N
N

N

HAL

open science

On-board non-regression test of HLS tools targeting
FPGA

Arief Wicaksana, Adrien Prost-Boucle, Olivier Muller, Frédéric Rousseau, Arif

Sasongko

» To cite this version:

Arief Wicaksana, Adrien Prost-Boucle, Olivier Muller, Frédéric Rousseau, Arif Sasongko.

board non-regression test of HLS tools targeting FPGA. 2016 International Symposium On
Rapid System Prototyping (RSP 2016), Oct 2016, Pittsburgh, PA, United States.

10.1145/2990299.2990307 . hal-01540944

HAL Id: hal-01540944
https://hal.univ-grenoble-alpes.fr /hal-01540944

Submitted on 16 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

pp-41-47,

https://hal.univ-grenoble-alpes.fr/hal-01540944
https://hal.archives-ouvertes.fr

On-Board Non-Regression Test
of HLS Tools Targeting FPGA

Arief Wicaksana, Adrien Prost-Boucle, Olivier Muller, and Frédéric Rousseau
TIMA Laboratory
Université Grenoble Alpes
Grenoble, France

{firstname.lasthame}@imag.fr
Arif Sasongko

School of Electrical Engineering & Informatics
Institut Teknologi Bandung
Bandung, Indonesia
asasongko@stei.itb.ac.id

ABSTRACT

High-Level Synthesis (HLS) has opened an opportunity for soft-
ware programmers to target FPGA more rapidly. When developing
HLS tools, tests are desirable to ensure their function, reliability
and performance. When modifications are applied to a tool, Non-
Regression Test (NRT) asserts that the changes have intended effect
while Regression Test (RT) verifies that the tool still performs cor-
rectly without unwanted behaviour.

The work presented in this paper is focused on a method to auto-
matically perform Non-Regression Test in HLS tool developments,
although it can also be used as a Regression Testing technique. This
method relies on a framework which allows HLS tool developers
to verify the circuits generated from the tool directly on FPGA, in-
stead of using simulations. The verification flow is automatic, so that
knowing the details of the system is unnecessary for developers. The
framework has been tested successfully over several applications
from HLS benchmark and it gives more promising results than its
simulation counterpart.

CCS Concepts

eHardware — Reconfigurable logic applications; Simulation
and emulation; Best practices for EDA;

Keywords
High-Level Synthesis; Non-Regression Test; FPGA

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) used to be reserved for
digital hardware engineers in ASICs prototyping. The goals were
centered on design optimization as much as possible. Given the
usual very long design time in that domain, it was then appropriate

for High-Level Synthesis (HLS) tools to take a long time (hours to
days) exploring solutions, running simulations and even repeatedly
launching back-end synthesis operations.

Nowadays, FPGAs are significantly bigger and more powerful
than their earliest version and a huge interest comes from software
programmers for general-purpose hardware acceleration. Their main
objective is to rapidly obtain a significant acceleration from software
applications. However, the considered applications are often big
and very complex from Design Space Exploration (DSE) point of
view, which make the search for the most optimized solutions less
practical.

Due to these reasons, current HLS tools and DSE methods that
suit digital hardware engineers are not appropriate for software en-
gineers. Automatic and fast HLS tools are desirable to generate
promising design suitable for software programmers. In the develop-
ment of such tools, tests are being performed to ensure their function,
reliability, and performance. These tests should be able to easily
verify the development without additional complexity and works for
developers.

When modifications are applied in an HLS tool being developed,
Non-Regression Test (NRT) is normally carried out to verify whether
the changes have intended effect. It can be performed by verifying
the circuits generated by the tool. So far, behavioral simulation of
the generated circuits is the simplest approach in NRT of HLS tools
due to the rapidly obtained result, but the physical parameters are not
considered in this type of simulation, e.g. gate and interconnection
delays. On the other hand, simulating the circuits with additional
timing annotations often takes unreasonably long time, especially
when the designs are big and complex. Verification of the circuits
on actual FPGA can be interesting since the physical parameters
are naturally involved and the execution time is much shorter than
its simulation counterparts but it requires huge efforts in design
implementation.

