
Experimental Comparison of Routing Protocols for
Wireless Sensors Networks:

Routing Overhead and Asymmetric Links
Henry-Joseph Audéoud and Martin Heusse

Univ. Grenoble Alpes, CNRS, Grenoble INP∗, LIG, F-38000 Grenoble France
∗Institute of Engineering Univ. Grenoble Alpes

Email: [henry-joseph.audeoud,martin.heusse]@univ-grenoble-alpes.fr

Abstract—RPL (the IETF Routing Protocol for Low-Power and
Lossy Networks) and LRP (Lightweight Routing Protocol) have in
common to build a collection tree (or, more precisely, a DODAG)
and “downward” host routes in the wireless sensor network.
Additionally, the objective of LRP is to keep control overhead as
low as possible. To substantiate this claim, we compare RPL and
LRP using 40 nodes of the IoT-LAB testbed — and the results
are telling.

We then introduce asymmetric links, which are unavoidable in
most deployments, and measure their impact on the considered
protocols in another set of experiments. We present the mecha-
nisms that were introduced in LRP to deal with such cases and
we report on extensive experiments involving RPL and LRP to
analyze the behavior of both protocols when the links change or
they exhibit asymmetry.

I. INTRODUCTION

RPL [1] has attained a mature state and its implementation
in the Contiki OS (from version 3.0) conforms to the proto-
col specification. The implementation enables us to perform
evaluations on the IoT-LAB1 wireless sensor testbed to gain
insights on the performance of various protocols with real
wireless nodes, using the same code that could be used in field
deployments and with much more realistic conditions than in
simulation.

RPL is relatively generic and tackles many problems
whereas it is often criticized for its complexity [2] and the
amount of generated traffic [3]. On the contrary, Lightweight
Routing Protocol (LRP) [4], [5] aims at generating as little
traffic as possible while remaining simple. Both protocols
consider the case of sensor networks in which the sensors need
to send out data packets to the sink with limited topology
changes at the time scale of the packet generation period;
otherwise, a reactive approach would be more suitable [6], [7].
Also, the nodes should be accessible, so the routing protocol
has to build “downward” routes. These are fairly standard ob-
jectives matching the assumptions behind the design of RPL,
but also LOADng-CTP [8], [9]. This latter proposes to add
a proactive collection tree creation mechanism to LOADng,
precisely to address the situation in which multipoint to point
(from nodes to the sink) traffic is salient. However, both

1https://www.iot-lab.info

RPL and LRP concurrently handles host and default routes
whereas LOADng-CTP only deals with disjoint routes. Even
if it creates default routes, we recall that LRP guarantees
the routing is loop-free at all times without the need for
piggybacking routing data in each data packet, as in RPL.

Based on our experience with LRP, we propose improve-
ments (cf. Section IV) to further reduce the routing overhead,
in particular when establishing (IV-A) and maintaining (IV-B)
the collection tree or when maintaining the host routes (IV-C),
as well as in the presence of unidirectional links (IV-D).

As expected, we find that, on a relatively large scale testbed
with tens of nodes, both LRP and RPL manage to build
similar collection trees, although the control overhead of LRP
is only a fraction of that of RPL and even more so with the
improvements presented in this paper.

We then turn to more specific and challenging situations
with extensive experiments involving RPL and LRP on IoT-
LAB with link quality changes or asymmetric links. We
create such conditions by varying the transmission power and
sensitivity of some nodes to assess the robustness of both
protocols to the sort of disturbances that are unavoidable in
real world deployments.

The paper starts with a short outline of RPL and LRP in
Section II and III. Section IV describes the improvements
introduced to further reduce the amount of control traffic
with LRP. Section V analyzes the overhead incurred by
each protocol whereas Section VI, focuses on the impact of
asymmetric links.

II. BACKGROUND ON RPL

RPL (Routing Protocol for Low power and Lossy Net-
works) [1] is the standardized routing protocol for multi-hop
sensor networks.

RPL builds a set of default routes forming a collection tree
(more precisely a DODAG — Destination Oriented Directed
Acyclic Graph, as several equivalent successors may be used
concurrently) by means of a distributed Bellman Ford algo-
rithm: a node select a default next hop (or parent, or successor)
amongst its neighbors, based on the information they send in
their broadcast DODAG Information Object messages (DIO).

https://www.iot-lab.info

RPL is built upon the trickle mechanism [10] to spread DIO
control messages throughout the network. Consequently, since
DIOs may be sent relatively rarely, a node can probe its
neighborhood by broadcasting a DODAG Information Solici-
tation message (DIS), causing the neighbor nodes to send DIO
messages back.

