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Values of globally bounded G-functions

S. Fischler and T. Rivoal

March 20, 2017

Abstract

In this paper we define and study a filtration (Gs)s≥0 on the algebra of values at
algebraic points of analytic continuations of G-functions: Gs is the set of values at
algebraic points in the disk of convergence of all G-functions

∑∞
n=0 anz

n for which
there exist some positive integers b and c such that dsbnc

n+1an is an algebraic integer
for any n, where dn = lcm(1, 2, . . . , n).

We study the situation at the boundary of the disk of convergence, and using
transfer results from analysis of singularities we deduce that constants in Gs appear
in the asymptotic expansion of such a sequence (an).

1 Introduction

The motivation of this paper is to define an arithmetic weight (or degree) on the set P
of periods (in the sense of Kontsevich-Zagier [14], say); we refer to [16] for an apparently
unrelated geometric approach. Conjecturally P [1/π] is the set of values at algebraic points
of analytic continuations of G-functions (see [11, end of §2.2]); we shall focus on these
values.

Throughout this paper we fix an embedding of Q into C; all algebraic numbers and
all convergents series are considered in C. We deal with fine properties of G-functions∑∞

n=0 anz
n, which are defined as follows.

Definition 1. A G-function f is a formal power series f(z) =
∑∞

n=0 anz
n such that the

coefficients an are algebraic numbers and there exists C > 0 such that, for any n ≥ 0:

(i) the maximum of the moduli of the conjugates of an is ≤ Cn+1.

(ii) there exists a sequence of (rational) integers Dn > 0, with Dn ≤ Cn+1, such that
Dnam is an algebraic integer for all m ≤ n.

(iii) f(z) satisfies a homogeneous linear differential equation with coefficients in Q(z).

We denote by G the ring ofG-functions. For any integer n ≥ 0, let dn := lcm(1, 2, . . . , n).
For any integer s ≥ 0, we denote by Gs (as in [12]) the set of G-functions for which there
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exist some positive integers b and c such that dsbnc
n+1an is an algebraic integer for any

n ∈ N = {0, 1, 2, . . .}. The series in G0 are exactly those G-functions which are globally
bounded in the sense of Christol [5]; the set G0 is a ring and it contains all algebraic functions
holomorphic at z = 0. It is clear that Gs is a Q-vector space stable under derivation, and
that GsGt ⊂ Gs+t for any s, t ∈ N. For instance the s-th polylogarithm Lis(z) =

∑∞
n=1 z

n/ns

belongs to Gs. Any hypergeometric G-function f(z) = p+1Fp(z) with rational parameters
belongs to Gs for some s; the least such integer s can be computed in terms of the param-
eters using a criterion of Christol [5] (see also [8]). More generally we have proved [12]
that any G-function coming from geometry belongs to G∞ := ∪s∈NGs, so that conjecturally
G∞ = G. To sum up, (Gs)s≥0 is a total filtration of the Q-algebra G∞, which is conjecturally
equal to G.

In this paper we define and study an analogous filtration on the Q-algebra G of values
of G-functions (see [11]), namely the set of values of any (analytic continuation of a) G-
function at any algebraic point. Recall that each G-function f has a positive radius of
convergence Rf , which is infinite if and only if f is a polynomial. It will be considered
as a function holomorphic on the open disk of radius Rf , and extended to a continuous
function on the closed disk minus finitely many points (at which |f(z)| tends to infinity).
In other words, if |α| = Rf < ∞ then f(α) stands for the limit of f(z) as z → α with
|z| < Rf .

For any s ≥ 0, we denote by Gs the set of all numbers f(α) with f ∈ Gs and α ∈ Q
such that |α| ≤ Rf and f(α) is finite. Of course, we may assume α = 1 in this definition
since f(αz) ∈ Gs. Therefore Gs is a Q-vector space; it contains Lis(1) = ζ(s) if s ≥ 2,
where ζ is Riemann zeta function (see §2 for other examples). Letting G∞ = ∪s≥0Gs, we
shall prove in Corollary 1 below that the Q-vector spaces Gs define a total filtration of
G∞, with Gs ·Gt ⊂ Gs+t for any s, t.