The contribution of this work is focused on a method to perform
NRT of HLS tools by directly verifying the generated circuits on
FPGA. In [6], it is explained how automating NRT in software
development can decrease the efforts of developers. We developed
an automatic and transparent framework so that even HLS tool
developers with a weak background in hardware design are able to
access the framework. Without knowing the details of the system,
developers are able to perform NRT of the HLS tool they are working
on. In this work, we took HLS tool AUGH (8] as an example case
of HLS tool under development although our proposed framework

is generic and applicable for any HLS tools.

This paper is organized as follows: Section[2]describes the HLS
tool AUGH which is the main part of our specific case. Section 3]
presents the architecture overview and the design flow. Section 4]
shows the implementation and the results. Finally, in Section 5] we
state the conclusion and the potential future improvement of this
work.

2. THE HLS TOOL AUGH

AUGH [8]] is a free and open-source HLS tool for FPGA devices
and boards. It is designed to be accessible to people with a weak
background in hardware design, e.g. to software programmers.

For that purpose, AUGH takes as input ANSI-C programs that
represent the algorithms to transform into FPGA hardware accelera-
tors. All relevant specificities of the target device or FPGA board
are automatically handled, including the amount of available FPGA
primitives (in LUTs, FFs, RAM blocks, DSP blocks) and the target
clock frequency. It autonomously performs fast Design Space Ex-
ploration (DSE) and generates optimized circuits under the strictly
given hardware constraints (resource and clock frequency).

2.1 Handling of FPGA technologies

AUGH exploits an internal library of calibrated component mod-
els to transparently handle hardware target constraints such as re-
source and clock frequency. Each component model (e.g. adder, reg-
ister, multiplexer, etc) is associated with a set of dedicated functions
that calculates the component’s resource usage (in LUTs, FFs, RAM
blocks, DSP blocks) and delays (in sequential and combinational
logic). Using these features, AUGH is able to precisely estimate the
size of the entire circuit and its maximum clock frequency.

2.2 Estimation of the circuit execution time

The search for an efficient hardware implementation usually in-
volves generating several implementation versions and retaining the
fastest one. Due to this reason, it is needed to precisely know the
execution time of each version. When the input algorithm contains
only statically-known control, such as loops with literal bounds, the
execution time is known perfectly.

However, when there is any control dependency, the input al-
gorithm alone is often not enough to estimate the execution time.
AUGH can cope with that situation by handling dedicated user an-
notations inserted in the code. These annotations, entirely optional,
indicate the relevant branch probabilities and an average number of
iterations of most relevant loops. More details can be found in [8]].

This property enables AUGH to very rapidly estimate the execu-
tion time of any hardware implementation solution. In particular,
there is no need to launch RTL simulation of all solutions, which
is a very significant time saving. This enables AUGH to perform
Design Space Exploration (DSE) and to rapidly obtain an optimized
solution.

2.3 Generation flow

The input C code given to AUGH by the user normally represents
a program, which means it is supposed to be executed instruction by
instruction. This is what is expected when targeting a microproces-
sor, but on FPGA this would lead to a very slow circuit.

In order to obtain a rapid circuit, AUGH has to detect parallelism
opportunities between the instructions of the C code, or create par-
allelism by applying modifications to the given instructions. To
that purpose, AUGH is equipped with modules dedicated to detect-
ing appropriate transformations and applying them to its internal
representation of the circuit.

Input description
(C code)

Resource & frequency
constraints

)
l .
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
i Internal H
1 representation 1
1
l :
' :
1
: Sgg‘fgfoﬁe [Analysis of] [Full des_ign] :
: decision core feasible transfo. generation :
1
l :
'\ List of weighted transformations }
e e e ’
RTL description

(VHDL, ...)

Figure 1: The AUGH generation flow

Figure[I]illustrates the AUGH generation flow. The input C code
is initially loaded to AUGH and a first version of the circuit is
generated by applying the usual operations allocation, scheduling
and binding, which are known to be well suited to answer resource
constraints [4]. And then, AUGH will execute DSE iteration with
the initial solution as the starting point until the optimized solution
is found. The detail will be explained in the next section.

