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Abstract. In the context of security, risk analyzes are widely recognized as
essential. However, such analyzes need to be replayed frequently to take into
account new vulnerabilities, new protections, etc.. As exploits can now easily
be found on internet, allowing a wide range of possible intruders with various
capacities, motivations and resources. In particular in the case of industrial control
systems (also called SCADA) that interact with the physical world, any breach
can lead to disasters for humans and the environment. Alongside of classical
security properties such as secrecy or authentication, SCADA must ensure safety
properties relative to the industrial process they control. In this paper, we propose
an approach to assess the security of industrial systems. This approach aims to find
applicative attacks taking into account various parameters such as the behavior of
the process, the safety properties that must be ensured. We also model the possible
positions and capacities of attackers allowing a precise control of these attackers.
We instrument our approach using the well known model-checker UPPAAL, we
apply it on a case study and show how variations of properties, network topologies,
and attacker models can drastically change the obtained results.

1 Introduction

In the context of security, risk analyzes are widely recognized as essential. However, due
to the extremely fast evolution of the state of the art of attacks, they need to be replayed
frequently to take into account new vulnerabilities, new protections, etc. It is also often
required for auditors to be able to replay risk analyses made by vendors in a certification
process. Moreover, the increasing number of updates to apply encourages to replay both
security and safety tests to ensure that new updates do not break the system. Thus, we
need tools able to quantify the robustness of applications or to find attack scenarios.
Furthermore, as a whole ecosystem is emerging around vulnerabilities and attacks,
exploits can easily be found on internet, allowing a wide range of possible intruders from
script-kiddies to governments including hacktivists, mafias, or terrorists organizations.
Those attackers can present various capacities, motivations and resources and can even
collude together. Such differences must be taken into account when assessing the security
of a system.

In this paper, we focus on industrial systems. Generally called SCADA, they control
industrial processes such as electricity production, water treatment or transportation.

? This work has been partially funded by the SACADE (ANR-16-ASTR-0023) project.



Since those processes are usually critical, any incident can potentially harm humans and
the environment. One of the most advertised attack was Stuxnet in 2010 [1] where a
worm managed to sabotage a nuclear facility in Iran. This attack made people realize
that a computer attack can have disastrous effects in the physical world. More recent
attacks against these systems have been revealed in the past few years. For instance in
2014 against a German steel mill [2] where attackers managed to take control of a blast
furnace or in 2015 in Ukraine [3] causing a massive power outage in winter.

Industrial systems are specific in various ways. First they want to ensure mainly
availability and integrity while traditional IT systems often focus on confidentiality
and authentication. Also the lifetime of their devices can vary between 20 to 40 years
and they are really difficult to be updated in case of vulnerabilities. Industrial systems
communicate over particular protocols which where not designed with security in mind.
For example, MODBUS and DNP3 do not provide any security at all while a more recent
communication protocol named OPC-UA includes the use of cryptography and has been
show secure [4, 5] (but currently rarely used in practice).

Related Work. Verifying the security of industrial systems have keep gaining in interest
and various approaches were proposed since Byres et al. in 2004 [6]. In 2015, Cher-
dantseva et al. [7] performed a survey of 24 methods published between 2004 and 2014.
They base their list on criteria such as the domain of application, the use of probabilities
or not, the presence of case studies or if the method is implemented. Similar surveys
have been released in 2012 by Piètre-Cambacédès and Bouissou [8], and in 2015 by
Kriaa et al. [9]. We briefly summarize some of the works listed in these surveys either for
their notoriety or for their closeness to our approach. In 2004, Byres et al. [6] propose a
qualitative approach relying on attack trees to evaluate the security of industrial systems.
Their approach is focused on systems communicating over MODBUS and targeting the
electrical domain. In 2012, Kriaa et al. [10] present a method based on fault trees com-
bined with Markov processes to model attacks on industrial systems. They implement
this approach with the KB3 [11] tool and apply it to the Stuxnet attack. In 2015, they
publish S-CUBE [12], an implementation of the former approach in the Figaro language.
This approach takes into account the applicative logic of the process. In 2017, Rocchetto
and Tippenhauer [13] present a method based on the cryptographic protocol verification
tool CL-Atse [14]. They use the ASLAN++ language to model the industrial system and
its applicative logic alongside with an augmented Dolev-Yao intruder, able to physically
interact with the process [15].

