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Plasma ¢ profile control in tokamaks

using a damping assignment passivity-based approach
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Abstract

The IDA-PBC based on PCH model for tokamak ¢ profile is investigated. Two scenarios are carried out. The first one
is the resistive diffusion model for the magnetic poloidal flux. The second one is extended with the thermal diffusion.
A feedforward control is used to ensure the compatibility with the actuator physical ability. An IDA-PBC feedback is
proposed to improve the system stabilization and convergence speed. The controllers are validated in the simulation
using RAPTOR code and tested in TCV tokamak, the result is analyzed and the followed discussion proposed the

required improvement for the next experiments.
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1. Introduction

A Tokamak is a facility constructed with the shape of
a torus (or dough-nut) in which a plasma is magnetically
confined and heated in order to produce nuclear fusion re-
actions (see Fig. 1.1 for a schematic view and the classical
Wesson’s monograph [22] for a large comprehensive ref-
erence textbook). It aims at producing energy from the
controlled nuclear fusion reactions. However many chal-
lenges remain to prove the scientific feasibility of this goal
and then to move towards a fully functional plant. A suit-
able control model for these plasma dynamics is then a
success key in the fusion research. There are many dif-
ferent objectives in Tokamak plasma control [19, 2]. One
of them consists in handling the MHD (Magneto-Hydro-
Dynamics) instabilities and improve the plasma confine-
ment, while maintaining some current, temperature and
pressure density profiles. Hence the goal is to reach some
specific non-uniform profiles of the 1D plasma safety factor
q profile (equivalent to the inverse of plasma current den-
sity), an important parameter for both plasma stability
and performance.

In this context the 1D resistive diffusion equation for the
magnetic flux in the plasma ([3, Chap.6]) is a commonly
used control model. Readers could refer to [23] for inves-
tigations on this model for control purposes or to [18] for
application to model-based predictive control. A similar
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Figure 1.1: Schematic view of a tokamak with the electrical solenoids:
the magnetic field generated by the three magnets makes the plasma
gas ions following helicoidal trajectories along the torus

model has been used to solve the current profile optimal
tracking problem [17] or to design robust controller for the
poloidal magnetic flux profile in [16]. Feedback control us-
ing Lyapunov approach in [1], or sliding mode in [7] are
also proposed. Note also that two-time scale extensions
have already been considered for simultaneous magnetic
and kinetic (temperature) profile control in tokamak [10].

This model also takes into account the plasma resis-
tivity variations and the bootstrap current! described in
[22]. Both of these effects are large and very sensitive to
the plasma temperature. When this dependence is con-
sidered, scaling laws are usually used to determine the
system parameters (resistivity and bootstrap current), see
[4] or [9]. However, to the best of our knowledge, there

L A magnetohydrodynamic coupling effect which produces an extra,
current density
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is no work proposing the design of feedback controls us-
ing both the plasma resistive diffusion equation and the
plasma thermal equation (here roughly modeled using a
heat transport equation), as well as the corresponding in-
terdomain couplings and actuators in both magnetic and
thermal domains to achieve a better safety factor profile
regulation.

On the other hand, most of these models already pos-
sess an Hamiltonian structure which is considered essential
by plasma physicists since the fundamental laws govern-
ing charged particle dynamics are Hamiltonian. There-
fore the preservation of the Hamiltonian structure provides
some confidences that the truncations used to derive the
fluid model have not introduced unphysical phenomena.
The presence of the Hamiltonian structure has the addi-
tional benefit of providing important tools for calculations
such as the MHD energy principle, solvability conditions
for the equilibrium equations, Casimir invariants, etc. A
model based on a port-Controlled Hamiltonian (PCH) for-
mulation of the plasma TMHD (Thermal-Magneto-Hydro-
Dynamics) in tokamaks is proposed in [21]. This model
implies to modify the safety factor control problem into
an equivalent magnetic field profile control problem. Spa-
tial reduction and discretization methods, inspired from
[11] and developed in [20], allow to reduce this 3D TMHD
model to a finite dimensional PCH model. These sym-
plectic reduction and discretization methods preserve the
qualitative spectrum properties. Another consequence is
that the finite-dimensional PCH model has the same in-
variants (for instance the total energy density) and model
structure as the infinite-dimensional ones. Stored and dis-
sipated energies in the finite dimensional model are simply
approximation of the actual ones in the original distributed
parameter model. Therefore, this finite-dimensional PCH
model is the ideal one for the design of a high perfor-
mance IDA-PBC (Interconnection and Damping Assign-
ment - Passivity Based Control) controller [15]. This gen-
eral control design, taking advantage of the Hamiltonian
structured model, aims not only at sharping the total en-
ergy of the closed-loop system, but also at modifying the
interconnection and dissipation structures of the original
one. The controller achieves the robust stabilization by the
passivity property of the desired closed loop Hamiltonian
model.

Here, the proposed IDA-PBC controller allows stabiliz-
ing 1D profiles of the safety factor ¢ at the desired refer-
ences directly by two actuators: the voltage Vj,op at the
boundary of the plasma 2 and the distributed non induc-
tive current-drive heating source J.,:. Besides, a third
actuator, the external heating source Sjeq:, will be used
as supplementary actuator which modifies the plasma tem-

2the loop voltage produced mainly by the central solenoid showed
in figure 1.1

3The external current drive Jez: and the external heating source
Sheat are both the effects from various antenna systems around the
tore.

perature, hence indirectly some physical parameters such
as the resistivity 7 profile or the bootstrap current.

