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Introduction

The motivation of this paper is to define an arithmetic weight (or degree) on the set P of periods (in the sense of Kontsevich-Zagier [START_REF] Kontsevich | Periods[END_REF], say); we refer to [START_REF] Wan | Degrees of periods[END_REF] for an apparently unrelated geometric approach. Conjecturally P[1/π] is the set of values at algebraic points of analytic continuations of G-functions (see [8, end of §2.2]); we shall focus on these values, and more precisely on the denominators of Taylor coefficients of G-functions.

Throughout this paper we fix an embedding of Q into C; all algebraic numbers and all convergents series are considered in C. We deal with fine properties of G-functions ∞ n=0 a n z n , which are defined as follows.

Definition 1. A G-function f is a formal power series f (z) = ∞ n=0 a n z n such that the coefficients a n are algebraic numbers and there exists C > 0 such that, for any n ≥ 0:

(i) the maximum of the moduli of the conjugates of a n is ≤ C n+1 .

(ii) there exists a sequence of (rational) integers D n > 0, with D n ≤ C n+1 , such that D n a m is an algebraic integer for all m ≤ n.

(iii) f (z) satisfies a homogeneous linear differential equation with coefficients in Q(z).

1

We denote by G the ring of G-functions. For any integer n ≥ 0, let d n := lcm(1, 2, . . . , n). For any integer s ≥ 0, we denote by G s (as in [START_REF] Fischler | On the denominators of the Taylor coefficients of Gfunctions[END_REF]) the set of G-functions for which there exist some positive integers b and c such that d s bn c n+1 a n is an algebraic integer for any n ∈ N = {0, 1, 2, . . .}. The series in G 0 are exactly those G-functions which are globally bounded in the sense of Christol [START_REF] Christol | Fonctions hypergéométriques bornées[END_REF]; the set G 0 is a ring and it contains all algebraic functions holomorphic at z = 0. It is clear that G s is a Q-vector space stable under derivation, and that G s G t ⊂ G s+t for any s, t ∈ N. For instance the s-th polylogarithm Li s (z) = ∞ n=1 z n /n s belongs to G s . We have proved [START_REF] Fischler | On the denominators of the Taylor coefficients of Gfunctions[END_REF] that any G-function coming from geometry (for instance any hypergeometric function p+1 F p (z) with rational parameters) belongs to

G ∞ := ∪ s∈N G s , so that conjecturally G ∞ = G. To sum up, (G s ) s≥0 is a total filtration of the Q-algebra G ∞ , which is conjecturally equal to G.
In this paper we define and study an analogous filtration on the Q-algebra G of values of G-functions (see [START_REF] Fischler | On the values of G-functions[END_REF]), namely the set of values of any (analytic continuation of a) Gfunction at any algebraic point. Recall that each G-function f has a positive radius of convergence R f , which is infinite if and only if f is a polynomial. It will be considered as a function holomorphic on the open disk of radius R f , and extended to a continuous function on the closed disk minus finitely many points (at which |f (z)| tends to infinity). In other words, if |α| = R f < ∞ then f (α) stands for the limit of f (z) as z → α with |z| < R f .

For any s ≥ 0, we denote by G s the set of all numbers f (α) with f ∈ G s and α ∈ Q such that |α| ≤ R f and f (α) is finite. Of course, we may assume α = 1 in this definition since f (αz) ∈ G s . Therefore G s is a Q-vector space; it contains Li s (1) = ζ(s) if s ≥ 2, where ζ is Riemann zeta function (see §2 for other examples). However, if f ∈ G s and α ∈ Q satisfy |α| > R f , the value f (α) obtained by analytic continuation along a given path from 0 to α does not obviously belong to G s (see the end of §4), eventhough it does belong to G (see [START_REF] Fischler | On the values of G-functions[END_REF]).

We let G ∞ = ∪ s≥0 G s , and conjecture that G ∞ = G; this follows from standard conjectures (see below). Our main result is the following.

Theorem 1. The Q-vector spaces G s make up a total filtration of the Q-algebra G ∞ , i.e. G s ⊂ G s+1 and G s • G t ⊂ G s+t for any s, t ∈ N.
In particular, G 0 and G ∞ are Q-subalgebras of G.