The host routes are created and maintained by the end
nodes, by sending regularly a Destination Advertisement Ob-
ject message (DAO) to the preferred parent. The information
contained in the DAO is relayed up along the DODAG, which
creates the host route incrementally.

RPL is known to generate a large number of packets
when not tuned properly [11], [12], in part due to a constant
instability of the preferred parent selection [13]. In fact, the
protocol is in many respects overly complex, underspecified,
and heavy as it adds overhead for each conveyed data packet
while the RPL control packets themselves are excessively
bulky. Moreover, one of the major shortcomings of RPL is
that it does not allow the sink to request a route towards a
specific node in the network [14].

Several papers compare RPL to LOADng, a lightweight
reactive routing protocol for sensor networks, by simulations,
and their conclusions are contradictory [7], [15], [16]. These
conflicting results are not surprising, since the choice between
the proactive or reactive behavior is primarily dictated by the
network density and size, but also by the traffic pattern. So,
the problem lies more in properly assessing the use case and
then using the relevant approach.

III. BACKGROUND ON LRP

The sections below describe the current LRP’s collection
tree and host routes creation and maintenance mechanisms
which appear with more details in a previous paper [5].

A. Collection tree

Just like RPL, LRP maintains a collection tree (or a DODAG
when the nodes keep track of several successors concurrently)
to extract traffic out of the network through the sink. The
positions in the collection tree are computed using the same
distributed Bellman-Ford algorithm. However, in contrast with
RPL, a node broadcasts its position by sending a DIO message
only when it changes its position or in response to a DIS
solicitation. The successive algorithm executions supersede
each other each time the sink originates a new sequence
number to refresh the collection tree; this is the same global
repair as in RPL.

To ensure there are no loops into the network, LRP imposes
that a node must never accept a route that would put it
further away from the sink than its current position, for a
given sequence number, which is incremented at each global
repair. In complement, a local repair mechanism allows nodes
to reattach further down at any time; the procedure has a
relatively low footprint, but there is no guarantee that all
packets follow their shortest path to the sink anymore.

Figure 1: Example of a routing loop due to the coexistence of
default and host routes. N deleted the host route to D (dashed
arrows); there is now a routing loop between N and S as the
packets destined to D now match only the default route in N
and thus go back to S.

B. Host routes to the nodes in the network

LRP also allows the nodes to establish host routes to
distribute traffic into the network. Host routes may be initiated
by the hosts themselves (proactively), or at the sink’s request
(reactively).

In the proactive case, the node D advertises itself by sending
a RREP (Route REPly) message to its successor. This message
is forwarded towards the sink and the nodes along the way
record the corresponding host route which eventually goes
from the sink to D.

To find the node D in the network, either because the
route was lost, expired, or it was not (successfully) proactively
advertised by the destination, the sink floods the network with
a RREQ (Route REQuest) message, containing D’s address.
When D receives it, it answers with a RREP message, as in
the proactive case.

C. Data path validation

The coexistence of default routes and host routes may
generate routing loops, even if the routing DODAG is effec-
tively loop free at all time. For instance (see Figure 1), if an
intermediate node N deletes a host route to D and receives
a packet destined to D from a successor, this packet now
matches only the default route and this node would resend
it up to a successor.

To prevent the occurrence of loops, LRP has an implicit data
path validation mechanism that detects routing loops whenever
they are used. The situation is then solved by sending a RERR
(Route ERRor) message that backtracks and removes the host
route [5].

D. Local Repair: Tree Maintenance Algorithm

The local repair mechanism allows nodes to re-establish the
collection tree without incurring a global repair. It is activated
whenever a node loses all successors and thus has to turn to
using a node in its own sub-tree as successor. The local repair
comprises to steps (see Figure 2):

1) Finding an alternate route to the sink: A node D that
can no longer use any neighbor as a successor broadcasts
a BRK (BRoKen) message. This message is flooded by
all the nodes into the sub-tree of D. Out of the sub-tree,
the message makes its way as a unicast to the sink using
the default routes.