Challenges in this control problem arise not only from
the time variation of some parameters usually badly esti-
mated (such as the resistivity or diffusivity for instance),
but also from the technological constraints and non-
linearities in the actuator models. In the considered facil-
ities, the distributed controls .J.,; and Sheq: have specific
spatial profiles, possibly depending from the control vari-
able values themselves. In fact, the controllable inputs are
rather the total external current power P.,; and the total
external heating power Pj.q:. The consequence is that the
system is a finite rank input-output control system with
both boundary and distributed control actions. The finite
dimensional coupled control model may thus be considered
as an under-actuated system in the sense that the number
of actuators is less than the number of system states (more
details on under-actuated PCH systems could be found in
[13]). Hence, only a limited (finite dimensional) set of
safety factor profiles are reachable. In this work, the avail-
able control signals are used to regulate the g-profile at a
finite number of points. On one side, the corresponding
g-profile on the whole spatial domain for the radial coor-
dinate, as well as the corresponding feedforward control
are both computed in order to guarantee their compati-
bilities with the systems constraints. On the other side,
the designed IDA-PBC feedback control aims at improv-
ing the system stabilization and convergence rate as well
as at attenuating the approximation errors. Nevertheless,
an integrator is still necessary to cancel the static error on
the safety factor profile.

Two scenarios are figured out in the sequel. In the first
one the PCH model equivalent to the resistive diffusion
equation is used with two control signals Vjsp and P.g: to
regulate the ¢ radial profile at two positions. In the sec-
ond one, the magneto-hydro-dynamic couplings and the
thermal-electromagnetic model are investigated. A third
control signal Ppeq: is used in order to reach a given ref-
erence value for the ¢ radial profile at a third point. The
simulation results will be presented, they are based on
the RAPTOR code (cf. [6, 5]) for the TCV (Tokamak of
Variable Configuration at EPFL, Lausanne, Switzerland)
tokamak real-time control system. Besides, based on these
previous simulation tests, the IDA-PBC controller has also
been implemented and tested on the real TCV experimen-
tal facility.

This paper is organized as follows. In section 2, the
IDA-PBC design methodology is revisited and adapted to
the specific studied case. In section 3, the model plant is
clearly explained, the control problem is reveals and the
solution is proposed.  The resistive diffusion model (cf.
[20]) is firstly used as a control model in section 4. A
non-linear feedforward control takes into account the sys-
tem constraints and a simple “linear” IDA-PBC feedback
control is discussed with the help of some practical con-
siderations. Some simulation and experimental results are
also figured out. In section 5, the coupled TMHD system



(cf. [21]) is then used as a control model for the IDA-PBC
controller design. The same methodology is adapted for
new coupled system in 5.2 and the control law is tested
only on simulation and compared to the previous one in
subsection 5.4. The paper ends with a brief conclusion and
some prospects for the future works.

2. IDA-PBC closed loop control for PCH systems

The IDA-PBC control design may be considered as the
the most general one among passivity based control (PBC)
designs for PCH systems. Readers may refer to [14] for
an overview and connections between IDA-PBC controls
and more particular types of PBC, such as energy shap-
ing, power shaping, or control by interconnection. A brief
reminder of the IDA-PBC design methodology (inspired
from [15]) is given hereafter.

2.1. Methodology overview
Given a standard PCH system:

OH
i= @ -R@ED @ @
where z € R" is system state, J (z) = —J7 (z) is a skew-

symmetric interconnection matrix, R (r) = RT (z) > 0
is a symmetric positive semi-definite dissipation matrix,
H (x) is the total energy function or Hamiltonian and g (z)
is the control matrix which depends on system state x.
The main idea of the IDA-PBC method is to choose an
appropriate feedback control law u (x) so that the original
system (2.1) is pulled back to a reference system with a set
of desired properties. Let us design a closed loop reference

system:

. OH

i = [Ja(z) = Ra()] 7 () (22)
with Jy (z) = =J7] (z), Ra(x) = RE (z) > 0 and a strict
local minimum x4 for the closed loop Hamiltonian Hy.
This minimum =z, is a locally stable equilibrium since:

in = — (8sz>T Ra ((%;Hd) <0

= (2.3)

thanks to Jy (z) = —J] (z). The static state feedback is
then chosen such that the closed-loop system matches this
reference PCH system by using the “tuning parameters”
Ja (x), Re (z), H, (x) such that Jy (z) = J (x) + Ta (2),
Ra(z) = R (z) + R, (x) and such that Hy (z) = H (z) +
H, (z) has the minimum at 4. This leads to a matching
equation for the equivalence of (2.1) and (2.2) which reads:

OHy

OH
(T =R) 5 +gu=(Ja—Ra) 5~ (2.4)
and leads to the feedback:
- OH OH
w=(9"9) " g |(Ja-R) 2L — (T -R) | (25)

ox ox

Besides, the following conditions are required for the solu-
tion:
i) (Integrability)

T () = [%Hd @) ) (26)
ii) (Equilibrium assignment)
Pt e =0 (2.7)
iii) (Lyapunov stability)
% (xq) >0 (2.8)

The first condition implies the existence of the scalar en-
ergy function Hy, while the two others ensure respectively
the existence of the minimum of Hy at the desired equilib-
rium value x4 and its stability.

This general design methodology preserves many de-
grees of freedom since the controller is set only once J,, R,
and H, have been chosen. In this paper, we propose a
particular design methodology for our system in the next
subsections.

2.2. Integrator extension

An integral action may be added to the IDA-PBC con-
trol action in order to eliminate the static error due to
the approximations or disturbances, while always conserv-
ing the PCH structure of the whole closed-loop system (a
simple design for this integral action is proposed in [12,
sec.6]). In this work, we have adapted this integrator into
our system.

Proposition 2.1. Consider the system of equation (2.1)
in closed-loop with u = p (x) + v:

(3 ]=[55 9)[25] o

where x; € RF are the extended integral variables and
K; € R™* the corresponding integral gains. The extended
Hamiltonian

W (z,27) 2 Hy () + Hy (z7) (2.10)
qualifies as a new Lyapunov function, in which Hy is con-
sidered as the energy function associated with the integral
effect. It may be designed as the usual quadratic form:

Hy = 227 Qs Qr = QF € REX* 2.11

1= 5% LIt 1=Qr eRY (2.11)

The integral contribution in the control action is then de-
rived:

t
—1
v=—(9"9) gTKIQI/ KTo,H, (2.12)
0

Stability properties of x4 remain preserved since the aug-
mented system (2.9) keeps the canonical PCH form.