To study this filtration we try to adapt the strategy and results of [START_REF] Fischler | On the values of G-functions[END_REF], namely: (iii) A real number ξ can be written as x/y with x, y ∈ G and y = 0 if, and only if, there exist sequences (u n ) and (v n ) of rational numbers such that lim n→∞ u n /v n = ξ and

u n z n , v n z n are G-functions [8, Theorem 3].
As mentioned above, standard conjectures (see [START_REF] Fischler | On the denominators of the Taylor coefficients of Gfunctions[END_REF]) imply that G ∞ = G. Assuming this equality, for any ξ ∈ G assertion (i) provides f ∈ G = G ∞ such that f (1) = ξ and R f > 1, so that ξ ∈ G s for some s. In other words, G ∞ = G implies G ∞ = G: this supports the conjecture stated before Theorem 1.

Let us try to adapt (i) to our setting. Given s ≥ 0 and ξ ∈ G s , the proof of [START_REF] Fischler | On the values of G-functions[END_REF]Theorem 1] does not allow any control on the p-adic valuations of the denominators of the Taylor coefficients of f such that ξ = f (1) and R f is arbitrarily large; it is an open problem to know whether such an f exists in G s . In this direction we prove the following result:

Theorem 2. For any ξ ∈ G s there exists f (z) = ∞ n=0 a n z n ∈ G s such that R f ≥ 1 and ∞ n=0
a n is an absolutely convergent series equal to ξ. More precisely, using transfer results from analysis of singularities we construct such an f with the property that a n = O(n -1-ε ) for some ε > 0 that depends on ξ. In general, our method does not yield a function f with R f > 1.

Since Cauchy product applies to absolutely convergent series, Theorem 2 implies Theorem 1 directly.

Let us come now to assertion (ii) above. It is not clear to us whether this result can be adapted to G s (see §4); however if we restrict to the border of the disk of convergence we have the following result. Theorem 3. Let f ∈ G s , and ρ ∈ Q be a singularity of f with |ρ| = R f . Then there exist C ∈ G s \ {0}, t ∈ Q, k ∈ N, with either t ∈ N or k ≥ 1, and a polynomial P of degree < t with coefficients in G s , such that as z → ρ with |z| ≤ R f :

f (z) = P (ρ -z) + C(ρ -z) t (log(ρ -z)) k (1 + o(1)).
Since the coefficients of P are the (-1) j f (j) (ρ)/j! with 0 ≤ j < t, they obviously belong to G s ; the main point here is that the "next" coefficient C (i.e., the "first non-holomorphic" one) is also in G s . Applying Theorem 3 to all singularities of f of modulus R f yields the following corollary (using transfer results).

Corollary 1. Let f (z) = ∞ n=0 a n z n ∈ G s . Then there exist t ∈ Q, j ∈ N, a finite non- empty set S of algebraic numbers ζ such that |ζ| = 1, and non-zero elements C ζ ∈ G s for any ζ ∈ S, such that, as n → ∞, a n = (log(n)) j Γ(-t) R n f n t+1 ζ∈S C ζ ζ -n + o(1)
where Γ(-t) should be understood as 1 if t ∈ N.

With respect to [8, Eq. (6.

2)], the new point in this corollary is that

C ζ ∈ G s .
Finally, our generalisation of assertion (iii) above is the following.

Theorem 4. Let K be a subfield of Q, ξ ∈ C and s, t ∈ N ∪ {∞}. Then the following assertions are equivalent:

(a) There exist f = ∞ n=0 a n z n ∈ G s and g = ∞ n=0 b n z n ∈ G t with coefficients a n , b n ∈ K, such that R f ≥ 1, R g ≥ 1, and ξ = f (1)/g(1). (b) There exist two sequences (u n ) n≥0 and (v n ) n≥0 in K N such that ∞ n=0 u n z n ∈ G s , ∞ n=0 v n z n ∈ G t , and lim n→∞ un vn = ξ. With K = Q, assertion (a) means that ξ ∈ Gs
Gt , that is ξ = x/y with x ∈ G s and y ∈ G t \ {0}. Theorem 4 refines assertion (iii) above (i.e., [START_REF] Fischler | On the values of G-functions[END_REF]Theorem 3]), which is essentially the same statement with K = Q and G instead of G s and G t .