2.4 Design space exploration

Searching for the theoretically optimal solution under resource
constraints is known to be an unreasonably complex and long explo-
ration task. For this reason, most HLS tools do not perform DSE.
Instead, the user must indicate, through special directives, how to
transform the input design (e.g. unrolling loops, adding computing
operators). This is the case for the tools Catapult, PICO, Cynthesizer
(now Cadence), GAUT, Xilinx Vivado HLS, ROCCC, and LegUp
which are presented in [4] [9].

Some automatic DSE techniques have been proposed. In Cy-
berWorkBench [4]], genetic algorithms are used. However, the flow
requires user expertise in order to intuitively initialize the freedom
degrees of the design. In Altera OpenCL [9], the tool follows the
OpenCL standard, where a computation kernel is synthesized and
then duplicated as many times as possible. This is well suited for
hardware acceleration on a PC with a PCIExpress-connected FPGA
board but is not appropriate for embedded systems.

Generally, software programmers are not looking for the optimal
solution. Instead, they would prefer a significant acceleration of their
applications compared to a software version. Also, similarly to a
compilation flow, they want the circuits to be generated automati-
cally and in a reasonable time. The DSE algorithm implemented in
AUGH is specifically designed to fit these goals.

Figure 2] illustrates a typical progression of the AUGH DSE algo-
rithm. It is a greedy algorithm: from the initial solution, it iteratively
applies transformations that make the circuit faster. This process
generally increases the circuit size.

The possible transformation types are the addition of operators
(adders, multipliers, etc), the addition of read ports to memory banks,
replacement of memory banks by separate registers, unrolling of
loops and wiring of conditions. Each transformation type is associ-

Initial circuit
Resource
constraint

Explored
solutions

Circuit latency

Theoretical
Pareto-optimal
solutions

Final
circuit

Circuit area

Figure 2: AUGH DSE progression

ated with a set of functions that provide estimations of design speed
up and usage of additional hardware resources.

As illustrated in Figure[T] at each DSE iteration, AUGH lists all
feasible transformations. Each one is weighted in resource cost and
design speedup with the estimators. Then one or several transforma-
tions are selected among the ones that generate the lowest circuit
latency while having the smallest impact on its size (circuit area)
and applied to the circuit. The DSE is stopped when no feasible
transformation remains or when all transformations would make the
circuit exceed the resource constraint. Detailed examples of DSE on
actual benchmark applications can be found in [g].

Due to its DSE process, AUGH rapidly generates optimized cir-
cuits for the target resources and clock frequency constraints. Within
seconds to minutes, software programmers are able to obtain VHDL
implementations of FPGA accelerators, with the corresponding esti-
mations of their resource usage and execution time.

2.5 Interest for on-board Non-Regression
Testing

Like many other HLS tools under development, tests are desirable
to ensure that the latest modifications of AUGH are correct. Besides
unit tests and integration tests, AUGH undergoes NRT as a method to
make sure that the additional functions work properly. One method
to perform NRT in HLS tools is by verification of the generated
circuits.

The basic strategy in circuit verification usually includes behav-
ioral simulation which does not consider physical parameters of
targeted device, e.g. gate delay, interconnection delay, etc. Although
this simulation is considered enough to check the functionality of
circuits, it is not reliable enough for NRT of HLS tools for the reason
of insufficient parameters. Most digital hardware designers will per-
form post-implementation (after placement and routing) simulation
with additional timing annotations in circuit verification, although it
is extremely time-consuming especially for big and complex circuits.

Due to the conditions stated above, on-board NRT offers more
interesting advantages compared to simulation-based NRT. The
verification is considered reliable since it is performed on actual
FPGA. Executing circuits on real FPGAs will be much less time-
consuming. The major drawback of on-board execution is the long
placement and routing process, but this is also the case for post-
implementation simulation. Currently, HLS tool developers are not
interested in doing NRT directly on FPGA due to the necessary
efforts in system design.

An automated framework that uses the Zynq System-on-Chip
(SoC) [5] to perform remotely reconfigurable platform has been
proposed in [[7]]. It is able to program the FPGA part and run applica-
tions with a pre-built software environment. However, the generation
of FPGA configuration files is not included in the design flow. The
user has to generate them on its own, including synthesizing the de-
signs and adding the appropriate communication interface wrappers,

......................