Remark 2.2. The IDA-PBC control law developed in the
paper can be considered equivalent to a proportional con-
troller. However, the controller gain is derived based on
the system structure, which can guarantee the stability
and the robustness against the system uncertainties and
disturbances. The integrator is one of the extensions for
PCH system which were presented in [12, sec.6]. The key
point is that this integrator can be put around the passive
output to preserve not only the stability, but also the PCH
structure.

3. Control problem and strategy

The simplified tokamak plasma model in figure 1.1 is a
multi-physics system, which can be represented in the fig-
ure 3.1. The governed equations are the Maxwell’s equa-
tions in the electromagnetic domain, as well as the energy
balance equations in the material domain. For the sake
of simplicity, this work takes into account the quasi-static
equilibrium assumption (cf. [3, Chap. 6]), in which the
plasma may be assumed to have reached a mechanical sta-
tionary profile at every instant considered for the heat or
magnetic flux diffusion phenomena. Therefore, only the
thermodynamics associated with the heat transport equa-
tion is considered in the material domain.

Inductive Nen-inductive
clirrem Electromagnetic CHFPENT (@fenis)
Domain
K
Loreniz Jﬂld;x.hl
Soforees || 77| effeer S
S --"'"-H-F’
| y
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fow [ Aechanies —=(Hydruulics) injection
| N - ,

Figure 3.1: Multi-physics tokamak system

There are some proper actuators in each domain for
plasma heating. The ohmic heating by inductive current
is controlled by the boundary loop voltage Vj,o, of the
central solenoid (figure 1.1). However, when the temper-
ature is over 1 keV , ohmic heating becomes practically
useless due to the resistivity decreasing with the temper-
ature. Hence, non inductive heating and current drive
methods were developed to deal with this problem. The
non-inductive current J.,; and the heat flow Sjq: are both
supplied by various antennas heating systems (the reader
can refer to [22] for details of different antennas systems).
The mass injection is used to control the plasma density

by an independant system and not considered in this work.
in this work.

Two strong couplings between the electromagnetic and
thermal domains are the Lorentz force and the Joule ef-
fect. More precisely, these couplings are included in the
system parameters, such as the resistivity 7, the thermal
diffusion coefficient y and the bootstrap current Js, an
extra current density produced by the magnetohydrody-
namic coupling effect (cf. [22] ).

The paper is based on practical control issues on toka-
mak plasma, one of them is the advanced control of the
safety factor profile ¢q. This factor is in-fact the ratio be-
tween the magnetic toroidal field and the poloidal one,
and it is approximated by inversion of the plasma cur-
rent profile. The factor is really important for magneto-
hydrodynamic stability and plasma confinement; for ex-
ample it is usually desirable ¢ > 1 (cf. [3, Chap. 6]) and
to be kept the ¢-profile near the center as flat as possible.
Sometime, the profile of ¢ < 1 is also studied for other
plasma behaviors, such as the saw-teeth phenomenon (cf.
[22] ).

The plant model for the g profile control is widely used
as the resistive diffusion equation, which is a Partial Differ-
ential Equation (PDE) derived from the Maxwell’s equa-
tions. The details of this controlled model are developed in
section 4. Moreover, section 5 reveals a coupled controlled
model to take into account the thermal domain with the
heat transport equation and the system couplings for ¢
profile control, which makes the advantage of our con-
trol design in comparing with the previous control laws
(model-based predictive control in [18], current profile op-
timal tracking in [17], robust controller for the poloidal
magnetic flux profile in [16], Lyapunov approach in [1] or
sliding mode in [7]) where only Maxwell’s equations are
considered.

The target profiles of ¢ are usually given by the physi-
cists based much on the tokamak machine, accompany
with the complex calculus programs as well as the test
scenario.

In the sequel, the ¢ profile control using IDA-PBC
method is tested with the RAPTOR code developed for
the TCV tokamak (cf. [6, 5]). RAPTOR is a 1D trans-
port code specially designed for a fast execution compat-
ible with the needs for real-time control or for nonlinear
optimization schemes. The RAPTOR parameters are val-
idated with experimental data. The code is also coupled
to the real plant of TCV for some diagnostics and con-
trol purposes, such as giving some important plasma pro-
file estimations: the g-profile, the resistivity 7, the boot-
strap current jps, and the control profile fe.; or frear, etc.
Hence, in our work, it is used to validate the control laws
before implementing on TCV real plant.

3.1. Control problem

Besides the issue of the controller parameter choice
(Jas Ra, H,) of the IDA-PBC method, the non-linearities



and actuator constraints still complicate the control syn-
thesis. Regarding the distributed controls, the real action
signals are the total powers P..:(t) and Ppeqt(t) of the
external current drive Je,:(z,t) and the external heating
source Sheqt(2,t) respectively (z denotes the spatial coor-
dinate). The control deposits g (z) u (t) are approximated

as:
Jea:t
Sheat
where feut (2,t) and freat (2,t) are the specific spatial
deposit shapes of these “distributed” controls (typically
Gaussian shapes), the control matrix ¢ (u) can be now
considered spatially dependent g (2).
These actuators are considered in the TCV case with
ECCD ( Electron Cyclotron heating and Current Drive)

system (cf. [23]). Two ECCD clusters? are used to gener-
ate both the non-inductive current and the external heat-

ing source:
Pezt
Pheat

The first one P4 is used as a co-current source (to in-
crease the total plasma current) and the second one Pp
as a counter-current source (to decrease the total plasma
current).

Notice that in general, some external source deposit
profiles also depend on the source total powers such that
fmrf = fe:x:t (Z, t7 Rﬂ:]:t) and fh,ea,t = fhe(x,t (27 t, Ph,ea,t)- One
may refer to the Low hybrid heating source which is simply
defined in [23] for more detail. Thus, when the non-linear
control g (x,u) does not correspond to the standard PCH
form in (2.1), the simple feedback control derived in equa-
tion (2.5) can not be directly applied.