(a) Finding an alternate route (b) Updating the collection tree

Figure 2: Example of a local repair. After node D asses that
it has no more successor towards the sink, it floods the subtree
with a BRK message to seek an alternative route to the sink
(a) and then the collection tree is rebuilt (b).

2) Updating the collection tree without creating a loop:
The sink then perform the actual local repair by sending
a UPD (UPDate) message to D. To reach its destination,
the UPD message backtracks the BRK message. Each
intermediate node only keeps track of the best received
BRK if it sees more than one. When a node receives an
UPD message, it switches to using the UPD sender as
successor.

This mechanism repairs the collection tree without any
(even transient) routing loop.

IV. REDUCING LRP CONTROL TRAFFIC

In this section, we detail the improvements to LRP that we
introduced to reduce routing overhead in the general case as
well as to appropriately deal with unidirectional links.

A. Speed up DIO transmission

Whenever a node S receives a DIO message coming from
a lower neighbor N publishing a distance to the sink which
is larger than S’s plus the cost of link NS, then S may
spontaneously send a (unicast) DIO back to N , in order to
allow this latter move up the collection tree.

This mechanism allows N to easily probe its neighborhood
by publishing its own distance to the sink in a DIO. It
will receive replies only from neighbors that it may use as
successor.

Indeed, S will not reply to N ’s DIO if its published
distance to the sink is the same than it could have by using
S as successor. In the special case where N is looking
for an alternative successor, it may use the DIO option
DETECT_ALL_SUCCESSORS to explicitly require that all
possible successors respond with their position.

B. Reduce BRK flooding footprint

The original LRP local repair mechanism prompted the
flooding of a BRK in the whole sub-tree below the detached
node (cf. Section III-D), whereas in many cases the repair

routes could be found through a not so distant predecessor. We
add an expanding ring search scheme to reduce the number of
unnecessary BRK broadcasts in this situation.

We add a ring_size field to the BRK messages, decre-
mented each time it passes a node. In this way, the originator
of the BRK controls the depth at which other routes to the
sink will be sought. In the worst case, if the closest nodes
cannot be used to repair the collection tree, nothing stops the
detached node to set then ring size to a larger value. Note
that outside of the sub-tree of the BRK originator, the BRK
messages are sent unicast on the default route to the sink; the
ring size limit is not taken into account anymore.

C. Host routes repair
A modification in the network topology does not only break

the collection tree (and trigger a local repair) but also breaks
all the host routes of the corresponding sub-tree. After having
detected that host routes are broken (cf. Section III-C), the sink
will reactively look for their destinations by flooding several
RREQ into the whole network (cf. Section III-B). This may
create a significant broadcast traffic that we want to avoid.

When the local repair finishes, all the repaired sub-tree is
reattached to a node N . We know that N is the new point
of attachment to the original tree because it receives the UPD
repair message from a neighbor that was neither its successor
nor its predecessor. We propose that N broadcasts a confined
RREQ when it finishes a local repair. This special RREQ
message should be flooded only in the sub-tree of N ; if a node
does not receive it from its successor, it drops this message
without processing it. The confined RREQ does not target a
specific address; rather, it means that the host route of any node
R that receives this message should be rebuilt. R refreshes
its host route by sending a RREP to the sink with a new
sequence number (it will readily replace the old host route).
It also re-broadcasts the confined RREQ, to forward it to its
predecessors.

D. Handling unidirectional links
In LRP, a node N elects to use a tentative successor T

after receiving a DIO with a promising distance to the sink.
Nevertheless, the reception of such a DIO only shows that T -
to-N communication may be possible, but not in the reverse
direction, from N to T .

To assess bidirectional link quality, we propose that N
first attempts a unicast HELLO handshake with T . If it is
successful, N starts using T as a successor. As HELLO
messages contain the link cost as seen by the sender node,
N is able to compute the cost of the link by taking both
directions into account. It will revise this cost if numerous link
layer losses subsequently happen. Otherwise, if the HELLO
handshake fails, N notes that the link is suspicious and looks
for other options. Each node keeps track of its unresponsive
neighbors and blacklists them for some time, even when
receiving new DIOs from them.

This procedure is more lightweight than in LOADng-
CTP [8], where all links are checked to be bidirectional
beforehand.