[]
==
JiomieN

SoC Platform

Processor FPGA

~_ L |
~_
e’

Network Disk

Figure 3: System Overview

which is highly inconvenient for a user with a weak background in
hardware designs.

The tool LegUp [3] generates designs where the hardware accel-
erators are tightly coupled to a soft processor. This alleviates the
user’s work, but the processor part is much less powerful than hard
processors integrated into SoC platform, such as Cortex-A9 ARM
cores, while consuming an important amount of FPGA resources.

In the following section, a novel and automated framework is
described. It is completely autonomous, starting from the HLS flow
with AUGH until the results of NRT from the execution on a SoC
platform.

3. ARCHITECTURE OVERVIEW AND
SYSTEM DESCRIPTION

This section describes the architecture of our proposed framework
for on-board NRT in HLS tool developments. The framework relies
on a SoC platform which enables efficient software-controlled en-
vironment. The proposed design flow to perform autonomous and
transparent NRT is also presented in this section.

3.1 Specification

Our main objective is to provide a framework for on-board verifi-
cation of circuits generated by HLS tools under development, which
is AUGH in our case. We designed a framework which receives as
input the VHDL description of the circuits, automatically advances
the process to synthesis, placement, and routing, and generates the
configuration files for targeted FPGA. It will then reconfigure the
FPGA and run the execution autonomously. Note that test vectors
are prepared in a binary format for circuit verification purpose.

3.2 System Overview

The core of our framework is a programmable SoC platform
which integrates an FPGA and a hard-processor in the same device,
e.g. Xilinx Zynq [5] and Altera SoC [1f]. This type of platforms
allows very efficient control of the FPGA from the processor since
they are able to communicate internally using AXI interconnect.

In our proposed framework, the SoC platform is connected to a
host server for the generation of configuration files (bitstreams) and
a network storage to store the bitstreams as well as the test vectors
and golden reference. Knowing the details of the system is unnec-
essary for HLS tool developers who want to perform NRT using
this framework. Figure [3]illustrates the overview of the proposed
system.

Linux Source +Generic Communication
Programs

C code

Input Test
Vector

AXI Interface

bitstream

Linux Launcher

‘ SoC Side

reference

input vector + config
Read e Write Compare Result
Input Output Outputs

Figure 4: Design Flow of The System

FPGA
Reconfiguration

The HLS tool to be tested is installed on the host server. Mean-
while, any back-end synthesis tools related to the SoC platform used
must also be available on the server as well for bitstream generation.
A common network protocol is used so that the network storage is
accessible to both the host server and the SoC platform.

3.3 Proposed Design Flow

Our design flow consists of two main steps. The first step is the
generation of the bitstream for targeted FPGA on the server. The
second step is the circuit verification on SoC platform. Both steps
are illustrated in Figure]

On the server, the flow starts from C code written by the user.
Using AUGH, VHDL representation of the circuits is generated. The
process continues to back-end synthesis, placement and routing, and
bitstream generation for targeted FPGA. We prepared Communica-
tion Circuits (ref. Figure[d) with AXI interfaces in advance which
will be automatically integrated into the design to facilitate the com-
munication between FPGA and processor using AXI interconnect.
Meanwhile, the same C code is compiled with GCC. The objective
of this process is to obtain a golden reference that is necessary in
the circuit verification.

In the end of the flow on the server, the bitstream, the input test
vectors, and the golden reference are stored in Network Storage
together with a file which contains the information of I/O port widths
(config in Figure F).

In our work, we used embedded Linux system in the processor of
the SoC platform. The main reason is because it integrates FPGA re-
configuration driver as native, remote access SSH protocol and other
packages in Linux distribution which can be configured according
to our needs.

On the SoC platform, the flow is executed under Linux environ-
ment. It searches all the files related to the verification in Network
Storage : (1) bitstream, (2) input test vectors and config, and (3)
golden reference. The outputs of the circuits will be compared to the
golden reference and the comparison results are the results of NRT.

