**.
- The only way to reduce gas dependency of some EU countries: common European gas market.

Dependence: Energy intensity

- European dependency on energy decreases in all mitigation scenarios.
- The energy intensity decreases more quickly in no-EU15 countries.
- Which scenario is the most suitable?
 - 1.5°C for a half of EU28.
 - INDC+30 and Early action for another half.
 - Country specific climate policy is more suitable that a common one (that is one of objective of RIPPLES project).

GAEL

Energy intensity of GDP in EU28 (toe/\$)

Import dependency ratio

- Increased biomass consumption, but 300 Gtoe in all scenarios. At worst, the import ratio is 37% for Greece (1.5°C).
- A strong decrease of gas import dependency ratio in no EU15 countries.
- Number of countries per scenario with the lowest import rate compared to other scenarios:

	Biomass	Oil	Coal	Gas
Baseline	2		Any significant change,	1
INDC + 2030			except for:	7
Early action	6	All	Poland (0% →100%)	6
1.5°C	15		R. Czech (100% → 0%)	15

2nd AIEE Energy Symposium (Rome)

Share of imports in total primary energy consumption

Affordability: energy bill per dwelling

- Small difference between no 1.5°C scenarios, but slight increase for EU15 countries (8) and two no EU15 countries (Bulgaria and Estonia).
- Currently, Bulgaria has the highest rate of fuel poverty in EU28 → cannot afford climate policy
- Energy bill is 30-70% higher in 1.5°C.

	EU15	EU other	World
Baseline	3 rd	2^{nd}	1 st
INDC + 2030	2^{nd}	1 st	3 rd
Early action	1 st	3 rd	2^{nd}
1.5°C	4 th	4 th	4 th

GAEL

Energy expenditure per dwelling (k\$)

Capacity factor of power plants

Relationship between share of intermittent renewables and power plant capacity factor

If share of Solar + Wind in electricity generation < 55%:

• No significant relation between share of I-RES and back-up capacities.

If solar + wind > 55%:

• Capacity factor of oil and gas plant decreases.

If solar wind > 75%:

• Low use of coal plants.

Energy security in EU15 Early action

	Diversity				Import dependency					Affordability	Solar Wind	
	Primary energy	Electricity	Gas imports	Energy	intensity	Oil	Coal	Biomass	Gas	Energy bill	Capacity factor	Energy security
Baseline												1
INDC + 2030												3
Early action												б
1.5°C												2

Energy security in no EU15 -> INDC +30

	D	Diversity			Import dependency					Affordability	Solar Wind	
	Primary energy	Electricity	Gas imports	Energy	intensity	Oil	Coal	Biomass	Gas	Energy bill	Capacity factor	Energy security
Baseline												1
INDC + 2030												5
Early action												4
1.5°C												3

Content

1. Introduction

2. Scenarios

3. Energy security indicators

- The climate policies are rather positive or neutral effect on European energy security:
 - Decrease energy dependency (included imports of fossil fuel and biomass).
 - Diversify primary energy consumption.
 - Does not increase energy expenditure in well balanced mitigation scenarios.
 - Positive impact is higher for developing countries.
- Can lead to some negative impacts in the case of high share of intermittent renewables and high carbon prices (e.g. +50/+70% for energy bill in dwellings).

Thank you for your attention