= fext (Za t) Py (t)

= fheat (Zy t) Pheat(t) (31)

=Py — Pp

= (Pa+ Pp) (32)

3.2. Control strategy

In order to deal with the system control problem, a feed-
forward® control will be designed first which leads to a
reachable steady state, then the closed-loop stabilization
and the convergence rate will be improved via an IDA-
PBC feedback control. This (usual) control strategy is
summarized in the figure 3.2.

For the design of the IDA-PBC feedback control, in gen-
eral, we will make use of the linearization of g (z, u) around
the equilibrium profile (z,u), (where ugq denotes the feed-
forward part of the control action which is designed with
the non linear PCH model). This will help us to com-
pletely distinguish the feedforward and feedback effects,
as well as allows us to apply the “traditional” IDA-PBC
feedback design discussed in the previous subsection.

4The details for the TCV actuators may also be found in the
website http://crpp.epfl.ch/research TCV_Heating

5The term “feedforward” used in this paper refers to the station-
ary control at the equilibrium.
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magnetic field profile
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feedback
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Figure 3.2: The proposed control strategy: a nonlinear feedforward
control and a feedback control designed with the help of the linearized
model
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Proposition 3.1. Assuming a good accuracy of the model,
the feedback effect contribution is considered widely weaker
than the feedforward one into the total control law g(x, u)u.
Thus the feedforward part of the controller is computed us-
ing non-linear expression of the system and a linearization
around the equilibrium point can be done for the computa-
tion of the feedback part:

g(z,u)u = g (zg,uq + ou) (ug + ou)

(3.3)

R gatd + gadu
where gq = g (xq,uq), uq is the feedforward and du is a
feedback control.

3.3. Robustness analysis

In this subsection, the robustness of the controller
against two kinds of uncertainties is studied. The first
one is on the system dissipation R coming from a bad es-
timation of the system parameters (such as the plasma re-
sistivity  and the thermal diffusion coefficient x see [23]).
The disturbance defined via the uncertainty on the resis-
tivity 0n and on the thermal diffusion coefficient dy leads
to an uncertainty 6R = 0R” applied on R. The disturbed
system can be defined as:

T = [jd — (Rd + 5R)] O, Hy (34)
With this kind of disturbance, the system is still stable as
long as the total dissipation is positive, i.e. [Rq + dR] > 0.

The second one concerns the uncertainty on the actua-
tor profiles (Jezt, Sheat as well as a bad knowledge of the
bootstrap current Jps). It can also include the approxima-
tion error during the linearization in (3.3):

g (x,u)u = gquq + gadu + g (ug + du) (3.5)
—_————
¢

This kind of uncertainty is not trivial to stabilize by the
choice of control parameters Ry and Hy. This problem
may be handled case-by-case by the small gain theorem

(ct. [8)).



4. First case: the PCH resistive diffusion model

The proposed IDA-PBC controller allows to stabilize
the safety factor profile at the desired reference using two
controlled (scalar) variables: the loop voltage Viop(t) and
the external current power source Pe..:(t). The feedfor-
ward control is designed by choosing the (reachable) de-
sired steady state. In this example, a simple controller
tuning for the IDA-PBC parameters is proposed. This
tuning is equivalent to damping assignment and energy
shaping. The simulations chosen to illustrate the approach
are based on TCV configuration.

4.1. The resistive diffusion control model

One obtains in [20], using our symplectic Galerkin
scheme, the following time-dependent dissipative Port-
Controlled Hamiltonian model equivalent to the resistive
diffusion equation, derived from the Maxwell’s equations
in electromagnetic domain:

o (5)=|( S )= 9] (% e, )(5)

—_————

orx J R OxHp g
— = s
+ fext Pegt 0 P
0 Jy4 ( ext )
Vicop
————
9(z)

w(t)
(4.1)

The bold variables d, b, J,s and J.,¢ are the time-varying
coeflicients of the expansions in the chosen approximation
bases of respectively the electric field, the magnetic field,
the bootstrap current density and the external current
source density. Note that the boundary control Vigep(t)
is now embedded in the finite dimension state equation.
The matrices Jy, Jy with J; = —JQT are obtained from the
discretization (and reduction) of the spatial derivation 0,
in the effort approximation basis while Jy is related to the
boundary coefficient of this approximation. The dissipa-
tion matrix R is determined by using the resistivity ap-
proximation in the same approximation bases 1 (z,t). The
total (approximate) energy Hpgjs is defined as a quadratic
function:

1 1
HEM = § (dTGeld + bTGmgb) = iﬁETQ{II

where Q = ( GOEZ GO
mg

symmetric positive and reduced to, respectively, the elec-

) , the matrices G; and G,,,4 are

tric and magnetic permeability, —— and —2, in the sim-
3 Ho
ple anisotropic case. The coefficients Cy, C'5 are the toric

coordinate coefficients defined by the plasma quasistatic
equilibrium (cf. [3, Chap. 6]). The external current source
is assumed equal t0 Jezt = fewt (2) Pext (t) where fer: (2)
is the external current source spatial distribution.

This reduced system is thus defined directly in the usual
explicit linear PCH form (2.1). Nevertheless, since the ma-
trix g () is not full rank, we have here an under-actuated
system to deal with. Therefore, a reachable equilibrium as
well as the corresponding feedforward is necessary to be
determined in the sequel.