We have proved [11, Theorem 1] that any ξ ∈ G can be written as f(1) where f ∈ G has
coefficients in Q(i) and Rf can be chosen arbitrarily large; therefore the above-mentioned
conjecture G∞ = G (which follows from standard conjectures, see [12]) implies G∞ = G.

Let us point out that in the definition of Gs we consider only values f(α) with |α| ≤ Rf :
analytic continuation outside the disk of convergence is not allowed, but the case |α| = Rf

is. In this case the series
∑∞

n=0 anα
n, where f(z) =

∑∞
n=0 anz

n, can be divergent or converge
but not absolutely (for instance

∑∞
n=0(−1/4)n

(
2n
n

)
= 1/

√
2 ∈ G0). Absolute convergence

was crucial to us to prove that G is a ring, a property we shall prove below for G0 and G∞.
The problem is to perform correctly the multiplication on Gs. It is well-known that the
Cauchy product

∑∞
n=0

∑
j+k=n ajbk might not be equal (

∑∞
n=0 an) · (

∑∞
n=0 bn) when both

series converge only conditionally. For instance,( ∞∑
n=0

(−1)n
(

2n
n

)
4n

)2

6=
∞∑
n=0

(−1)n

4n

∑
j+k=n

(
2j

j

)(
2k

k

)
because

∑
j+k=n

(
2j
j

)(
2k
k

)
= 4n for all n ≥ 0, so that the series on the right-hand side is

divergent. However, (
∑∞

n=0 an) · (
∑∞

n=0 bn) =
∑∞

n=0

∑
j+k=n ajbk when both series converge
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and at least one converges absolutely (Mertens’ theorem). Unfortunately, our proof of [11,
Theorem 1] offers no control on the p-adic valuations of the denominators of the Taylor
coefficients of f , so that given ξ ∈ Gs we cannot assert that the function f ∈ G we construct
there (such that f(1) = ξ and Rf is arbitrarily large) belongs to Gs. Our first result shows
we can solve this problem but there is a cost: we are no longer able to prove that the
coefficients are in Q(i) and that Rf > 1.

Theorem 1. For any ξ ∈ Gs there exists f(z) =
∑∞

n=0 anz
n ∈ Gs such that Rf ≥ 1 and∑∞

n=0 an is an absolutely convergent series equal to ξ.

More precisely, using transfer results from analysis of singularities we construct such
an f with the property that an = O(n−1−ε) for some ε > 0 that depends on ξ. In general,
our method does not yield a function f with Rf > 1. To try to obtain f as in Theorem 1,
one may apply Euler’s acceleration method

∑∞
n=0 an =

∑∞
n=0

1
2n+1

∑n
k=0

(
n
k

)
ak, where the

right-hand side is sometimes much more rapidly convergent than the left-hand side. But
this process is not strong enough to systematically increase the radius of convergence in our
setting. For instance, with an = 1

(n+1)s
, s ≥ 2, the radius of convergence of the G-function

∞∑
n=0

zn

2n+1

n∑
k=0

(
n

k

)
1

(k + 1)s

is still equal to 1. (1) There might be more efficient acceleration transforms (preserving
G-functions) but we don’t know of any. We also explain in Section 4 why our approach
in [11], based on analytic continuation, is apparently inoperent here.

As explained above, Theorem 1 implies directly the following result.

Corollary 1. The Q-vector spaces Gs make up a total filtration of the Q-algebra G∞, i.e.

Gs ⊂ Gs+1 and Gs ·Gt ⊂ Gs+t for any s, t ∈ N.

In particular, G0 and G∞ are Q-subalgebras of G and, conjecturally, G∞ = G.

The main tool in [11] is analytic continuation; we prove that connection constants of
G-functions belong to G. It is not clear to us whether this result can be adapted to Gs (see
§4); however if we restrict to the border of the disk of convergence we have the following
result.

Theorem 2. Let f ∈ Gs, and ρ ∈ Q be a singularity of f with |ρ| = Rf . Then there exist
C ∈ Gs \ {0}, t ∈ Q, k ∈ N, with either t 6∈ N or k ≥ 1, and a polynomial P of degree < t
with coefficients in Gs, such that as z → ρ with |z| ≤ Rf :

f(z) = P (ρ− z) + C(ρ− z)t(log(ρ− z))k(1 + o(1)).