25
50
75

10
20
30

25
50
75

100

10
20
30

0 10

6
12
18

20 40 60 80 100 120

6
12
18

Time (minute)
Nu

m
be

r o
f p

ac
ke

ts
 p

er
 m

in
ut

e

(a) RPL

DIO unicast

DIO broadcast

DIS (broadcast)

DAO No-Path

DAO

Lost down pkt

Recv. down pkt

Lost up pkt

Recv. up pkt

25
50
75

10
20
30

25
50
75

100

10
20
30

0 10

6
12
18

20 40 60 80 100 120

6
12
18

Time (minute)

Nu
m

be
r o

f p
ac

ke
ts

 p
er

 m
in

ut
e

(b) o-LRP

25
50
75

10
20
30

25
50
75

100

10
20
30

0 10

6
12
18

20 40 60 80 100 120

6
12
18

Time (minute)

Nu
m

be
r o

f p
ac

ke
ts

 p
er

 m
in

ut
e

(c) LRP

UPD

BRK

HELLO

DIO unicast

DIO broadcast

Confined RREQ

RERR

RREP

RREQ

Lost down pkt

Recv. down pkt

Lost up pkt

Recv. up pkt

Figure 3: 2-hour experiments with 40 client nodes and 1 sink. All along the experiment, RPL sends a relatively high number
of messages for collection tree (top plots) and host route (middle plots) maintenance. At the start of the experiment, the number
of messages is similar for both versions of LRP (b)(c), but they are of a different nature. In the original LRP, the links are used
without been checked. Hopefully, in this case, no link as revealed to be faulty. The improved LRP (c) detects them during the
HELLO handshake which adds a bit of unicast traffic. However, as soon as the routes stabilize, both versions of LRP send no
routing traffic, except when some link is finally considered unusable (e.g. after 80 min. of experimentation in (c)).

71

4 5 1 85 78

11 14

874

93 8996

147

125

131

104 112

152160 166 171

172 177

181

184

190

206

216

242

219

226 237

278

248

264

252

268265

76

283

Figure 4: Final collection tree for the experiment described
in Section V-B. 71 is the sink. The trees are similar with RPL,
o-LRP and LRP.

Table I: Number of messages sent during the whole experi-
ments described in Section V-B and Figure 3.

RPL o-LRP LRP

Collection-tree
maintenance

Broadcast 786 136 155
Unicast 2497 22 399

Host routes
maintenance

Broadcast n/a 0 8
Unicast 1586 172 233

Data packets successfully routed 97.2% 98.9% 98.0%

Table II: Parameters of RPL and LRP

Radio duty cycling Contiki MAC
Check interval 125 ms
RPL
Imin 4 s
Imax 1048 s
DIO redundancy 10
DAO re-generation period [15-22] min.
Objective function MRHOF with ETX
LRP
Random delay for packet transmission
following a broadcast 0.5 s

Frequency of neighborhood probing
when disconnected

∼5 min.

Blacklist timeout 10 min.
Metric type Hop count
UDP application packet (per client) 1 every 5 min.

V. PROTOCOL OVERHEAD

In this section, we discuss the overhead of the RPL and
LRP with or without the above improvements.

A. Per-packet overhead

For data path validation purposes, RPL mandates to add a
RPL header to each data packet, which adds at least 8 bytes
to each packet. It is not desirable in networks in which this
header represents as much as 7.8% of the MAC Service Data
Unit size (102B in IEEE 802.15.4).

Even worse, for packets coming from outside of the sensor
network, adding an additional Hop by Hop header incurs
adding an outer IPv6 header to tunnel the external packet into
the RPL domain. LRP does not need to attach any information
to data packets.

B. Protocol background traffic

RPL uses trickle to reduce routing traffic when the topology
does not change. The benefits of trickle over the long term
are obvious: less and less packets are sent. On the other hand,
before the timers reach a large value, nodes send redundant
information several times with little benefit. This is particularly
costly for link layers like ContikiMAC [17] in which the
energy cost of broadcasts is typically an order of magnitude
greater than that of unicasts.

In RPL, DAO are also blindly retransmitted at regular inter-
vals to refresh host routes from the sink. The period of DAO
renewal is a tradeoff between the amount of control traffic
they generate and the time during which a node may remain
unreachable. In fact, if a route is erased on an intermediate
node, the sink can only request all nodes in a sub-tree to
resend their DAOs (by means of increasing the DTSN), or
patiently wait for the node to refresh its DAO.