4.2. Reference state generation for the resistive diffusion
model

The setting of the equilibrium point is restricted because
of the actuator limitations previously discussed. To pro-
vide to the controller a reachable equilibrium profile, from
two points of the reference g,.y used by the physicist, the
steady state x4 = (d, b)dT is computed (with by deduced
from the inverse of the safety factor), and the correspond-
ing feedforward control ug = (Peyt, Vloop):;lr is derived. The
plasma resistivity is supposed to be known as well as other
system parameters. The equilibrium profiles x4 will be
adapted online to take into account the variations of the
actuators parameters fey¢.q and the reference gr.y. Using
the geometric reduction and the symplectic discretization
method in [20], the relation between the ¢-profile and the
magnetic field By (cf. [3, p.255]) becomes in the chosen
approximation spaces:

By (zi,t) = w! (2) ba () = 21 Bgoa® "

7

(4.2)

where ¢; denotes the values of g at the position z;, Bgo the
toroidal magnetic field intensity at z = 0, a is the small

w{\ffl (2i)
the N — 1 Bessel approximation functions. On the other

hand, at the equilibrium &4 = 0, the equation (4.1) be-
comes:

plasma radius and w/ (z;) = ( w{ (zi)

{Jlamgbd +R7'Gada + Jewt.a +Jpsa =0

—J2Gerda + J1Vieop.d =0
P
dg= (0 (J2Ge)™t . et
a= (0 (J2Ga) 4)(woop ) (4.3)
= ba= = (1Gmg) " ( feara R@TIT )ua

C(t)
- (Jleg)71 Jbs.d

From (4.2) and (4.3), the feedforward control is therefore:

(), = (o) Yew)  xomeant) ()

(4.4)

4.8. IDA-PBC simple choice: energy shaping and damping
assignment

In the sequel, a non-linear “proportional” feedback con-
trol is proposed. The desired energy Hy; = H + H, is
assumed to be the usual a quadratic form:

Lor Lor
Hy = §X QuX = §X (Q+Q.)X (4.5)
with X = o — x4 the state error and Q4 = QZ; > 0 (in
such a way that H, satisfies the integrability, equilibrium
and stability conditions (2.6-2.8)).

We propose hereafter a simple parameter tuning to mod-
ify only the damping and the energy of the system. We
choose J, = 0 since the interconnection structure Jy
doesn’t modify the convergence speed of the system to-
tal energy Hy in equation (2.3). The matrix Q, shapes



the total energy storage function Hy of the closed loop
system, while R, plays the role of adding dissipation.
Since the initial system has dissipation R only on the
electric field domain (linked to the first variable d), it’s
possible to add dissipation on the other field (linked to
the second magnetic domain whose state is described by
the variable b), via the matrix R, by using the form
R, = R = 00 } ,0 < R, € R"™™ where R, is
a 0 R,

chosen to be a diagonal matrix (only on the whole system
state) or eventually only has some non zero diagonal val-
ues corresponding to the two reference positions z; and zs.
The higher the value of R, is, the faster the system will
converge. However, the input power limitation on the loop
voltage Vj,op doesn’t allow to set a huge value for R,.

The choice of Q, is more complicated. The only condi-
tion to be satisfied is Q4 = Q + 9, > 0. One can refer
to section 3 in [15] for a detailed discussion about how to
choose Q, so-that the matching equation could be (fully
or partially) satisfied. An arbitrary choice of Q, will any-
way give an equivalent control signal by applying (2.5).
However, the control law in this case doesn’t fulfill the
matching equation (2.4). This also means that the static
feedback transforms the original system (2.1) into the de-
sired one (2.2) with an unknown error coming from the
matching equation error. Thus , nothing guarantees the
existence of a control law agreeing with a particular choice
of IDA-PBC parameters.

One of the approximating solutions proposed in [15] is
to pre-multiply the matching equation (4.6) with the left
annihilation gt of g4 (i.e. such that g7 g4 = 0), and to
choose Q, as the solution of the “linear” equation:

gl ([\7 - (R + Ra)] QaX - RaQX)

(4.6)
One should remark that Q, defined in this way is time-
dependent due to its dependence with R (z,t).

0= grgadu =

4.4. Simulation results

In the simulations,the electronic temperature profile of
the plasma is computed using a thermal diffusion model
in the RAPTOR/TCV. The plasma resistivity mainly de-
pends on this temperature whereas the bootstrap current
is a function of its gradient.

Only in this test scenario, the total heating source Ppeq;
is kept unchanged during the plasma discharge. We also
consider that all the states are measurable or computable
from measurements. One can “correctly” estimate the
whole profile of ¢ in TCV. Two reference values for the
safety factor ¢ are defined at the radial relative coordi-
nates z; = 0.1 and z3 = 0.4 which are in the interesting
zone. The feedforward calculus gives ug as well as the ref-
erence profile ¢g (corresponding to the two reference values
and taking into account actuator limits). The IDA-PBC
control determines the feedback signal du from (3.3) to
correct the error X.

Remark 4.1. In the TCV case, the output g-profile deter-
mined by RAPTOR is based on a finite element discretiza-
tion method of the resistive diffusion model, while the one
in our model comes from a symplectic geometric method
([20]). While the g,cs is determined from our PCH model
in (4.1). This explains the non-perfect match of two g-
profiles showed in the figures 4.1-4.3. In other words, by
increasing the number of approximation base functions,
the error can be decreased and the complexity and the cal-
culating time increase. The figure 4.4 illustrates the model
with 20 base functions instead of 5 in the figure 4.3. The
precision is much improved at the plasma edge and mostly
unchanged at the center. The controller objective is how-
ever only to regulate ¢ at some chosen positions, usually
near the center (and slightly relaxes elsewhere). Therefore,
the approximation choice is a compromise between preci-
sion and complexity, especially regarding real-time control
where the complexity is not promoted. Hence, the small
number of base functions is used in the sequel.

In the test case, the reference g-profile is set with the
values at the two points z = 0.1, 0.4 as ¢, = (0.85, 1.25).
The heating power is switched on at t = 0.2s, the feedback
control starts at ¢ = 0.45s. Then at t = 1.2s, the reference
is changed to the new desired profile ¢, = (1, 1.25). We
denote error1, 2 the gaps between ¢ and g,y profiles at
two considered positions.

Since the system is naturally dissipative, the feedforward
in figure 4.1.a shows the convergence of the opened-loop
system. Thanks to the re-computation of the equilibrium
profile as in (4.3) at each step time, the g-profile reaches a
steady state which is quite closed to the reference values.
In figure 4.2 and 4.3, the response time is decreased by
the feedback effect via the R, damping and the Q, energy
shaping.