Considering

a n = n k=1 1 k 3 and b n = 1, we see that ζ(3) ∈ G 3 G 0 .
This can also be seen from Apéry's celebrated construction, i.e. with

b n = n k=0 n k 2 n + k n 2 , a n = n k=0 n k 2 n + k n 2 n m=1 1 m 3 + k m=1 (-1) m-1 2m 3 n m n+m n
, though it is a non-trivial task (see [START_REF] Dwork | On Apéry's differential operator[END_REF][START_REF] Beukers | Irrationality of π 2 , periods of an elliptic curve and Γ 1 (5), Approximations diophantiennes et nombres transcendants[END_REF]) to prove that ∞ n=0 a n z n ∈ G 3 and that a n /b n → ζ(3). Of course, upon multiplying these two specific sequences a n and b n by

1 (n+1) s , s ≥ 0, we see that ζ(3) ∈ G 3+s
Gs as well.

As J. Cresson pointed out to us, assertion (iii) above shows that any real number ξ = x/y with x, y ∈ G and y = 0 is elementary (in the sense of [START_REF] Yoshinaga | Periods and elementary real numbers[END_REF]Definition 9]). Therefore Yoshinaga's example of a non-elementary real number ξ 0 (constructed in [16, Proposition 17]) satisfies ξ 0 ∈ Frac (G). Recall that conjecturally G = P[1/π] where (as above) P is the ring of periods, and that Yoshinaga has proved that periods are elementary (so that ξ 0 ∈ P).

To conclude this introduction, we would like to point out an important difference between the present results and those of [START_REF] Fischler | On the values of G-functions[END_REF]. Any given G-function is annihilated by a G-operator of which, at any algebraic point, all solutions can be written in terms of Gfunctions. This enabled us to use analytic continuation in a crucial way in [START_REF] Fischler | On the values of G-functions[END_REF]. On the opposite, when globally bounded functions come into the play, the situation seems different. Indeed the following conjecture is stated (in a more general setting) by Y. André in [2, Remark 5. 

(z -α) if α ∈ Q, or f (1/z) if α = ∞, where each f (z) is a G-function in G 0 . Then Ly(z) = 0 has a C-basis of solutions made of algebraic functions over Q(z).
In some sense, this conjecture is analogous to a result proved in [START_REF] Rivoal | Holomorphic solutions of E-operators[END_REF] for E-functions, namely that if an E-operator admits a C-basis of holomorphic solutions at z = 0, then such a basis can be made of functions of the form µ j=1 P j (z)e α j z , where P j (z) ∈ Q(z) and α j ∈ Q. Such exponential polynomials are the simplest examples of E-functions, while algebraic functions over Q(z) are the simplest G-functions. If, in Conjecture 1, we remove the assumption that the G-functions f (z) are in G 0 , then the solutions are not always algebraic functions; we do not know if a classification of the solutions is still possible, even under the further assumption that L is a G-operator (1 ).

As pointed out to us by B. Adamczewski, G. Christol and E. Delaygue, Conjecture 1 follows from Grothendieck's conjecture on p-curvatures (see §4 for details); it has been tackled by Y. André (see [START_REF] André | Sur la conjecture des p-courbures de Grothendieck-Katz et un problème de Dwork[END_REF]Theorem 5.4.3] for the best result in this direction). In any case, it prevents us from using analytic continuation, and it explains why all results in the present paper concern only the (closed) disk of convergence.

The structure of this paper is as follows. We gather examples in §2, and prove in §3 the results stated in this introduction; the main tool is transfer results from analysis of singularities. At last, we discuss in §4 the problem of analytic continuation. more precisely we oberve that 1/π is in G 0 , as Ramanujan's formula shows:

1 π = n=0 (42n + 5) 2n n 3 2 12n+4 .
However we conjecture that π ∈ G 0 .