1Simply observe that 1 ≥ 1
2n

∑n
k=0

(n
k)

(k+1)s ≥
( n
bn/2c)

2n(n/2+1)s �
1

ns+1/2 .
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Since the coefficients of P are the (−1)jf (j)(ρ)/j! with 0 ≤ j < t, they obviously belong
to Gs; the main point here is that the “next” coefficient C (i.e., the “first non-holomorphic”
one) is also in Gs. Applying Theorem 2 to all singularities of f of modulus Rf yields the
following corollary (using transfer results).

Corollary 2. Let f(z) =
∑∞

n=0 anz
n ∈ Gs. Then there exist t ∈ Q, j ∈ N, a finite non-

empty set S of algebraic numbers ζ such that |ζ| = 1, and non-zero elements Cζ ∈ Gs for
any ζ ∈ S, such that, as n→∞,

an =
(log(n))j

Γ(−t)Rn
f n

t+1

(∑
ζ∈S

Cζζ
−n + o(1)

)
where Γ(−t) should be understood as 1 if t ∈ N.

With respect to [11, Eq. (6.2)], the new point in this corollary is that Cζ ∈ Gs.

Finally, we apply our results to a refinement of the notion of G-approximations of
complex numbers, introduced in [11].

Theorem 3. Let K be a subfield of Q, ξ ∈ C? and s, t ∈ N ∪ {∞}. Then the following
assertions are equivalent:

(i) There exist f =
∑∞

n=0 anz
n ∈ Gs and g =

∑∞
n=0 bnz

n ∈ Gt with coefficients an, bn ∈ K,
such that Rf ≥ 1, Rg ≥ 1, and ξ = f(1)/g(1).

(ii) There exist two sequences (un)n≥0 and (vn)n≥0 in KN such that
∑∞

n=0 unz
n ∈ Gs,∑∞

n=0 vnz
n ∈ Gt, and limn→∞

un
vn

= ξ.

With K = Q, assertion (i) means that ξ ∈ Gs

Gt
, that is ξ = x/y with x ∈ Gs and

y ∈ Gt \ {0}. Theorem 3 refines [11, Theorem 3], which is essentially the same statement
with K = Q and G instead of Gs and Gt.

Considering an =
∑n

k=1
1
k3

and bn = 1, we see that ζ(3) ∈ G3

G0
. This can also be seen

from Apéry’s celebrated construction, i.e. with

bn =
n∑
k=0

(
n

k

)2(
n+ k

n

)2

, an =
n∑
k=0

(
n

k

)2(
n+ k

n

)2( n∑
m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
n

)),
though it is a non-trivial task (see [9, 4]) to prove that

∑∞
n=0 anz

n ∈ G3 and that an/bn →
ζ(3). Of course, by multiplying these two specific sequences an and bn by 1

(n+1)s
, s ≥ 0, we

see that ζ(3) ∈ G3+s

Gs
as well.

As Jacky Cresson pointed out to us, Theorem 3 shows that any real number ξ = x/y
with x, y ∈ G and y 6= 0 is elementary (in the sense of [17, Definition 9]). Therefore
Yoshinaga’s example of a non-elementary real number ξ0 (constructed in [17, Proposition
17]) satisfies ξ0 6∈ Frac (G). Recall that conjecturally G = P [1/π] where (as above) P is
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the ring of periods, and that Yoshinaga has proved that periods are elementary (so that
ξ0 6∈ P).

The structure of this paper is as follows. We gather examples in §2, and prove in §3
the results stated in this introduction; the main tool is transfer results from analysis of
singularities. At last, we discuss in §4 the problem of analytic continuation.

Acknowledgment. We thank Y. André, J. Cresson and G. Christol for their com-
ments. Both authors have been supported by the LabEx PERSYVAL-Lab (ANR-11-
LABX-0025-01) funded by the French program Investissement d’avenir.