4. IMPLEMENTATION AND RESULTS

We used ZedBoard Zyng-7000 ARM/FPGA SoC as the main
platform in our implementation. The ZedBoard integrates a Xilinx

ARM Cortex
A9

Central
Interconnect
Processing
System (PS)

32-bits GP
AXI-Master
— N bits
npu!
ﬂ FIFO—>|
: DUT
e M bits
5 Output FIFO—]
< AXI Programmable
é Logic (PL)
Controller

Figure 5: Hardware Architecture Layout

SoC XC7Z020, 512 MB DDR3, and other peripheral devices. In our
framework, the ZedBoard is connected to a server and a network
storage via ethernet connection.

The server used is NUMA-based with 4 nodes and 8 cores Intel
Xeon CPU @ 1.87GHz in each node. It is equipped with 32GB
RAM and 18 MB L3 Cache. The server is running on Debian 4.3.
Bitstream generation is performed using Xilinx Vivado Design Suite
2015.3.

4.1 Hardware Architecture

The Xilinx SoC XC7Z020 consists of a dual-core ARM Cortex-
A9 based Processing System (PS) and a Xilinx Programmable Logic
(PL) in a single device. The working frequency of the circuits in
PL is adjustable following the constraints set in HL.S tool AUGH.
In our experiments, 100 MHz is arbitrarily chosen. The PS and
PL communicate via AXI interconnect. This work used AXI low
performance (AXI-lite) interconnect for early implementation.

The AXI-lite interconnect uses master/slave communication model.
In the framework, the processor in PS is the master for software-
controlled execution. The circuit we want to verify (Design Under
Test, DUT) is programmed in PL as the slave. The communication
between DUT and processor is done via Communication Circuits
which integrate AXI interfaces.

Figure [5] shows the hardware architecture layout in Xilinx SoC
XC7Z7020.

The Communication Circuits which hold the I/O data are Input
AXI and Output AXI. The DUT is linked to Input AXI and Output
AXI through FIFOs. These FIFOs are used to ease the communi-
cation protocol conversion between AXI interconnect and DUT
since they are different. The DUT uses handshake protocol while
AXI interconnect implements AXI protocol. While performing the
conversion between the protocols, the data should be stored in the
FIFOs. In our experiments, the DUT only has single 1/O port. In
case of DUT with multiple I/O ports, the number of Input AXI and
Output AXI should follow the number of I/O ports.

Besides the protocol conversion between DUT and AXI intercon-
nect, the data width often has to be adjusted. AXI lite interconnect
has 32-bit data width while the data width in DUT depends on its
application, shown by N and M in Figure 5] Our framework auto-
matically adjusts the I/O port widths of Input AXI and Output AXI
before the synthesis in Vivado.

During communication between the processor and the DUT, the
FIFOs in Input AXI and Output AXI store the data and serialize/dese-

ZedBoard Server

(s N
e]

Petalinux
NFS
Protocol

PL

\ A\

Figure 6: Software Architecture Layout

/

rialize the input/output according to the destination. In Input AXI, the
FIFO holds the 32-bit data from AXI interconnect and transforms
it into inputs for DUT while in OQutput AXI, it transforms outputs
from DUT to the data which will be sent to AXI interconnect. For
example, if the input of DUT is the 8-bit width, each word of 32-bit
from AXI interface in Input AXI is converted to 4 inputs which
are released sequentially by Input AXI. A similar method is used in
Output AXI.

These customized interfaces are designed to consecutively send
data each clock cycle to guarantee that the I/O communication will
not create bottleneck even though the data width of the circuit is
different.

The Controller is designed to receive commands from the proces-
sor and translate them into control signals to the DUT.

For experiment purpose, the Timer counts the execution time
(in clock cycles) and saves it. It will be sent to the processor after
execution is finished.

Note that Input AXI, Output AXI, Controller, and Timer were
generated using pre-built interfaces in Vivado. They are customized
to allow the communication between DUT and processor and are
added to the design before synthesis. In terms of FPGA resources,
the four Communication Circuits consume 386 LUT slices in logic
and 798 FF registers. The FIFOs are implemented in BRAM and
they consume one BRAM for each 1K x 32-bit FIFO.