Some hypergeometric functions p+1 F p with rational parameters are globally bounded (so that their values at algebraic points in the unit disk belong to G 0 ). Christol has obtained a characterization of this property in [5, Proposition 1]; to state it we need some notation. Given x ∈ Q, denote by x the unique element of (0, 1] such that x -x ∈ Z; in other words, x = 1 if x ∈ Z, and x is the fractional part of x otherwise. Consider the total order on R defined by 

; z = ∞ k=0 (a 0 ) k (a 1 ) k • • • (a p ) k (1) k (b 1 ) k • • • (b p ) k z k
belongs to G 0 if, and only if, for any x ∈ R and any λ ∈ {1, . . . , d} coprime to d we have

Card{0 ≤ i ≤ p, λa i x} ≥ Card{0 ≤ i ≤ p, λb i x}. (2.1)
In the proof of Proposition 1 below we shall be interested in the special case where b i = 1 for any i. In this case, for any x ∈ Q \ Z and any λ coprime to d we have Card{0 ≤ i ≤ p, λb i x} = 0 so that Eq. (2.1) holds; the situation is the same for x ∈ Z such that x > λ. At last, for x ∈ Z such that x ≤ λ, both sides of Eq. (2.1) are equal to p + 1 since a 0 , . . . , a p ∈ Q \ Z ≤0 . Therefore we have the following well-known corollary.

Corollary 2. For any a 0 , . . . , a p ∈ Q \ Z ≤0 the hypergeometric series p+1 F p a 0 , a 1 , . . . , a p 1, . . . , 1 ; z belongs to G 0 .

We proved in [8, Proposition 1] that the Beta values B(x, y) := Γ(x)Γ(y) Γ(x+y) are units of G for any x, y ∈ Q for which B(x, y) is defined and not zero; observe that B( 12 , 1 2 ) = π.

Proposition 1. For any x, y ∈ Q for which B(x, y) is defined and not zero, we have

1 B(x,y) ∈ G 0 and B(x, y) ∈ πG 0 ⊂ G 1 .
Moreover, for any integers a ≥ 1 and b ≥ 2 we have

Γ(a/b) b ∈ π b-1 G 0 ⊂ G b-1 and 1 Γ(a/b) b ∈ 1 π G 0 ⊂ G 0 .
Proof. We start from Gauss' famous hypergeometric summation formula [14, p. 28, Eq. (1.7

.6)] ∞ n=0 (a) n (b) n n!(c) n = Γ(c)Γ(c -a -b) Γ(c -a)Γ(c -b)
which is valid for Re(c) > Re(a + b), the series being absolutely convergent. Given positive numbers x, y ∈ Q \ N we apply this formula with a = -x, b = -y, and c = 1. Using Corollary 2 we obtain

1 B(x, y) = xy x + y Γ(1 + x + y) Γ(1 + x)Γ(1 + y) = xy x + y ∞ n=0 (-x) n (-y) n n! 2 ∈ G 0 .
We can extend this inclusion to any other well-defined value of 1 B(x,y) , x, y ∈ Q, by means of the functional equation Γ(s + 1) = sΓ(s). As in [8, Proposition 1], we have that B(x, y) = βπ B(1-x,1-y) for some algebraic number β, which proves that B(x, y) ∈ πG 0 . Furthermore, let a ≥ 1 and b ≥ 2. Then

(a -1)! b-1 j=1 B a b , ja b = Γ a b b so that Γ( a b ) b ∈ π b-1 G 0 ⊂ G b-1 .
On the other hand, it is also straightforward to prove that, for any integers a

≥ 1, b ≥ 2, b-2 j=1 B a b , ja b = Γ a b b-1 Γ a -a b = β Γ a b b π
for some non-zero algebraic number β; this implies π