It’s important to note that, in general the feedback effect
does not significantly acts on the considered particular po-
sitions. It does ameliorate the whole ¢- profile when more
damping assignment is added (see figure 4.2 and 4.3).

= = = e
q
b oroi

- = = 5r0r

Figure 4.1: Open-loop response with feedforward control
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Figure 4.2: Closed loop system with an IDA-PBC controller and a
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Figure 4.3: Closed loop system with an IDA-PBC controller and a
larger damping R,
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Since there are always static errors caused by the ap-
proximations in the linearization (see subsection 3.2) of

the actuator distribution profile and in the state estima-
tion in (3.2), an integrator is added to the studied scenario
and results are shown in figure 4.5.

Remark 4.2. The errors on the g-profile at the two consid-
ered positions are totally eliminated after 0.5s. However,
it is “expensive” in term of controller energy to compensate
the gap on the two values of the g-profile below 0.05. Fur-
thermore, P4 can’t be technically set under the power of
150 KW and consequently the absolute convergence seen
in figure 4.5 is unreachable in the reality. On the other
hand, a small error on g¢-profile doesn’t lead to a signifi-
cant change in the behavior of the whole system.

In the figure 4.6, two disturbances are added. An error
of 0.57m is added on the measured resistivity at ¢t = 0.65s
and an error of 0.5 f..; is added on the estimated actuator
profile at ¢ = 0.9s. These perturbations are effectively re-
jected. As expected, the loop voltage Vj,o, predominantly
corrects the perturbation on resistivity while the external
current source is used to compensate the distributed error
on the current profile.
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Figure 4.5: Closed loop system with IDA-PBC controller with inte-
grator effect

4.5. Ezxperimental result

The IDA-PBC control with the simple damping and en-
ergy shaping in subsection 4.3 was implemented on TCV
Tokamak in its last campaign before its reconstruction and
maintenance in 2013. The real experimental data are com-
pared to the simulation one in the figure 4.7. The test
scenario is set as the same as our previous simulation in
the previous subsection.

The controller reacted as predicted in the first period
around 0.455—0.8s. The average control values are consis-
tent with the simulation result for all P4, Ppg, and Vioep.
Unfortunately one of the cluster (the co-current source,
cluster A) stopped working at ¢ = 0.8s. From then we
lost the control efficiency as the controller wasn’t informed
about this event. However, the closed loop control at least
acts in the “good direction” (using cluster B only) when
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Figure 4.6: Closed loop system with IDA-PBC controller (with the
integrator) with perturbations on the resistivity and on the actuator
spatial distribution

gres profile reference changed until the end. We can re-
mark at ¢ = 0.8s, when P4 was cut off, the simulation
realized the variation of g-profile, then reacted on Pg gim,
whilst in practice, it seemed that the controller didn’t fig-
ure out the change. It maintained Pp until the reference
moved to the new profile. One of the unexplained observa-
tion is that the real controller Pp responded more slowly
than in simulation, even in comparing to the beginning of
the feedback at t = 0.45s.

The g-profile at two considered positions are also showed
in the figure 4.7. The feedback control is re-simulated
based on the experimental average plasma density n
from the shock 49514.The experimental control signals are
equivalent to the simulated one, the figure 4.7 shows no
differences but the measure noise between them. Further-
more, the measured values of the g-profiles do match quite
well the simulation ones.

5. Second case: TMHD Coupled system

Actually, the resistive diffusion model used in the previ-
ous section is equivalent to the resistive diffusion equation
which is widely used as a control model for the plasma
(when one tries to regulate the safety factor profile, for
instance). However, as the influence of the temperature
T on certain parameters in electromagnetic domain, such
as the resistivity 7 (7") and the bootstrap non-inductive
current Jy; (0.7, is not negligible. The MHD couplings
between the electromagnetic and thermal domains are pre-
sented in [21] in the irreversible entropy source term and
in the bootstrap current source.

Therefore, a coupled control model made with the re-
sistive diffusion submodel and the thermal diffusion sub-
model, is investigated hereafter. This finite dimensional
control model is obtained with the coupling of the two
finite dimensional approximations from the two diffusion
models, using two geometric reduction schemes. Again, a
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Figure 4.7: TCV shock 49514

feedforward control will be used to guarantee the compati-
bility of the designed control with the actuator constraints.
Then, an IDA-PBC feedback law will be synthesized using
the linearized error system.

As the result of adding the thermal diffusion submodel,
a third actuator, the external heating power source Ppeqt,
will be involved. Then, due to the under-actuation of the
studied system, only the values of the safety factors at
three reference points z1, zo and z3, denoted respectively
q1, g2 and g3 will be assigned with the help of the three
available control variables Viyop, Pegt and Ppeq:. However,
the corresponding full radial profile reference for g-profile
(hence for the state variables of our model) is required in
order to define our IDA-PBC state feedback. This pro-
file will be computed by taking into account at the same
time the actuation constraints and the TMHD couplings.
This procedure leads to an achievable steady state for the
feedback design and, on the other hand, transforms the
feedback design into a linearized IDA-PBC feedback con-
trol problem. The obtained numerical results are validated
with the RAPTOR code.

5.1. TMHD control system

The first resistive diffusion submodel is recalled in equa-
tion (4.1) in the previous section. The second submodel
is the discrete thermal model derived from the 1D port-
Hamiltonian thermal diffusion model (cf. [21]), using the



same discretization methodology as for the resistive dif-
fusion submodel. This finite-dimensional approximation
reads:

Orecy _ 0 Jri\ (0 0 Qrecy
0 - Jra 0 0 R;l fy
(i)
JraTy
1 T
Hr = 5% Qrees
(5.1)
where e, f, € RV*1 are respectively the time dependent
coefficients of T'Dys and of the heat flux f,. The ma-

trices Jp1, Jpa € RNXN with Jp; = —JTTQ are obtained
from the reduction of the spatial derivation operator 9, in
the chosen finite dimensional spatial approximation bases.
Qp € RVXN s the positive definite matrix obtained from
the discretization of the constitutive relation for the energy
(i.e. between e., and T) and Ry € RV*¥ is the thermal
resistivity approximation which depends on the thermal
diffusion coefficient x. This thermal diffusivity coefficient
(in our model) is used to write the dissipative constitutive
relation between the thermal force F' and the heat flux f,.
Jra € RVX1 is related to the boundary coefficient, Ty is
the fixed value of the average temperature at the boundary
and Hr is the thermal energy.