4.2 Software Architecture

The software architecture of our implementation relies on the
programs launched on the server and ZedBoard. On the server,
a script performs the bitstream generation using TCL commands
in Vivado for non-graphical execution. The generated bitstreams
are stored in Network Storage using Network File System (NFS)
protocol.

On the ZedBoard, software is executed by the ARM processor. We
developed generic communication programs to find the bitstreams
in Network Storage and access the drivers for AXI interfaces. The
verification process on FPGA is launched by a script. Petalinux is
chosen as the embedded operating system on the ZedBoard.

Figure[f]illustrates the software architecture layout in our imple-
mentation.

4.2.1 Petalinux

In this work, we run Petalinux version 2014.4 on the ARM. It
is a Linux distribution built and deployed for Xilinx SoC. This
approach gives the advantage in FPGA reconfiguration as well as
in communication via AXI interconnect since all the drivers are
natively installed in Petalinux.

Every time the ZedBoard is turned on, it boots the Petalinux
from pre-installed SD card. This SD card contains the Petalinux
bootloader and kernel. The kernel was generated one time and does
not have to be included in the design flow. The Petalinux bootloader

and kernel generation is the only manual step we did in this work.

4.2.2 Generic Communication Programs

This section describes the generic communication programs in-
tegrated into Petalinux. These programs are developed to access
the drivers in Petalinux in an abstract way since we would like to
control the execution using custom scripts. The programs are inte-
grated into Petalinux during kernel generation. They are written in
C code, generic for all applications tested, and executable from the
command line.

e com_axi: This function is a modified version of ready-to-use
function from Xilinx tutorial to write and read an integer from
Linux shell to the AXI4-Lite interface. It sends 32-bit values
to Controller, or reads number of cycles from Timer.

e write_vectors: This function reads input test vectors from the
Network Storage and writes them to Input AXI.

e read_vectors: This function reads from Output AXI and writes
in a file and send it to Network Storage.

e compare: This function is used to compare the output with
golden reference and list the error parts of output if there is
any.

4.2.3 Scripts

Automated NRT is performed by two scripts written in bash. The
first script, script_server, is launched on the server to generate the
configuration files. It manages the flow starting from the moment the
input C code is received by AUGH until the bitstream is generated
on the server. The second script, script_zed manages the verifica-
tion on the ZedBoard by executing the Generic Communication
Programs explained in[f.2.2] Both scripts represent the execution
flows explained in[3.3] Note that the executions of both scripts are
independent of each other.

e script_server: After circuit generation from HLS tool AUGH,
the next processes are executed by script_server. The script
reads all necessary parameters to adjust the communication in-
terfaces and launches Vivado for bitstream generation in batch
mode. The process advances to synthesis, place-and-route and
bitstream generation in Vivado using Tool Command Lan-
guage (TCL) commands. The generated bitstream is put in
Network Storage together with the input test vectors, golden
reference, and config.

e script_zed: The script_zed searches the bitstream file from the
Network Storage. It launches the reconfiguration of the FPGA
with the bitstream and starts the execution on FPGA. From
Petalinux, the script access the devcfg driver to reconfigure
PL via Processor Configuration Access Port (PCAP). The
verification is launched with input test vector given and the
output is compared with the golden reference. All this process
is done sequentially in script_zed and can be repeated with
different sets of inputs (bitstream, input test vector, golden
reference, and config).

Using the proposed framework, we are able to carry out Non-
Regression Tests of HLS tool AUGH. The result of comparison
between the output of the circuits and the golden reference on the
ZedBoard shows whether any regression exists after modifications
of AUGH.

4.3 Network File System

During NRT, file exchange is done between server, ZedBoard,
and Network Storage. It is possible if a common protocol is used in
communication among them. After considering the complexity level
and performance, we decided to use Network File System (NFS) in
our proposed framework.

The implementation of NFS requires two packages: nfs-kernel-
server package in server side and nfs-common in client side. Mean-
while, in Petalinux, the external package of NFS client is not neces-
sary since it has been integrated into its kernel. Enabling portmap in
the kernel configuration will allow NFS disk mounting.