2 Examples

In this section, we present various examples of numbers in Gs. From the well-known
formulas or definitions

π

4
=
∞∑
n=0

(−1)n

2n+ 1
, log(2) =

∞∑
n=1

(−1)n−1

n
,

ζ(s) =
∞∑
n=1

1

ns
,

π2

12
− log(2)2

2
=
∞∑
n=1

1

n22n
,

ζ(s1, s2, . . . , sn) =
∑

n1>n2>···nk≥1

1

ns11 n
s2
2 · · ·n

sk
k

we deduce that π, log(2) ∈ G1, π
2

12
− log(2)2

2
∈ G2, ζ(s) ∈ Gs for s ≥ 2, and ζ(s1, s2, . . . , sn) ∈

Gs1+···+sn for s1 ≥ 2, sj ≥ 1. On the other hand, π is a unit of the ring G of G-values and
more precisely we oberve that 1/π is in G0, as Ramanujan’s formula shows:

1

π
=
∑
n=0

(42n+ 5)
(

2n
n

)3

212n+4
.

However we conjecture that π 6∈ G0.
Some hypergeometric functions p+1Fp with rational parameters are globally bounded,

though it is not easy to prove this directly in a specific instance; Christol has obtained a
characterization of this property in [5] (see also [8] for a discussion and a refinement). In
particular, any hypergeometric series with only 1’s as lower parameters is globally bounded.
Its values at algebraic points inside the unit disk are thus in G0.

We proved in [11, Proposition 1] that the Beta values B(x, y) := Γ(x)Γ(y)
Γ(x+y)

are units of G

for any x, y ∈ Q for which B(x, y) is defined and not zero; observe that B(1
2
, 1

2
) = π.
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Proposition 1. For any x, y ∈ Q for which B(x, y) is defined and not zero, we have
1

B(x,y)
∈ G0 and B(x, y) ∈ πG0 ⊂ G1.

Moreover, for any integers a ≥ 1 and b ≥ 2 we have

Γ(a/b)b ∈ πb−1G0 ⊂ Gb−1 and
1

Γ(a/b)b
∈ 1

π
G0 ⊂ G0.

Proof. We start from Gauss’ famous hypergeometric summation formula [15, p. 28, Eq.
(1.7.6)]

∞∑
n=0

(a)n(b)n
n!(c)n

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

which is valid for Re(c) > Re(a + b), the series being absolutely convergent. When
a, b, c ∈ Q, c 6∈ Z≤0, the series is obviously a G-value and furthermore if c = 1 then the
value of the series is in G0. This last statement follows from Christol’s above-mentioned
characterization, and also directly from the well-known fact that there exists a positive
integer A such that

An
(a)n
n!
∈ Z for any n ∈ N.

The minimal value of A depends on the p-adic valuations of a = u/v for all primes p,
but A = v2 is suitable. Applying Gauss’ identity with a and b changed to −x and −y
respectively, we see that for any non-negative x, y ∈ Q such that x+ y > 0,

1

B(x, y)
=

xy

x+ y

Γ(1 + x+ y)

Γ(1 + x)Γ(1 + y)
=

xy

x+ y

∞∑
n=0

(−x)n(−y)n
n!2

∈ G0.

We can extend this inclusion to any other well-defined value of 1
B(x,y)

, x, y ∈ Q, by means

of the functional equation Γ(s + 1) = sΓ(s). As in [11, Proposition 1], we have that
B(x, y) = βπ

B(1−x,1−y)
for some algebraic number β, which proves that B(x, y) ∈ πG0.

Furthermore, let a ≥ 1 and b ≥ 2. Then

(a− 1)!
b−1∏
j=1

B
(a
b
,
ja

b

)
= Γ

(a
b

)b
so that Γ(a

b
)b ∈ πb−1G0 ⊂ Gb−1. On the other hand, it is also straightforward to prove

that, for any integers a ≥ 1, b ≥ 2,

b−2∏
j=1

B
(a
b
,
ja

b

)
=

Γ
(
a
b

)b−1

Γ
(
a− a

b

) = β
Γ
(
a
b

)b
π

for some non-zero algebraic number β; this implies π
Γ(a

b
)b
∈ G0.
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When a G-value is proved to be in a certain Gs with s ≥ 1, one may wonder if it
is in fact in Gt for some t < s. This is in general a very difficult question to answer.
We have searched carefully among the large amount of alternative representations of these
numbers in the literature, and we conjecture that the above mentioned results for π, π

2

12
−

log(2)2

2
, ζ(s), ζ(s1, s2, . . . , sn) are best possible. Furthermore, we proved in [11, Lemma 8]

that log(α) ∈ G1 for any non-zero algebraic number α and any branch of the logarithm;
we conjecture that in fact log(α) ∈ G1 \G0 (in particular, π 6∈ G0).