Contributions. In this context, we propose an approach to assess the security of industrial
systems. This approach aims to find what we call applicative attacks. That is, considering
an attacker that already exploited some security breaches to gain access to the system, we
focus on finding what actions can he actually perform and what are the consequences on
the industrial process. To find such attacks, we take into account various parameters such
as the behavior of the process, the safety properties that must be ensured. We also model
the possible positions and capacities of attackers allowing a precise and flexible control
of these attackers. We implement our approach within the UPPAAL model-checker [16]
to automate the discovery of attacks scenarios.



Outline. We first describe our global approach in Section 2. Then in Section 3 we detail
how we instrument it using the UPPAAL model-checker. In Section 4, we apply the
resulting framework on a concrete industrial example.

2 Context

In this section, we first detail how the analysis presented in this paper is included in a
larger approach. Then we propose a case study and detail the parameters we will take
into account.

2.1 The A2SPICS Approach

Our goal is to create a framework to detect applicative attacks against industrial systems.
In this framework, industrial systems are modeled along with safety properties that they
must ensure (e.g.: A furnace should not be started if its door is open). Then using formal
methods such as model-checking, the model is analyzed in presence of intruders. In a
later stage, found attacks could then be concretized into real networks packets that can
be sent to a testbed representing the modeled system. Benefits are two-fold : besides
being able to find applicative attacks, we can check if they are feasible and quantify their
plausibility on the testbed.
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Fig. 1: The A2SPICS approach

In Figure 1, we present the A2SPICS approach for Applicative Attack Scenarios
Production for Industrial Control Systems. We focus on systems that respect safety
properties in absence of attackers. In this context, we consider two phases of analysis. In



the first phase (depicted in blue), we perform what we call an attack vector analysis [17].
It is a risk analysis in terms of security aiming to model attackers. It differs from
well-known risk analysis methods such as EBIOS or MEHARI [18, 19] since they are
focused on the assets to protect and the threats they face. Our risk analysis method relies
on the topology of the system and the security features of communication protocols
and produces what we call attacker models. Such models consists in placing possible
attackers in the topology alongside as their capacities. For instance, if a protocol between
two devices is considered secure, then no attacker is placed on this network channel.
Similarly, if the protocol provides authentication but neither confidentiality nor freshness
of messages, then we can place an attacker that can listen and replay messages. This
first analysis thus allows us to place attackers in the network and choose their capacities
according to their objectives and the security features of the communication protocols. In
a second phase (depicted in green), we take advantage of the fact that industrial systems
are usually well analyzed in terms of safety. Thus, we consider as attacker goals the
negation of a subset of the properties that the system has to ensure, resulting of these
safety risk analyses. Then, based on the nominal behavior of the system, we are able to
conclude if the safety properties can be jeopardized by the attackers. This second phase
is the one presented in this paper.

2.2 Case Study

To illustrate our approach and show its validity, we will apply it on a case study along
this paper. We choose as example a bottle filling factory taken from the VirtualPlant
simulator1. This simulator, designed by Jan Seidl, aims at providing a process simulator
for experimentations. Empty bottles are carried by a conveyor belt. A sensor tells when
a bottle is positioned under a nozzle which then pours liquid into the bottle. A second
sensor detects when the bottle is full and then tells the nozzle to close and the conveyor
belt to move until the next bottle is in place. Finally, a client can start and stop the whole
process. Regardless of the communication protocol used, messages sent by the clients to
the servers are read or write requests followed by read or write responses from the server
of the form:

C → S : READ, variableToRead
S → C : READ, variableToRead, valueRead

And respectively for write requests and responses:

C → S :WRITE, variableToWrite, newV alue
S → C :WRITE, variableToWrite, writeSuccessOrNot