4.4 Examples of on-board NRT in AUGH
development

This section describes some examples of the on-board NRT we
have done using our proposed framework. In [8]], several applications
are taken from CHStone benchmark suite to test HLS tool AUGH.
The same applications are used to confirm the reliability of our
system as an NRT framework.

Table[T] details the time spent in Non-Regression Test of HLS too
AUGH. The first column lists all the applications used in the test.
The second column presents the time needed by AUGH to generate
the VHDL description of corresponding applications, which was
relatively short except for mjpeg which took some time in DSE
due to its size. The last two columns present the time spent by our
framework to perform NRT on the ZedBoard. The Communication
Circuits and DUT are integrated into the design and compiled using
Xilinx Vivado on the server. The time for synthesis, placement and
routing, and bitstream generation is significantly higher compared
to the execution time on FPGA.

For reference, the time spent when NRT is performed in a simula-
tion is shown in the third, fourth, and fifth columns of the table. The
third column presents the time spent in the behavioral simulation.
It checks the functionality of DUT without considering the circuit
latency. While behavioral simulation time is relatively short, it is
insufficient in NRT since we would like also to verify the clock
frequency estimation of the circuits from HLS tools.

The other type of simulation is the post-implementation simu-
lation (fourth and fifth column of Table [I). This simulation is per-
formed after synthesis, placement, and routing process (with FPGA
technology consideration). Using the netlist generated for targeted
FPGA, the simulation can be launched to check the functionality of
the circuits with or without additional timing annotations. Functional
simulation checks the behavior of the DUT without calculating the
delay while timing simulation includes netlist and logic gate delays
from the timing annotations. The time spent in post-implementation
timing simulation can be significant depending on the size and com-
plexity of the circuits.

With the data from Table [I] we are able to compare the NRT
time using our proposed framework and simulations. The additional
circuits in our hardware architecture introduce an overhead to the
design, thus extend the bitstream generation time. However, for
bigger and more complex applications, the overhead becomes less
significant. Performing post-implementation simulation of a com-
plex application may take more time than executing the application
directly on FPGA. Some applications take too much time in our
experiments and become irrelevant to our comparison, e.g. post-
implementation timing simulation of mjpeg and adpcm shown in
Table[I] Although the long bitstream generation in our framework
can be a major drawback, it is actually still considered reasonable if
we compare to post-implementation simulation time. Moreover, our
framework gives the precise time of the on-board circuit execution.

With enough number of stimulus, our proposed framework can be

Table 2: Optimal working frequency of DUTs on ZedBoard

Optimal Frequency (MHz) # of iterations

idct 180 5
mjpeg 250 11
adpcm 250 11
aes 350 21
blowfish 400 26
gsm 350 21
motion 120 2

used to validate any circuits generated by AUGH at a given working
frequency. Depending on the application, a large number of stimulus
might be needed to find the bug in the circuits. For circuit validation
with large amounts of test vectors, on-board execution offers the
same results but in a shorter time than simulation.

The fact that the NRT is performed on actual FPGA allows work-
ing frequency verification of the designs. With the given estimated
frequency, the circuits generated by HLS tools can be verified on-
board with more trusted results than simulation. In some cases, a
circuit does not work properly at its desired working frequency.
In other cases, it can achieve higher working frequency than tar-
geted. Knowing optimal working frequency of a circuit generated
by HLS tool helps developers discovering its full run-time potential.
In [2], adjusting clock frequency to find its full potential was able to
improve the performance in execution.

In further implementation, we added a register-controlled PLL to
the framework to adjust the working frequency of DUT at runtime. It
is called Clocking Wizard in Vivado and it can be controlled via AXI
interface. This IP allows changing the frequency of the circuits on
the fly without regenerating the bitstream. By iteratively increasing
the frequency by 20 MHz and 10 MHz after the circuits achieved
200 MHz, we were able to find the maximum frequency at which
the DUT still worked properly within few seconds. Table 2] presents
the optimal frequency obtained for each circuit from Table[T]using
our proposed framework and the number of iterations performed to
get the results.

4.5 Adaptation of the framework to other
platforms

Our method is not limited to the platform used in our implemen-
tation. The genericity of the proposed framework allows performing
NRT of other HLS tools.