We conjecture that there exist s, t ≥ 0 and ξ ∈ Gs \Gs−1, ξ′ ∈ Gt \Gt−1 such that
ξξ′ ∈ Gs+t−1. The easiest example would be s = 1, t = 0, ξ = π, ξ′ = 1/π (if π 6∈ G0).
Another example would be, given coprime integers b > a > 0 with b ≥ 3: t = t′ = b − 1,
ξ = Γ(a

b
)b, ξ′ = Γ( b−a

b
)b (so that ξξ′ ∈ πbQ? ⊂ Gb).

3 Proofs of the main results

3.1 Notations and transfer theorems

Let s ∈ N, f ∈ Gs, and ρ be a singularity of f such that |ρ| = Rf . Using the André-
Chudnovski-Katz theorem (see [3, p. 719] for a discussion, and [11, Theorem 6] for a
statement) and considering the first non-holomorphic term in a local expansion of f at ρ,
we obtain t(ρ, f) ∈ Q, k(ρ, f) ∈ N, Cρ,f ∈ C?, and a polynomial Pρ,f ∈ C[X] of degree
< t(ρ, f), such that

f(z) = Pρ,f (ρ− z) + Cρ,f log(ρ− z)k(ρ,f)(ρ− z)t(ρ,f)(1 + o(1)) (3.1)

as z → ρ with |z| ≤ Rf . Moreover the function log(ρ−z)k(ρ,f)(ρ−z)t(ρ,f) is not holomorphic
at z = ρ, so that either t(ρ, f) 6∈ N or k(ρ, f) ≥ 1. We remark that Cρ,f ∈ G (see [11]);
this weaker version of Theorem 1 will be re-proved below using a strategy different from
the one of [11].

Transfer results (see [13], Chapter VI, §2) enable one to deduce an asymptotic estimate
of an from the local behaviour of f(z) =

∑∞
n=0 anz

n at all ρ ∈ S, where S is the finite
non-empty set of singularities of f of modulus Rf . Indeed, let t(f) = minρ∈S t(ρ, f), and
let k(f) denote the maximal value of k(ρ, f) among the ρ ∈ S such that t(ρ, f) = t(f).
Then letting S ′ denote the set of all ρ ∈ S such that t(ρ, f) = t(f) and k(ρ, f) = k(f), we
have:

an =
log(n)k(f)

Γ(−t(f))nt(f)+1

(∑
ρ∈S′

Dρρ
−n + o(1)

)
if t(f) 6∈ N, (3.2)

an =
log(n)k(f)−1

nt(f)+1

(∑
ρ∈S′

Dρρ
−n + o(1)

)
if t(f) ∈ N, (3.3)
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where

Dρ =


(−1)k(f)Cρ,fρ

t(f) if t(f) 6∈ N,

(−1)k(f)+t(f)t(f)!k(f)Cρ,fρ
t(f) if t(f) ∈ N.

Of course we have k(f) ≥ 1 if t(f) ∈ N.

3.2 Proof of Theorem 1

Let ξ ∈ Gs. There exists f =
∑∞

n=0 anz
n ∈ Gs such that Rf ≥ 1 and f(1) = ξ. If Rf > 1

then the series
∑
an converges absolutely and is equal to ξ; therefore we may assume that

Rf = 1. We denote by S the set of singularities of f on the unit circle, and let

g(z) = f(z)
∏

ρ∈S\{1}

(ρ− z)1−t(ρ,f).