Figure 2 shows a synoptic view of the bottle factory process from the VirtualPlant
process simulator. Although this example is quite simple, it allows a wide variety
of instantiations. First, several properties to guarantee can be expressed: (i) bottles
must leave the factory full, (ii) liquid should not be spilled out of bottles, (iii) the
conveyor belt should start when a bottle is full, etc. Different topologies of the network
controlling the process can also be studied. We can consider the conveyor belt and

1 https://github.com/jseidl/virtuaplant



Fig. 2: VirtualPlant simulator

the nozzle as two distinct components. They could both be controlled by a single
server (as shown in Figure 3) or they can each be controlled by a individual server.
Moreover, the communication protocols used in the network can present different levels
of security allowing more or less powerful attackers. Even the positions of attackers
can be considered. It can for instance be positioned on a network channel as a Man-In-
The-Middle or as a corrupted client or server (e.g.: a legitimate device infected by a
virus).

Client

Attacker

MODBUS Server

Conveyor Belt
Bottle Captor
On/Off Switch

Nozzle
Level Captor

Fig. 3: Example of topology

2.3 Parameters of the model

Our model is composed of various parameters including different entities communicating
together:

Process The process is the industrial application controlled by the system. It can for
instance describe electricity production, liquid treatment or transportation. It is composed



of a set of variables VP linked together by an automaton BP . We denote this automaton
as the behavior of the process.

Clients The clients C are used to send commands to monitor and modify the process.
They manage a set of variable Vc ⊆ VP ,∀c ∈ C and a behavior Bc,∀c ∈ C determining
which command they send and how they react to responses sent by the servers.

Servers The servers are receiving commands sent by clients and applying them to
the process. The security of the communication channel they use is determined by the
protocol they implement (e.g.: MODBUS or OPC-UA). They also manage a set of
variables Vs ⊆ VP ,∀s ∈ S.

Properties The safety properties Φ to check on the system in presence of possibly active
intruders are logical predicates (e.g.: CTL [20] temporal logic properties) on variables
from VP .

Attackers The attackers A are possibly active intruders aiming to violate the safety
properties from Φ. Their position in the network determines the clients and servers
they will be able to communicate with while their capacities determine what type of
action they will be able to perform (e.g.: intercept a message, encrypt a message, etc.).
Depending on their capacities, attackers can also possess their own knowledge.

Topologies We denote as components all clients, servers and attackers. We also denote
the network channels linking these components as network topology of the system.

3 Implementation in UPPAAL

In this section, we describe how we deploy our approach in the UPPAAL model-
checker [16]. We first show how to model the system. Then we detail the attackers
we consider and finally the specifications of the safety properties.

3.1 Framework Architecture

Figure 4 depicts the overall architecture of our framework. It contains three components:
(i) the system’s model, (ii) the attacker models, and (iii) the specification of the the safety
properties. Several models are already predefined as templates in a library we provide to
the user (including clients, servers, attackers, security primitives, etc.). Thus, the user is
only required to provide the topology of the system using templates from the library and
behaviors of clients and servers.

3.2 The system’s model

In UPPAAL, we model the components interacting with attackers as a composition
of timed automata. Clients can create, send requests and receive responses while the
server can receive requests, send responses and execute actions according to the clients’



Fig. 4: Framework Architecture

requests. Attacker act as Man-In-The-Middle intruders and have different capacities
depending on the configuration. Among those capacities, they can listen to the network,
stop, forge, replay or modify some messages according to its knowledge.

In our framework, we model six automata named: Client, BehaviorClient, Server,
BehaviorServer, SecureData and Attacker. They access global variables such as crypto-
graphic keys, messages exchanged over channels2, as well as the system variables VP .
According to Section 2.2, commands are formatted using the data structure 〈cmdType,
variable, value〉 where:

– cmdType is a constant that expresses the purpose of the command (e.g.: read or
write);

– variable is a constant denoting the different variables of the system;
– value is a the value of variable when needed by the command (for instance the

new value of the variable in a write request or the value read in a read response).
To send a message, the Client automaton first asks the BehaviorClient automaton

to obtain the applicative content he will send. Then, in the case of a client with using
a secure communication protocol, the message will by signed and/or encrypted using
the SecureData automaton. Concerning the Server automaton, it waits for a message
sent by the Client automaton. When received, if the server implements a secure protocol,
it decrypts the message and/or checks the message signature. Then, depending on the
type of message (read/write), it either writes the new value of the variable addressed or
reads its current value. Either way, the server creates and sends a response to the client
according to the security of the request.