Γ( a b ) b ∈ G 0 .
When a G-value is proved to be in a certain G s with s ≥ 1, one may wonder if it is in fact in G t for some t < s. This is in general a very difficult question to answer. We have searched carefully among the large amount of alternative representations of these numbers in the literature, and we conjecture that the above mentioned results for π, π , ζ(s), ζ(s 1 , s 2 , . . . , s n ) are best possible. Furthermore, we proved in [8, Lemma 8] that log(α) ∈ G 1 for any non-zero algebraic number α and any branch of the logarithm; we conjecture that in fact log(α) ∈ G 1 \ G 0 (in particular, π ∈ G 0 ). Given ξ ∈ G, it seems natural to consider the integer δ(ξ) defined as the least s ≥ 0 such that ξ ∈ G s ; such an s always exists since conjecturally G = G ∞ := ∪ s G s . For instance we have δ(1) = δ(1/π) = 0, δ(π) ≤ 1, and conjecturally δ(π) = 1. Since G s • G t ⊂ G s+t we have δ(ξξ ) ≤ δ(ξ) + δ(ξ ) for any ξ, ξ ∈ G. We believe that this inequality is not always an equality: for instance π • 1 π = 1, and conjecturally δ(1) < δ(π) + δ(1/π). Another possible example is given by ξ = Γ( a b ) b and ξ = Γ( b-a b ) b with coprime integers b > a > 0 such that b ≥ 3: we have ξξ ∈ π b Q ⊂ G b so that δ(ξξ ) ≤ b, whereas we believe that δ(ξ) = δ(ξ ) = b-1. We refer to [START_REF] Wan | Degrees of periods[END_REF] for a different notion of degree of periods, with similar properties.

Proofs of the main results

In §3.1 we introduce some notation and recall transfer theorems. This allows us in § §3.2 to 3.4 to prove Theorems 2, 3 and 4 stated in the introduction (recall that Theorem 1 follows directly from Theorem 2 since Cauchy product applies to absolutely convergent series).

Notation and transfer theorems

Let s ∈ N, f ∈ G s , and ρ be a singularity of f such that |ρ| = R f . Using the André-Chudnovski-Katz theorem (see [1, p. 719] for a discussion, and [8, Theorem 6] for a statement) and considering the first non-holomorphic term in a local expansion of f at ρ, we obtain t(ρ, f

) ∈ Q, k(ρ, f ) ∈ N, C ρ,f ∈ C , and a polynomial P ρ,f ∈ C[X] of degree < t(ρ, f ), such that f (z) = P ρ,f (ρ -z) + C ρ,f log(ρ -z) k(ρ,f ) (ρ -z) t(ρ,f ) (1 + o(1)) (3.1) 
as z → ρ with |z| ≤ R f . Moreover the function log(ρ-z) k(ρ,f ) (ρ-z) t(ρ,f ) is not holomorphic at z = ρ, so that either t(ρ, f ) ∈ N or k(ρ, f ) ≥ 1. We remark that C ρ,f ∈ G (see [START_REF] Fischler | On the values of G-functions[END_REF]); this weaker version of Theorem 2 will be re-proved below using a strategy different from the one of [START_REF] Fischler | On the values of G-functions[END_REF].

Transfer results (see [START_REF] Flajolet | Analytic combinatorics[END_REF], Chapter VI, §2) enable one to deduce an asymptotic estimate of a n from the local behaviour of f (z) = ∞ n=0 a n z n at all ρ ∈ S, where S is the finite non-empty set of singularities of f of modulus R f . Indeed, let t(f ) = min ρ∈S t(ρ, f ), and let k(f ) denote the maximal value of k(ρ, f ) among the ρ ∈ S such that t(ρ, f ) = t(f ). Then letting S denote the set of all ρ ∈ S such that t(ρ, f ) = t(f ) and k(ρ, f ) = k(f ), we have:

a n = log(n) k(f ) Γ(-t(f ))n t(f )+1 ρ∈S D ρ ρ -n + o(1) if t(f ) ∈ N, (3.2) 
a n = log(n) k(f )-1 n t(f )+1 ρ∈S D ρ ρ -n + o(1) if t(f ) ∈ N, (3.3) 
where

D ρ =      (-1) k(f ) C ρ,f ρ t(f ) if t(f ) ∈ N, (-1) k(f )+t(f ) t(f )!k(f )C ρ,f ρ t(f ) if t(f ) ∈ N. Of course we have k(f ) ≥ 1 if t(f ) ∈ N.