In LRP, all updates follow the detection of an inconsistency:
the sink can trigger a global repair and the nodes take action
when they loose their successors or when a host route appears
broken. The only recurrent traffic from nodes is to probe their
blacklisted neighbors or when detached nodes send infinite
distance DIO to discover their environment.

Figure 3 and 4 show an experiment run on the IoT-LAB.
During two hours, 40 client nodes send UDP data packets up
to the sink with a period of 5 minutes, and the sink replies to
each packet.

Table I gives the numbers of packets exchanged during these
experiments. We note that both RPL, the original version of
LRP (denoted o-LRP, i.e. before the improvements described
in Section IV) and the improved version of LRP (denoted LRP)
successfully route almost all data packets. However, RPL uses
a lot more routing packets than LRP: if we consider that a
broadcast packet occupies the radio channel 10 times as much
as unicast packets (which is inherent to Contiki MAC or most
preamble sampling duty cycling schemes), we find that the
RPL radio channel occupancy is 530% that of the improved
version of LRP and 225% that of the original version of LRP
in this case. With the improvements, the LRP radio channel
occupancy is 42% that of the original version.

Had the experiment lasted longer, the difference would only
widen: from the two top plots of Figure 3 it is clear that both
versions of LRP are mostly continuously quiet, whereas RPL
creates a constant background traffic.

VI. EXPERIMENTS WITH ASYMMETRIC AND MUTED LINKS

The quality of radio transmissions depends on the environ-
ment and on the radio hardware. Key environmental factors
are ambient noise, physical obstacles that cause reflections and
absorption, and interferences which generally do not have the
same impact on all nodes. The radio hardware impacts the
transmission when the gains and sensitivity varies between
devices; these effects play an important role in wireless sensor
networks where devices are low cost and the environment may
be crowded.

In this situation, a link between two nodes may be asymmet-
ric, in other words, it may not present the same packet delivery
ratios (PDR) in both directions [18], [19]. In extreme cases, a
node N may be “deaf” (i.e. other nodes receive N’s packets,
but N does not receive anything back) or “muted” (i.e. N
receives properly, but is not heard). This section describes
the experiments to analyze how RPL and LRP handle these
situations.

Table II presents the parameters used in the experiments.
The trickle settings match the recommended practice, with Imin

more than one order of magnitude greater than the broadcast
duration (125 ms in ContikiMAC [17]). This parameter effec-
tively avoids DIO collisions in our experiments with RPL. For
the same reason, we randomize the transmissions of DIOs,
BRK, HELLO, and RREQ in LRP.

A. Deaf nodes

On the IoT-LAB testbed, we start 11 client nodes and a sink.
As in Section V-B, each client sends one UDP packet every
5 minutes to the sink which replies with another UDP packet.
One of the client nodes is deaf: its sensitivity is lowered and
it does not receive any message from other nodes, while its
packets are received by its neighbors. Figure 5 presents the
results.

1) Deaf node in a RPL network: When a RPL node is not
associated with any DODAG, it broadcasts a DIS message.
This message resets the trickle timer that schedules the DIO
message emissions in its neighborhood, thus generating many
DIO broadcasts. Although this mechanism is useful to speed
up the insertion of new nodes into the network, it is very
harmful when a node N is deaf. Indeed, as N keeps on
broadcasting DIS packets, its neighbors constantly send back
DIOs. During the whole experiment depicted in Figure 5a,
DIOs are constantly broadcast at the average rate of 1 every
3 seconds.

2) Deaf node in a LRP network: The original version of
LRP (Figure 5b) makes all the neighbors of a deaf node
broadcast a DIO message whenever the latter probes its

15
30
45

10

20

30

15
30
45

3
6
9

0 5

2

4

10 20 30 40 50 60

2

4

Time (minute)
Nu

m
be

r o
f p

ac
ke

ts
 p

er
 m

in
ut

e

(a) RPL

DIO unicast

DIO broadcast

DIS of deaf node

DIS (broadcast)

DAO No-Path

DAO

Lost down pkt

Recv. down pkt

Lost up pkt

Recv. up pkt

15
30
45

10

20

30

15
30
45

3
6
9

0 5

2

4

10 20 30 40 50 60

2

4

Time (minute)

Nu
m

be
r o

f p
ac

ke
ts

 p
er

 m
in

ut
e

(b) o-LRP

15
30
45

10

20

30

15
30
45

3
6
9

0 5

2

4

10 20 30 40 50 60

2

4

Time (minute)