2 In UPPAAL, messages are not exchanged directly on channels. Instead signals are sent telling
processes to access messages as global variables.



The SecureData automaton is used to manage security operations (encryption, de-
cryption, signature, verification, etc.) according to cryptographic keys known by each
component (including attackers).

3.3 Attackers

We consider four attackers with different capacities, each modeled as an automaton.
Attacker A1 (shown in Figure 5a), based on the Dolev-Yao model [21], can listen to
the network, stop, forge, replay or modify messages according to its knowledge. Such
attacker is often considered as extremely powerful [22] making him really suited to prove
absence of attacks but less realistic when considered within a vulnerability analysis. In
Figure 5a, the execution of the state diagram of the attacker begins in state A1 where the
attacker can choose the action it can execute where:

– Intercept allows the attacker to intercept a message msg sent by a client or a server
on some channel chan;

– Send allows the attacker to send a message msg to a client or a server on some
channel chan;

– Copy allows the attacker to memorize a message msg into its knowledge KA1
;

– Keys allows the attacker to retrieve cryptographic keys from its knowledge KA1 ;
– Secure allows the attacker to perform cryptographic operations according to its

knowledge on the keys;
– Forge allows the attacker to create a new message msg from its knowledge KA1

;
– Modify allows the intruder to modify an intercepted message msg according to its

knowledge KA1
.

– Replay allows the attacker to replay a message msg from its knowledge KA1 ;
Capacities Modify and Replay could be seen as special cases of Forge in the

sense that modifying a message is the action of forging a message at the time where a
legitimate message is intercepted rather than sending a message at any time. Similarly,
replaying a message can occur at any time but restricts the set of possible messages
to the one previously memorized. Attacker A2 (shown in Figure 5b) is a subset of A1

which can only to modify messages or parts of messages. To be more realistic, it can for
example be limited to only modify the variable and value fields in order to not transform
a read message into a write and vice versa. Such attacker would represent an attacker
that want to avoid coarse attacks to be discrete. Attacker A3 (shown in Figure 5c) is a
subset of A1 which can only to forge new messages according to its knowledge. Thus it
can be used to model a blind attacker that is not able to wiretap communications. Finally
attacker A4 (shown in Figure 5d) is a subset of A1 which can only to replay messages
after memorizing them in its knowledge.

3.4 Safety properties

To specify the properties, UPPAAL uses a simplified version of CTL that is expressed
by the following syntax.

Φ ::= A�Φ|E � Φ|E�Φ|A � Φ|Φ→ Φ|¬Φ
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Fig. 5: Attackers considered

A�Φ means that Φ should be true on all paths in all reachable states. A � Φ means
that Φ should be eventually true on all paths. E�Φ means that there exists a path where
Φ is true in all reachable states. E �Φmeans that there exists a path where Φ is eventually
true. Symbols → and ¬ denote the implication and the negation propositional logic
operators, respectively. To model safety properties we will only rely on A�Φ.

4 Case Study

In this section, we illustrate our approach with the example described in Section 2.2. We
show how we implemented it in the UPPAAL model-checker and we discuss the results
we obtained by composing various attackers and topologies.