Proof of Theorem 2

Let ξ ∈ G s . There exists

f = ∞ n=0 a n z n ∈ G s such that R f ≥ 1 and f (1) = ξ. If R f > 1 then the series
a n converges absolutely and is equal to ξ; therefore we may assume that R f = 1. We denote by S the set of singularities of f on the unit circle, and let

g(z) = f (z) ρ∈S\{1} (ρ -z) 1-t(ρ,f ) ,
with the notation of §3.1. Since t(ρ, f ) ∈ Q for any ρ, the product is an algebraic function holomorphic at 0, and therefore a globally bounded G-function; this yields g ∈ G s . Let S denote the set of singularities of g on the unit circle. Then S ⊂ S and R g ≥ 1; it may happen that S = ∅ so that R g > 1. Moreover for any ρ ∈ S \ {1} we have t(ρ, g) ≥ 1. If 1 ∈ S then 1 ∈ S and t(1, g) = t(1, f ) > 0 since f (z) has a finite limit ξ as z → 1, |z| < 1. Letting ε = min(1, t(1, f )) in this case, and ε = 1 if 1 ∈ S, we obtain in both cases that t(ρ, g) ≥ ε > 0 for any ρ ∈ S. If S = ∅ then (3.2) and (3.3) yield b n = O(n -1-ε (log n) k(g) ) where g(z) = ∞ n=0 b n z n ; this estimate holds also if S = ∅ since R g > 1 in this case. Therefore b n is an absolutely convergent series, equal to g [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF]. Multiplying all coefficients b n with the fixed algebraic number f (1)/g(1) = ρ∈S\{1} (ρ -1) t(ρ,f )-1 concludes the proof of Theorem 2.

Proof of Theorem 3

Let f ∈ G s and ρ be a singularity of f of modulus R f . Eq. (3.1) shows that the coefficients of P ρ,f are the (-1) j f (j) (ρ)/j! with 0 ≤ j < t(ρ, f ). Since f (j) ∈ G s we deduce that

P ρ,f ∈ G s [X]. Let us prove now that C ρ,f ∈ G s . Letting j = t(ρ, f ) we have deg P ρ,f ≤ j -1. If P ρ,f = 0 then C ρ,f /C ρ,f ( 
j) ∈ Q and P ρ,f (j) = 0 so that we may restrict to the case where P ρ,f = 0. Then we argue by induction on k(ρ, f ). If k(ρ, f ) = 0 then C ρ,f is the value at z = ρ of the function f (z)(ρ -z) -t(ρ,f ) ∈ G s so that C ρ,f ∈ G s . Now assume that the result holds for any function with a smaller value of k(ρ, f ), and let g(z) = f (z)(ρ -z) -t(ρ,f ) ∈ G s . Then we have

g (z) = -k(ρ, f )C ρ,f log(ρ -z) k(ρ,f )-1 ρ -z (1 + o(1))
with the derivative g ∈ G s as well, so that k(ρ, f )C ρ,f ∈ G s . Since k(ρ, f ) is a positive integer, this concludes the induction and the proof of Theorem 3.

Proof of Theorem 4

The proof is the same as the corresponding theorem in [START_REF] Fischler | On the values of G-functions[END_REF]. We simply have to use the additionnal informations provided by Corollary 1 on the coefficients C ζ . Since there is no subtility, we leave the details to the reader.

Conclusion and comments on Conjecture 1

In this section, we explain the difficulties to use here the method of [START_REF] Fischler | On the values of G-functions[END_REF] to express any ξ ∈ G as f (1) where f has Taylor coefficients in Q(i) and R f > 1 can be chosen arbitrarily.

To prove Theorem 1 in [START_REF] Fischler | On the values of G-functions[END_REF], we used analytic continuation and in particular made a large use of the André-Chudnovski-Katz theorem on local solutions of G-operators at algebraic points. This was even the first step to prove that G is ring. In the present situation, a possible analogue property, P say, would be that, given a function f ∈ G 0 with minimal G-operator L, there exists at any algebraic point ρ a local basis of solutions of L made up of functions involving only series in G 0 . However Property P is false in general, as the following example shows. Let us consider the hypergeometric function 