Nu
m

be
r o

f p
ac

ke
ts

 p
er

 m
in

ut
e

(c) LRP

UPD

BRK

HELLO

DIO unicast

DIO broadcast

DIO of deaf node

Confined RREQ

RERR

RREP

RREQ

Lost down pkt

Recv. down pkt

Lost up pkt

Recv. up pkt

Figure 5: 1-hour experiments of 11 client nodes and 1 sink. One of the client nodes is deaf. During the experiment, RPL
is constantly sending broadcast DIOs (approximately 1 DIO every 3 seconds). o-LRP (the original version) sends broadcast
DIOs whenever the deaf node probes its vicinity. The improved version of LRP sends parsimoniously unicast HELLOs.

15
30
45
60

4
8
12
16

15
30
45
60

3
6
9
12

0 5

2
4
6

10 20 30 40 50 60

2
4
6

Time (minute)

Nu
m

be
r o

f p
ac

ke
ts

 p
er

 m
in

ut
e

(a) RPL

DIO unicast

DIO broadcast

DIS (broadcast)

DAO No-Path

DAO

Lost down pkt

Recv. down pkt

Lost up pkt

Recv. up pkt

15
30
45
60

4
8
12
16

15
30
45
60

3
6
9
12

0 5

2
4
6

10 20 30 40 50 60

2
4
6

Time (minute)

Nu
m

be
r o

f p
ac

ke
ts

 p
er

 m
in

ut
e

(b) o-LRP

15
30
45
60

4
8
12
16

15
30
45
60

3
6
9
12

0 5

2
4
6

10 20 30 40 50 60

2
4
6

Time (minute)

Nu
m

be
r o

f p
ac

ke
ts

 p
er

 m
in

ut
e

(c) LRP

UPD

BRK

HELLO

DIO unicast

DIO broadcast

Confined RREQ

RERR

RREP

RREQ

Lost down pkt

Recv. down pkt

Lost up pkt

Recv. up pkt

Figure 6: 1-hour experiments with 11 client nodes and 1 sink. After 15 min., node 40 (cf. Figure 7) is muted. In all cases, some
minutes later, connectivity is restored; however, RPL uses a lot more messages than LRP. We see that o-LRP (the original
version) does not repair all host routes: some of them must be deleted and rebuilt (RERR messages and then RREQ floods
and RREP messages, between 27 and 37 min.). With improvements, LRP directly rebuilds the host routes.

vicinity. This leads to an amount of 10 broadcast every 5
minutes in this setup.

With improved LRP, during the experiment depicted in
Figure 5c, the nodes also answer to the deaf node. However,
we notice two differences with the original version: first, the
answers consist of HELLO unicast messages; indeed, before
communicating with the deaf node, each neighbor probes the
link to it. Secondly, the neighbors do not systematically answer
to the deaf node probes. There is eventually less HELLO
answers in improved LRP than DIO answers in the original
one.

Compared to RPL, this amounts to sending one unicast
packet from each neighbor every 10 minutes instead of 1
broadcast packet every 3 seconds.

B. Muted nodes

To test the behavior of both protocols to muted nodes, we
use the same kind of experiments as for deaf nodes: a 1-hour
experiment on IoT-LAB, where each of the 11 clients nodes
send one UDP packet to the sink every 5 minute; the sink
answers with another UDP packet to each of them (there are
no deaf nodes here). Obviously, if we completely mute one
node from the start, it will not disturb its neighbors much
as all its messages would be lost. So we start node 40 (cf.
Figure 7) as a normal node and let it associate itself with the
network and communicate with other nodes. Then, after 15
minutes, we reduce its transmission power: it is muted and
cannot reach its former neighbors anymore — excepted one
of them, node 33, in order to not to be totally isolated from
the rest of the network.

Figure 6 shows the messages exchanged during the ex-
periment. The collection trees of both RPL and LRP are
approximately the same and they are presented in Figure 7.

1) Muted nodes in a RPL network: Even if RPL limits the
count to infinity process by defining a maximum rank increase,
this creates a transient loop in the network (40 uses 33 as a
successor, which in turn uses 40 as a successor — note that the
traffic does not loop around, thanks to the data path validation
header) until node 33 is able to use 55 as a successor. All
this generates extra DIO traffic between minutes 18 and 21 of
the experiment (visible in Figure 6a). This experiment shows
that RPL eventually handles this situation correctly: few data
packets are lost and the DODAG is repaired quickly.