4.1 Behaviors

As described in Section 2.2, our case study is a bottle filling factory. Empty bottles are
carried by a conveyor belt. A sensor tells when a bottle is positioned under a nozzle
which then pours liquid into the bottle. A second sensor detects when the bottle is full
and then tells the nozzle to close and the conveyor belt to move until the next bottle is



in place. A client can start and stop the whole process. In this example, the process is
composed of five boolean variables:

VP = {motor, nozzle, levelHit, bottleInP lace, processRun}

They respectively denote the conveyor belt (motor), the nozzle (nozzle), the liquid
level sensor (levelHit), the conveyor belt sensor (bottleInP lace) and the process
on/off switch (processRun). Figure 6a shows an automaton describing the behavior
of the process while Table 6b details the transitions of the automaton. Three states are
considered: Idle means that the process is stopped, Moving that the conveyor belt is
moving to position the next bottle and Pouring that the nozzle is filling a bottle. Each
transition is labeled with two predicates: the guard and the output. The client will only
start and stop the whole process when it wants3. Thus the variables that can be accessed
by the client are Vc = {processRun}.
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(a) Process’ behavior automaton

Current state Next state Guard Actions

Idle Moving
processRun = true∧
bottleInP lace = false

motor := true

Idle Pouring processRun = true∧
bottleInP lace = true

nozzle := true

Moving Pouring bottleInP lace = true
motor := false∧
nozzle := true

Pouring Moving levelHit = true
motor := true∧
nozzle := false

Moving Idle processRun = false
motor := false∧
nozzle := false

Pouring Idle processRun = false
motor := false∧
nozzle := false

(b) Details of the transitions

Fig. 6: Behaviors considered

The safety properties we want the process to guarantee would be a subset of properties
considered as critical, resulting from a risk analysis in safety. For this case study, we
exhibit the following properties, expressed as CTL formulas.

Φ1: The nozzle opens only when a bottle is in position (i.e.: at all time and on all
possible execution traces, nozzle is never true if bottleInP lace is false).
A�¬(nozzle = true ∧ bottleInP lace = false)

Φ2: The motor starts only when a bottle is full (i.e.: at all time and on all possible
execution traces, motor is never true if levelHit is false).
A�¬(motor = true ∧ levelHit = false)

Φ3: The nozzle opens only when the motor stops (i.e.: at all time and on all possible
execution traces, nozzle is never true if motor is true).
A�¬(nozzle = true ∧ motor = true)

3 This models the actual behavior of the client in VirtualPlant and is not a limitation of our
approach.



4.2 Network Topologies

We consider two network topologies T1 and T2. In topology T1, a single server sMODBUS

using the MODBUS protocol controls both the conveyor belt and the nozzle. A single
client c communicates with sMODBUS . The MODBUS protocol is among the most used
in industrial communications and does not provide any security at all. This topology is
presented in Figure 7a with:

– Set of servers S = {sMODBUS} with:
• Variables VsMODBUS

= VP
– Set of clients C = {c} with:
• Variables Vc = {processRun}

Client

Attacker

MODBUS Server

Conveyor Belt
Bottle Captor
On/Off Switch

Nozzle
Level Captor

(a) Topology 1

Client

Attacker

MODBUS Server OPC-UA Server

Conveyor Belt
Bottle Captor
On/Off Switch

Nozzle
Level Captor

(b) Topology 2

Fig. 7: Topologies considered

In topology T2, the conveyor belt and the nozzle are each be controlled by a individual
server. The first server sMODBUS communicates using MODBUS and controls the
conveyor belt, the position sensor, and the on/off switch. The second server sOPC−UA

communicates using OPC-UA and controls the nozzle and the level sensor. OPC-UA
provides three security modes: None, Sign and SignEncrypt. Security mode None does not
provide any security. According to Puys et al. [4], security mode Sign adds cryptographic
signatures and provides authentication, integrity and freshness of communications and
mode SignEncrypt also adds encryption providing confidentiality. We suppose that
security mode SignEncrypt is used in our second topology, thus the attacker is not able
to interfere with the channel between the client c and the OPC-UA server sOPC−UA.
This topology is presented in Figure 7b with:

– Set of servers S = {sMODBUS , sOPC−UA}
• Variables VsMODBUS

= {processRun,motor, bottleInP lace}
• Variables VsOPC−UA

= {nozzle, levelHit}



– Set of clients C = {c}
• Variables Vc = {processRun}

4.3 Attackers

To demonstrate the modularity of our framework, we test both topologies against the four
attackers proposed in Section 3.3. We recall the capacities of each attacker in Table 1
where 3means that the attacker has the capacity.