f (z) = 2 F 1 a, b 1 ; z = ∞ n=0 (a) n (b) n n! 2 z n (4.
) + log(1 -z)f (1 -z) with g(z) = ∞ n=0 n-1 k=0 1 k + a + 1 k + b - 2 k + 1 (a) n (b) n n! 2 z n . Then we have f (z) = - 1 Γ(a)Γ(b) g(1 -z) + log(1 -z)f (1 -z) for |1 -z| < 1 and |arg(1 -z)| < π.
Clearly, the series g(z) is in G 1 but not in G 0 . This observation is not surprising because a second solution at z = 0 is g(z) + log(z)f (z), again involving G-functions not all in G 0 . In fact, Conjecture 1 stated in the Introduction implies that Property P holds only for a very small class of G-functions, namely algebraic functions over Q(z). Actually that conjecture deals with the more general situation where a basis of solutions of a differential operator L ∈ Q(z)[ d dz ] at z = 0 is made of G-functions in G 0 . (The seemingly more general case for z = α ∈ Q ∪ {∞} can be immediately reduced to z = 0 by a suitable change of variable.) We mentioned in the Introduction that Conjecture 1 follows from Grothendieck's conjecture for p-curvatures (stated in [13, p. 2] for instance). The following argument has been provided to us by B. Adamczewski, G. Christol and E. Delaygue (see also [START_REF] André | Sur la conjecture des p-courbures de Grothendieck-Katz et un problème de Dwork[END_REF]Proposition 5.3.3]). For any prime ideal p over a sufficiently large prime number p, this local basis provides by reduction of L mod p a local basis of solutions consisting in formal power series (see [START_REF] Vizio | Sur la théorie géométrique des G-fonctions (Le théorème de Chudnovsky à plusieurs variables)[END_REF]Appendix B]). Therefore the p-curvature of L is zero (see [4, §3]), and Grothendieck's conjecture provides a basis of solutions algebraic over Q(z).

Since we are not able to use analytic continuation, we did not succeed in proving any result concerning f (ξ) when f ∈ G s and |ξ| > R f . It is not even clear to us whether one should expect that f (ξ) ∈ G s .

However we have seen in several examples that when ρ is a singularity of f ∈ G s with |ρ| = R f , the local expansion

f (z) = ∞ n=-N K k=0 c n,k (ρ -z) n/d log(ρ -z) k
as z → ρ has coefficients c n,k ∈ G s . Arguing as in [8, §4] this means that all connection constants of f with respect to a local basis at ρ belong to G s ; it would be a refinement upon Theorem 3. In this respect we remark that the connection constants of f with respect to local bases at algebraic points z with |z| < R f are simply the derivatives f (j) (z) of f at z, so that they belong to G s .

To conclude, let us mention that algebraic numbers can be written as f (1) with f = ∞ n=0 a n z n ∈ G 0 having coefficients a n in Q(i): this follows from [8, Lemma 7]. However we do not know if all elements of G 0 have the same property.

( i )

 i Any ξ ∈ G can be written as f (1) where f ∈ G has coefficients in Q(i) and R f can be chosen arbitrarily large [8, Theorem 1]. (ii) Connection constants involved in analytic continuation of G-functions at algebraic points belong to G [8, Theorem 2].

  3.2]. Conjecture 1. Consider a differential operator L ∈ Q(z)[ d dz ] and some α ∈ Q ∪ {∞}. Let us assume that the differential equation Ly(z) = 0 has a local basis of solutions at z = α consisting of functions of the form f

  x y if, and only if, x < y or x = y and x ≥ y . Let a 0 , . . . , a p , b 1 , . . . , b p ∈ Q \ Z ≤0 and put b 0 = 1 ; denote by d the least common multiple of the denominators of a 0 , . . . , a p , b 1 , . . . , b p . With this notation, Christol's criterion is the following. Theorem 5 (Christol). The hypergeometric series p+1 F p a 0 , a 1 , . . . , a p b 1 , . . . , b p
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1 )

 1 with a, b ∈ Q \ Z ≤0 , a + b = 1 and |z| < 1; Corollary 2 yields f ∈ G 0 . It is a solution of a hypergeometric differential equation of order 2, which admits at z = 1 the basis of solutions f (1 -z) and g(1 -z

A G-operator is a differential operator in Q(z)[ d dz ] minimal, for the degree in d dz , among those which annihilate some G-function; an E-operator is a differential operator in Q[z, d dz ] minimal, for the degree in z, among those which annihilate some E-function.
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Examples

In this section, we present various examples of numbers in G s . From the well-known formulas or definitions

On the other hand, π is a unit of the ring G of G-values and