Note that the PCH model for the thermal diffusion (5.1)
is given in implicit form only, since there’s only one bal-
ance equation for the entropy. The second equation (used
to close the constitutive equation with the skew-adjoint
operator to form the Dirac structure) is the dissipative
relation giving the thermal force.

The aggregation of the resistive diffusion and the heat
transport submodels results in the finite dimensional
TMHD model which is written in the (implicit) PCH-like
form with z = (d, b, es,)"

(”5)=U<x>—R<x>1(a§fﬂ)<m>+gu 52)
where
(0 5 0
oo 1) (%)
R™' o0
R=R" = ( 000> <81f;1> >0

J is a skew-symmetric interconnection matrix defining a
corresponding Dirac structure while R is a symmetric pos-
itive semi-definite dissipation matrix which is nonlinearly
depending on the state variables. The total energy func-
tion or Hamiltonian is simply the sum of electromagnetic
and thermal energy: H = Hgy, + Hy. As a consequence
of this port-Hamiltonian representation for the TMHD
model, the IDA-PBC approach for nonlinear control may
be applied to the whole interconnected model as it was
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already the case for the electromagnetic part of it (equiv-
alent to the resistive diffusion model).

The control of the interconnected system (resistive dif-
fusion and thermal diffusion equations) is expected to
take advantage of the explicit state space representation
of the TMHD coupling analysis to improve the control
performance through a better parameter estimations for
the resistivity R (via a good approximation of 7 (T,) and
of the bootstrap current Jys (Te, 9,T¢)), as well as for
the thermal resistivity Ry (via the diffusion coefficient
x (0.T, B)).

Besides, the control actions are assumed to satisfy spe-
cific shapes (radial distribution) via the functions f.,; and
Sheat (namely Gaussian distributions in the studied case).
Therefore control variables are the scalar total external
current power P,,; and heating power Pjeq:. As discussed
in subsection 3.2, this implies that only a limited set of
equilibrium states =4 = (d, b, eex)dT are reachable. Thus
a feedforward control will be designed first which leads to
a reachable steady state for which the closed loop conver-
gence of the feedback diffusion system may be obtained via
an IDA-PBC controller. Previously, a feedforward control
(Peat, Vloop)g has been proposed to achieve the regula-
tion for two reference points of the safety factor profile:
at the center and at the boundary. Here, using the in-
terconnected TMHD model will allows us to add a third
reference point of ¢ by the use of the new control action
Pheat-

5.2. Steady state generation for coupled TMHD model
The steady state x4 of (5.2) satisfies:

Jlegbd + R_lGeldd + fea:tpea:t + Jbs =0
—J2Gedg + JiVioop.a
Jrifa+ S

JraGree, — Ry + JraTh

The following points could be noticed :

e The input signal T} is assumed constant in these equi-
librium equations (77 = 0 for instant)

o The source term S includes the Joule effect S oue =
NJtot (Jtot — Jni) (Where Jyop is the total current den-
sity) and the external heating source Speq: which is
controlled by the heating power Ppeq.

e The TMHD couplings - including the terms
Jos (Bo, T, 0.T), n(T), and x (9.7, By) - are esti-
mated by empirical analytic expressions given in [23].
With the assumption that the thermal steady state
for T" and 0,T are quickly established and also as-
suming a constant particle density n, we can deduce
from these expressions the following values for:

— the resistivity coefficient :

n(T) = Cy (b)T~*/?



— the thermal diffusion coefficient:
X (0:T, Bg) = Cy (b) 0.T
— the discrete bootstrap current:

Jos (Breea + B2R7'£;)

L
b
_ !
b

1 _ _
= b (ﬂl (JTQGT) ! + ﬁ2) (JT1RT) !

X (SJoule + Sheat)

where C,, (b), Cy (b) , f1 and (2 are the coeffi-
cients depending on the system state (cf. [23]).
The Joule effect Sjoye may be considered as a
measurable output assuming that the total cur-
rent and the external non-inductive current are
known. It’s also one of the MHD couplings but
in practice, it is negligible when compared to the
external heating source. Sheq: is given by the
analytic expression freqt Pheat Where freqr is a
chosen (known) Gaussian function of z which is
a characteristic of the used actuator.

(B (Jr2Gr) ™' + B2) (JriRr) 'S (5.4)

Due to the different orders of magnitude between T and
b and to the fact that only small variations of the mag-
netic field are considered, the dependence of the bootstrap
current, the plasma resistivity and the thermal diffusion
coefficient with the magnetic field may be neglected. This
allows a linearization for the feedforward computation, us-
ing, for the computation of these quantities, the measure-
ment of the magnetic field instead of the foreseen reference
bg. It has to be noticed however that doing so, the sta-
bilization with the state feedback control will be obtained
only locally, when the requested references will be close
enough from the system initial state values.

Remark 5.1. One can remark that only the influence from
the thermal domain to the electromagnetic one is repre-
sented and not the opposite sense. This choice however is
justified by the assumption that the diffusion time-scales
of each domain are separated by several orders of magni-
tude. The temperature establishes thousand times faster
than the magnetic field does. In consequence, the magnetic
field can be considered as “static” in the computation of
the MHD couplings.