Attacker Modify Forge Replay
A1 3 3 3

A2 3 7 7

A3 7 3 7

A4 7 7 3

Table 1: Summary of capacities for each attacker

4.4 Results obtained using UPPAAL

After experimenting different settings in UPPAAL, we chose to apply Breadth first
search algorithm and to represent the states as DBM (Difference Bounded Matrices).
The results are summarized in Table 2 where 3 means an attack has been found and
7 means that the property is safe as well u means that UPPAAL could not conclude. This
happened because the tool was requesting more memory than available. Our experiments
were run on a Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz with 16GB of RAM. Times
of analysis can be found and discussed in Section 5.1.

A1 A2 A3 A4

Φ1 3 3 3 7

Φ2 3 3 3 7T1

Φ3 3 3 3 7

Φ1 u u 7 7

Φ2 3 3 3 7T2

Φ3 3 3 3 7

Table 2: Results obtained

In theory, none of the four attackers can violate property Φ1 in topology T2. The
reason is that the OPC-UA server controls the nozzle variable, preventing any attack on
this variable. Even with the MODBUS server controlling the bottleInP lace variable,
if bottleInP lace is forced to falseby an attacker while nozzle is true, then nozzle
will automatically switch to falsedue to the process behavior (and vice versa). Thus,
the only way to break Φ1 that is to force opening the nozzle which is not possible in
topology 2 (as we can see with attackers A3 and A4). Similarly, attacker A4 cannot
violate any property, since the messages transmitted between the client and the server
are only relative to start or stop the process.



Client A2 OPC-UA MODBUS

write(run=1)

done

...
write(run=0)

write(motor=true)

Fig. 8: Attack scenario with A2 against Φ2 in topology T2

Figure 8 shows the attack scenario found by UPPAAL with attacker A2 against Φ2

in topology T2. The client sends a message to the MODBUS server to start the process,
the motor starts and the bottles advance on the conveyor belt. After some time, the client
sends a message to stop the process. The attacker intercepts the message and modifies
both the variable targeted by the write request and the new value to force the motor to
start. This experimentation shows that we do not need the whole power of Dolev-Yao
to find attacks. It also helps to find which are the capacities needed bye an attacker to
perform attacks. Thus, it allows tailored proofs of robustness resulting of a risk analysis.

5 Discussions

In this section, we discuss the times taken for each analysis. We then compare our
approach to related works presented in Section 1 and address some limitations and
hypotheses we made.

5.1 Discussion of analysis timings

According to Tables 2 and 3, attacker A2 obtains the same results as A1 (Dolev-Yao) in
shorter time. Attacker A3 takes a bit longer but is able to conclude on property Φ1 in
topology 2 while attackers A1 and A2 cannot due to the system being out of memory.

A1 A2 A3 A4

Φ1 0.43 s 0.07 s 1.05 s 0.84 s
Φ2 0.52 s 0.10 s 0.69 s 0.35 sT1

Φ3 0.47 s 0.04 s 0.37 s 0.42 s
Φ1 Out of memory 601 s 31.55 s
Φ2 0.66 s 0.23 s 2.17 s 35.20 sT2

Φ3 0.78 s 0.21 s 2.35 s 34.85 s
Table 3: Verification times



These results show that really powerful intruders such as Dolev-Yao are often too
complex and only parts of them are sufficient to find attacks. Such intruders are however
preferred when trying to prove the absence of attacks. On the other hand, attacker A4

obtains larger times which can be surprising since it is the simplest of our attackers. A
likely explanation is that since all of his results are absence of attacks, UPPAAL must
explore every possible state which can take way longer that finding a counter example.