2) Muted nodes in a LRP network: In both versions, LRP
nodes use a local repair algorithm (described in Section III-D)
to solve this situation. However, in contrast with the improved
version, the original one does not repair host routes as part of
the local repair, which leads to RREQ flood and RREPs later
on (at ∼ 37min.).

After node 40 is muted, the local repair algorithm is not
launched immediately because of the delay in the neighbor
unreachability detection algorithm.

In the three experiments, the connectivity is restored within
minutes. However, as shown in Table III, the improved LRP
uses one fifth of the broadcast messages that either RPL or
the original LRP use, and few unicast messages (9 times less

45

57

48

40

40

33

33

55 51

10

12

30

18

2

Figure 7: Typical collection tree of the experiments depicted
in Figure 6. Node 45 is the sink. During the initial collection
tree construction, nodes 40 and 33 (dashed) are connected
directly to it. After node 40 is muted, the two nodes can only
re-attach to the network through node 55. Note that the link
between them is reversed.

Table III: Number of control messages sent during the
experiment depicted in Figure 6, between 15 and 35 min.

RPL o-LRP LRP

Broadcast DIO 66
DIO 37 4
BRK 7 5
RREQ 11 3

Unicast DIO 146

DIO n/a 1
BRK 20 4
UPD 12 5
HELLO n/a 2

DAO No-Path 15 RERR 3 -
DAO 95 RREP 25 17

than RPL, 2 times less than the original LRP). This is another
example of the huge background traffic of RPL described in
Section V-B and the reduced traffic of LRP.

VII. CONCLUSION

With the improvements described above, LRP is still much
simpler than RPL with approximately 3000 lines of code in
Contiki vs. well above 5000 for RPL. The general approach of
LRP is to build routes proactively and then repair them quickly
as soon as an inconsistency emerges. In contrast, RPL sticks to
its proactive philosophy and generates a constant and significat
background control traffic. Even worse, a loss of DAO may
cause a node to remain unreachable for a long time, due to the
tradeoff between an intense DAO traffic and refreshing DAOs
with much delay.

We note that, for the amount of control traffic RPL generates
in a static network, LRP could perform a local repair every 5
minutes or more. This result holds as long as there is no deaf
node in the network. Otherwise, RPL traffic is off the scale.

Finally, although no global repair takes place in the exper-
iments described in this paper, we stress that an LRP sink
has all the information it needs to decide if a global repair

is necessary or not, depending on the number of local repairs
performed since the last global repair. In contrast, in RPL,
the sink has little information about the changes happening in
the network and thus, it is left triggering global repairs on a
regular basis.

There are many directions in which to further develop LRP
and we intend to explore more advanced metrics for LRP
as well as load balancing schemes, thus making better use
of the DODAG structure, similarly to what is done in the
RPL context [20], [21]. Another idea is to explore the case of
distributing several external routes with various prefix lengths.
Even though the design philosophy of LRP is to make it as
silent as possible, it can also be viewed as a sound and low
overhead base for more elaborate purposes.

VIII. ACKNOWLEDGMENTS

This work has been partially supported by the French
Ministry of Research projects DataTweet under contract ANR-
13-INFR-0008-01 and the PERSYVAL-Lab under contract
ANR-11-LABX-0025-01.

REFERENCES

[1] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J.P. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low power and Lossy Networks,” RFC 6550, IETF, Mar. 2012.

[2] Thomas Clausen, Ulrich Herberg, and Matthias Philipp, “A critical
evaluation of the IPv6 routing protocol for low power and lossy
networks (RPL),” in Wireless and Mobile Computing, Networking and
Communications (WiMob), 2011 IEEE 7th International Conference on.
IEEE, 2011, pp. 365–372.

[3] Timofei Istomin, Csaba Kiraly, and Gian Pietro Picco, “Is RPL ready
for actuation? A comparative evaluation in a smart city scenario,” in
European Conference on Wireless Sensor Networks. Springer, 2015, pp.
291–299.

[4] C-A. La, Martin Heusse, and Andrzej Duda, “Link Reversal and
Reactive Routing in Low Power and Lossy Networks,” in Proceedings
of PIMRC’13, London, UK, June 2013, IEEE.