Finally, the feedforward is deduced from the steady state
equation (5.3) using the relation between the safety factor
¢ and the magnetic state b in equation (4.2). The obtained
feedforward ug is:

wf (21)

P -1
e:):é
( (Pheat)® Vioop ) = (( wl (25) ) C)
Pheat d “’f(zs)
T
2n (Bgoa?) ( 12 i‘)
a1d 924 93d

X wl (1)

+| wlz2) | (11Gmg) ™! ChsaSsoute
w’ (23)

(5.5)
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where © ~ (J1Gmg) ™' ( feat  CrJ3'Ja  Chsfneat );
Cr = R/ (Pheat)Z/Q, while 21, 29, 23 are the three positions
of the three references (¢1, g2, ¢3), for the safety factor.
The feedforward control is thus derived from the steady
state for the system obtained by the linearization at each
time step of the non-linear parameters R, Ry, Gp and
Jps. The feedback control is then required not only to
increase the convergence speed but also to overcome the

errors caused by the linearization assumptions.

5.8. Controller tuning

The interconnected system naturally converge to its
equilibrium thanks to the two dissipations represented by
the dissipation matrices R and Rp. We decide to pre-
serve the interconnection structure J of the original sys-
tem, hence not modifying the internal dynamical couplings
(Ja = 0). Our control design consists in setting R, con-
stant such that Ry = RY > 0 (the desired dissipation
rate) and then to determine the shaped Hamiltonian Hy
and the feedback signal du with the help of the match-
ing equation (4.6) and the integrability, equilibrium and
stability conditions (2.6-2.8).

The robustness of the controller with respect to two
kinds of uncertainties is studied. The first kind of un-
certainties are those on the system dissipation R resulting
from poor estimations of the plasma resistivity n and the
thermal diffusion coefficient x. The second kind of uncer-
tainties are related to the linearization assumptions made
in the derivation the feedforward control and in the ap-
proximation of the bootstrap current J;.

Briefly, with a choice of supplementary dissipation R,
such that R is sufficiently large, we can handle these un-
certainties (see subsection 3.3). Of course, the actuator
power saturation will prevent us to compensate very large
perturbations. Besides, the designed controller being ba-
sically a proportional controller, the choice of large values
for the proportional gain may create undesired oscillations
and instability for the closed loop system. In fact, the
linearization condition in (3.3) isn’t satisfied anymore.

5.4. Simulation

Three reference values for the safety factor ¢ are de-
fined respectively at the radial relative coordinates z =
0.1, 0.3, and 0.4. The feedforward calculus gives uy, the
whole reference profile ¢; and the average temperature
profile Ty, corresponding to these three references and tak-
ing into account the actuators constraints. The IDA-PBC
control determines the feedback signal du from matching
equation (2.4) to correct the error X. The IDA-PBC pa-
rameters are designed as discussed in the previous subsec-
tion, with the choice of 7, = 0 and R, such as:

(81%21) 0
)

Ri> 0
0 (00



where the positive diagonal matrix R,; and R, account
for the dampings added in electromagnetic domain and
thermal domain respectively. As a particular case one can
set only three diagonal values for the matrices R,; and
R,5 which correspond to three chosen reference positions.

The proposed IDA-PBC controller is tested on the RAP-
TOR code with the TCV configuration. The simulation
results are showed as below.

P, ()
E CUN ]
L Preal i
L 30,

8f|—a A
6 | == = rer . == 4
i s, Gyrofies 3L £51.9955 ]
o . i
[ i
Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
B
Figure 5.1: Feedforward control of coupled system
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Figure 5.2: Feedback control of coupled system

Figures 5.1 and 5.2 show respectively the results ob-
tained with the feedforward and the feedback controls.
The heating actuator starts at ¢ = 0.2s with the initial
values (Pegts Vioops Pheat);ny= (40EW, —0.6V, 300kW),
whereas at z = (0.1, 0.3, 0.7) the reference g-profile is set
as ¢, = (0.85, 1.1, 2.4). Then at t = 0.8s, the reference is
changed to ¢, = (1, 1.4, 3).

The feedforward does bring the g-profile close to the
reference values but the actuator values as well as the ¢-
profile oscillate around the equilibrium due to the param-
eter linearization and approximation. The feedback how-
ever makes effort to improve the result by continuing to
react significantly on Pje,¢:. However, it doesn’t succeed in
stabilizing the middle reference value for the g-profile. It
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Figure 5.3: Feedback control of coupled system with a supplementary
integrator
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is mainly regulated by Ppeqt, which continues to increase
till the end. An integrator is implanted for the simulation
presented in figure 5.3. A signification improvement is ob-
tained for the first and the third points, which are directly
affected by Pey: and Vjpep, while Ppeq¢ makes impact in-
directly to the second point via the TMHD couplings Jps.
The figure 5.4 shows the temperature profile vs the refer-
ence defined by the feedforward control at ¢ = 0.7s and
t = 1.5s. Although these two profiles are built by two dif-
ferent discretization methods, they still match quite well
to each other. On the other hand, these results lead to
a discussion about the reference choice: should we take
two reference points for the g-profile and one for the T
profile, the latter being directly affected by the heating
source Sheat-

6. Conclusion

In this paper, an IDA-PBC feedback law is presented
for the resistive diffusion of the magnetic flux and then for



the coupled TMHD model - a set of two interconnected
models for the resistive and thermal diffusions inside the
tokamak plasma. The control methodology is based on
IDA-PBC and the control law is derived from a PCH con-
trol model obtained from the geometric/ symplectic dis-
cretization of the corresponding coupled PDEs. An inte-
grator is also successfully used in order to eliminate the
static errors. The actuator constraints and limitations are
taken into account in the equilibrium computation for the
feedforward control action. The temperature profile and
its influence on the resistivity coefficients are integrated
into the control law via the Magneto-HydroDynammics
couplings. The controllers have been tested in simulations
with the RAPTOR code, and compared against the ex-
perimental data. A convergence has been observed with
the computed feedforward and feedback controls. In fu-
ture works, we can increase performance using simultane-
ous control of the thermal and magnetic models. Besides,
the matching idea will be used to perform boundary and
distributed (finite rank) feedback control directly on the
infinite dimension port Hamiltonian model.

Beside the very efficient controller design, one of the
difficulties of IDA-PBC is how to choose the parameters
Ja, Ra, Hy regarding the system and actuator constraints.
An optimal IDA-PBC control can be considered as one of
the solutions for this problem, which is another objective
of our future works.
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