5.2 Comparing to State-of-the-Art

Our approach differs from most of the works presented in [7–9] that look more like
risk analysis methods such as EBIOS [18, 19] for security or FMEA [23] for safety.
It is typically the case of Byres et al. [6] who quantifies criteria such as likelihood
or severity on a scale of four values. Moreover, 18 out of the 23 approaches listed in
Cherdantseva et al. [7] are quantitative (i.e.: probabilistic) and thus require an initial
distribution of probabilities to work. Nevertheless, a lot of these approaches give very
few details on the source of these probabilities and their trustworthiness. It is also hard to
evaluate the impact of variations of these probabilities. These approaches have however
the advantage to quantify the likelihood and severity of resulting attacks. In [12], Kriaa et
al. define four criteria to classify approaches combining security and safety:

1. analyzing formal models;
2. being both qualitative and quantitative;
3. being automated;
4. being adaptable to different assumptions.

Kriaa et al. also list some related works and conclude that none validate the automa-
tion criterion. In our case, the A2SPICS approach respects criteria 1, 3 and 4 (relying
on a formal and automated verification tool, UPPAAL and allowing to simply change
attacker’s positions and capacities as well as behaviors). To the best of our knowledge,
the closest related work to the A2SPICS approach from Rocchetto and Tippenhauer [13]
which also seem validates criteria 1, 3 and 4. Our approach shows nevertheless key
differences with it, particularly in terms of considered attackers. Using cryptographic
protocol verification tools such as CL-Atse allows to not require to model the attacker
which is hardcoded in the tool making the Dolev-Yao attacker difficult to restrict. In their
work, Rocchetto and Tippenhauer strengthen it by adding equational theories (allowing
to handle physical interactions with the process [15]). We aim to focus on attackers
resulting of a risk analysis which are often less powerful than Dolev-Yao. Moreover,
to the best of our knowledge, Rocchetto and Tippenhauer do not take into account the
network topology of the system, although it seems possible in ASLAN++. It means in
their case that all agents (or multiple groups of agents) communicate over one unique
channel accessible to the attacker, which is again not very realistic.

5.3 Discussion of Limitations and Hypotheses

Similarly to [13], we consider that time is discretized (i.e.: expressed as steps of exe-
cution). The state of the process is also discretized (e.g.: the bottle is either empty or



full). Moreover, due to the complexity of attackers A1, A2, and A3, we have to bound
the number of actions they can perform in an attack. This limit of the number of action
being configurable. This is a classical limitation of model-checking approaches that
will not terminate if the model can loop infinitely. Moreover, an under-approximation
of the approach can lead to some attacks not being found and robustness not being
established. In the results showed in Table 2, we pointed that property Φ1 was never
violated. This is due to the fact that two states of the system can be considered: (i) the
real state (i.e.: if a bottle is physically present or not), and (ii) the logical state (i.e.: if
the variable bottleInP lace is set to true). It appears that when a captor is modified
by the intruder, then a decorrelation is introduced between these two state (in logical
state, a bottle could be present while it is not the case in reality). However, properties are
checked by UPPAAL on the logical state meaning possibly missing attacks (in particular
for property Φ1). This is a classical limitation due to the fact that we model the system
without taking into account the physical environment.

6 Conclusion

We provided a modular approach to assess the security of industrial control systems.
This approach aims to find applicative attacks taking into account different parameters
such as the behavior of the process, the properties that an attacker can aim to jeopardize,
as well as the possible positions and capacities of attackers. We show how this approach
can be implemented using the UPPAAL model-checker. We apply it on an example
and show how variation of properties, network topologies, and attackers can change the
obtained results. We also discuss key difference with approaches relying on protocol
verification tools. Even when considering all possible variations of our example, it
remains very simple. Still, the timing results we obtained encourage us to address the
question of scalability. In the future, we would be interested into studying how to address
the limitation pointed in Section 5.3. It would be useful to apply our approach to the
case study proposed by Rocchetto and Tippenhauer to obtain a concrete comparison of
the two approaches. We are also interested into modeling possible collusions between
intruders so they can share knowledge and synchronize during attacks. Finally, we aim to
generalize the implementation and build an open-source tool to automatically generate
UPPAAL models and interpret the results.
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