[5] Henry-Joseph Audéoud, Michał Król, Martin Heusse, and Andrzej
Duda, “Low overhead Loop-free Routing in Wireless Sensor Networks,”
in Wireless and Mobile Computing, Networking and Communications
(WiMob), 2015 IEEE 11th International Conference on. IEEE, 2015,
pp. 443–451.

[6] Floriano De Rango, Juan-Carlos Cano, Marco Fotino, Carlos Calafate,
Pietro Manzoni, and Salvatore Marano, “OLSR vs DSR: A comparative
analysis of proactive and reactive mechanisms from an energetic point
of view in wireless ad hoc networks,” Computer Communications, vol.
31, no. 16, pp. 3843–3854, 2008.

[7] Joydeep Tripathi, Jaudelice C. De Oliveira, and Jean-Philippe Vasseur,
“Proactive versus reactive routing in low power and lossy networks:
Performance analysis and scalability improvements,” Ad Hoc Networks,
vol. 23, pp. 121–144, 2014.

[8] Jiazi Yi and Thomas Clausen, “Collection Tree Extension of Reactive
Routing Protocol for Low-Power and Lossy Networks,” International
Journal of Distributed Sensor Networks, vol. 2014, pp. 1–12, 2014.

[9] Saida Elyengui, Riadh Bouhouchi, and Tahar Ezzedine, “A com-
parative performance study of the routing protocols RPL, LOADng
and LOADng-CTP with bidirectional traffic for AMI scenario,” in
Intelligent Computer Communication and Processing (ICCP), 2015
IEEE International Conference on. 2015, pp. 561–568, IEEE.

[10] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The Trickle
Algorithm,” RFC 6206, IETF, Mar. 2011.

[11] K. Heurtefeux, H. Menouar, and N. AbuAli, “Experimental evaluation
of a Routing Protocol for WSNs: RPL robustness under study,” in 2013
IEEE 9th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Oct 2013, pp. 491–498.

[12] A. Yushev, P. Lehmann, and A. Sikora, “6LoWPAN with RPL perfor-
mance measurements in an Automated Physical Testbed,” in Wireless
Systems within the Conferences on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS-
SWS), 2014 2nd International Symposium on, Sept 2014, pp. 29–33.

[13] Oana Iova, Fabrice Theoleyre, and Thomas Noel, “Stability and effi-
ciency of RPL under realistic conditions in Wireless Sensor Networks,”
in PIMRC, 2013, pp. 2098–2102.

[14] T. Clausen, U. Herberg, and M. Philipp, “A critical evaluation of the
IPv6 Routing Protocol for Low Power and Lossy Networks (RPL),”
in 2011 IEEE 7th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), Oct 2011, pp.
365–372.

[15] Mališa Vučinić, Bernard Tourancheau, and Andrzej Duda, “Performance
comparison of the RPL and LOADng routing protocols in a home
automation scenario,” in 2013 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, 2013, pp. 1974–1979.

[16] Jiazi Yi, Thomas Clausen, and Yuichi Igarashi, “Evaluation of routing
protocol for Low power and Lossy Networks: LOADng and RPL,” in
Wireless Sensor (ICWISE), 2013 IEEE Conference on. IEEE, 2013, pp.
19–24.

[17] Adam Dunkels, “The ContikiMAC Radio Duty Cycling Protocol,” Tech.
Rep., Swedish Institute of Computer Science, 2011.

[18] Ana Bildea, Link Quality in Wireless Sensor Networks, Ph.D. thesis,
Université de Grenoble, Nov. 2013.

[19] Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis,
“Understanding the causes of packet delivery success and failure in
dense wireless sensor networks,” in Proceedings of the 4th International
Conference on Embedded Networked Sensor Systems, New York, NY,
USA, 2006, SenSys ’06, pp. 419–420, ACM.

[20] H. S. Kim, H. Kim, J. Paek, and S. Bahk, “Load Balancing under Heavy
Traffic in RPL Routing Protocol for Low Power and Lossy Networks,”
IEEE Transactions on Mobile Computing, vol. PP, no. 99, pp. 1–1, 2016.

[21] M. Michel, S. Duquennoy, B. Quoitin, and T. Voigt, “Load-Balanced
Data Collection through Opportunistic Routing,” in 2015 International
Conference on Distributed Computing in Sensor Systems, June 2015, pp.
62–70.