From the hardware point of view, the architecture is layout is
defined in our proposed framework. The strategy is applicable to
other SoC platforms from Xilinx Zynq or from other vendors with
ARM processor and FPGA connected with AXI interconnect. The
design is built in VHDL language which is technology-independent,
although certain modifications are expected for different FPGA
vendors with different tools.

From the software point of view, the programs to access the
drivers are reusable in other SoC platforms from Xilinx Zynq since
they implement the same drivers. In SoC platforms from different
vendors, modifications of the programs are necessary to adapt the
drivers used. The scripts should be adapted for back-end synthesis
tool from other vendors.

5. CONCLUSION

In this paper, we presented a method to perform automated NRT in
HLS tool developments directly on FPGA. Our method is well-suited

Table 1: Non-Regression Test Time (in seconds)

DUT Only DUT + Communication circuits

AUGH 4 Post-Implementation g (o peR .

Execution Behavioral Simulation . Execution

Simulation - - and Bltst{eam on FPGA

Functional = Timing Generation

idct 1.29 55.60 449.88 889.32 738.46 0.73
mjpeg 31.58 137.31 1346.58 n/a! 864.28 0.79
adpcm 0.57 63.79 489.71 n/a’ 783.87 0.75
aes 0.50 52.75 288.36 543.14 456.65 0.84
blowfish 0.52 67.19 504.09 2219.09 518.30 0.77
gsm 0.46 53.00 321.58 482.86 517.03 0.76
motion 0.18 46.65 266.93 1143.81 464.49 0.74

! The simulation did not successfully finish the elaboration process. The process took too much

time and was stopped after 24 hours.

for developers with a weak background in hardware design since the
flow is transparent and automatic. Even with relatively long place-
ment and routing time as its major drawback, our proposed frame-
work offers more promising results compared to simulation-based
NRT, especially for post-implementation timing simulation. The
proof-of-concept of our system relies on Zynq SoC platform which
allows to automatically verify the circuits generated by AUGH. With
relatively small modification, the method is applicable to other SoC
platforms with similar specifications.

Mainly constructed to perform on-board NRT of HLS tools, our
proposed framework can also be used to rapidly validate the max-
imum working frequency of the circuits generated by HLS tools.
With sufficient test vectors, performing circuit validation is also
possible using the proposed framework.

Acknowledgments

The authors would like to thank Cyril Brisebard, Jérémy Brun and
Julien Fleche for their contributions in the project, both in terms of
concept and development.

6. REFERENCES
[1] Altera SoCs: When Architecture Matters.

[2] J. A. Bower, W. Luk, O. Mencer, M. J. Flynn, and M. Morf.
Dynamic clock-frequencies for FPGAs. Microprocessors and
Microsystems, 30(6):388-397, Sept. 2006.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski. LegUp: high-level
synthesis for FPGA-based processor/accelerator systems. In
Proceedings of the 19th ACM/SIGDA international symposium
on Field programmable gate arrays, FPGA 11, pages 33-36.
ACM, 2011.

[4] P. Coussy and A. Morawiec. High-Level Synthesis: from
Algorithm to Digital Circuit. Springer Publishing Company,
Incorporated, 2008.

[5] L. Crockett, R. Elliot, M. Enderwitz, and B. Stewart. The Zyngq
Book. Strathclyde Academic Media, july 2014.

[6] D. Hoffman. Non-Regression Test Automation. In PNSQC,
Portland, Oregon, 2008.

[7]1 O. Machidon, F. Sandu, C. Zaharia, P. Cotfas, and D. Cotfas.
Remote SoC/FPGA platform configuration for cloud
applications. In Optimization of Electrical and Electronic
Equipment (OPTIM), 2014 International Conference on, pages
827-832, May 2014.

(8]

(9]

A. Prost-Boucle, O. Muller, and F. Rousseau. Fast and
standalone design space exploration for high-level synthesis
under resource constraints. Journal of Systems Architecture,
60(1):79 — 93, 2014.

S. Windh, X. Ma, R. Halstead, P. Budhkar, Z. Luna,

O. Hussaini, and W. Najjar. High-level language tools for
reconfigurable computing. Proceedings of the IEEE,
103(3):390-408, March 2015.