Since t(ρ, f) ∈ Q for any ρ, the product is an algebraic function holomorphic at 0, and

therefore a globally bounded G-function; this yields g ∈ Gs. Let S̃ denote the set of
singularities of g on the unit circle. Then S̃ ⊂ S and Rg ≥ 1; it may happen that

S̃ = ∅ so that Rg > 1. Moreover for any ρ ∈ S̃ \ {1} we have t(ρ, g) ≥ 1. If 1 ∈ S
then 1 ∈ S̃ and t(1, g) = t(1, f) > 0 since f(z) has a finite limit ξ as z → 1, |z| < 1.
Letting ε = min(1, t(1, f)) in this case, and ε = 1 if 1 6∈ S, we obtain in both cases that

t(ρ, g) ≥ ε > 0 for any ρ ∈ S̃. If S̃ 6= ∅ then (3.2) and (3.3) yield bn = O(n−1−ε(log n)k(g))

where g(z) =
∑∞

n=0 bnz
n; this estimate holds also if S̃ = ∅ since Rg > 1 in this case.

Therefore
∑
bn is an absolutely convergent series, equal to g(1). Multiplying all coefficients

bn with the fixed algebraic number f(1)/g(1) =
∏

ρ∈S\{1}(ρ− 1)t(ρ,f)−1 concludes the proof
of Theorem 1.

3.3 Proof of Theorem 2

Let f ∈ Gs and ρ be a singularity of f of modulus Rf . Eq. (3.1) shows that the coefficients
of Pρ,f are the (−1)jf (j)(ρ)/j! with 0 ≤ j < t(ρ, f). Since f (j) ∈ Gs we deduce that Pρ,f ∈
Gs[X]. Let us prove now that Cρ,f ∈ Gs. Letting j = dt(ρ, f)e we have degPρ,f ≤ j − 1.
If Pρ,f 6= 0 then Cρ,f/Cρ,f (j) ∈ Q? and Pρ,f (j) = 0 so that we may restrict to the case where
Pρ,f = 0. Then we argue by induction on k(ρ, f). If k(ρ, f) = 0 then Cρ,f is the value at
z = ρ of the function f(z)(ρ−z)−t(ρ,f) ∈ Gs so that Cρ,f ∈ Gs. Now assume that the result
holds for any function with a smaller value of k(ρ, f), and let g(z) = f(z)(ρ−z)−t(ρ,f) ∈ Gs.
Then we have

g′(z) = −k(ρ, f)Cρ,f
log(ρ− z)k(ρ,f)−1

ρ− z
(1 + o(1))

with the derivative g′ ∈ Gs as well, so that k(ρ, f)Cρ,f ∈ Gs. Since k(ρ, f) is a positive
integer, this concludes the induction and the proof of Theorem 2.
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3.4 Proof of Theorem 3

The proof is the same as the corresponding theorem in [11]. We simply have to use the
additionnal informations provided by Corollary 2 on the coefficients Cζ . Since there is no
subtility, we leave the details to the reader.

4 Conclusion

In this section, we explain the difficulties to use here the method of [11] to express any
ξ ∈ G as f(1) where f has Taylor coefficients in Q(i) and Rf > 1 can be chosen arbitrarily.

To prove Theorem 1 in [11], we used analytic continuation and in particular made
a large use of the André-Chudnovski-Katz theorem on local solutions of G-operators at
algebraic points. This was even the first step to prove that G is ring. In the present
situation, a possible analogue would be that, given a function f ∈ G0 with minimal G-
operator L, there exists at any algebraic point ρ a local basis of solutions of L made up
of functions involving only series in G0. However this is false in general, as the following
example shows. Let us consider the hypergeometric function

f(z) = 2F1

[
a, b
1

; z

]
=
∞∑
n=0

(a)n(b)n
n!2

zn (4.1)

with a, b ∈ Q, a + b = 1 and |z| < 1. As mentioned in Section 2, we have f ∈ G0. It is
a solution of a hypergeometric differential equation of order 2, which admits at z = 1 the
basis of solutions f(1− z) and g(1− z) + log(1− z)f(1− z) with

g(z) =
∞∑
n=0

n−1∑
k=0

( 1

k + a
+

1

k + b
− 2

k + 1

)(a)n(b)n
n!2

zn.

Then we have

f(z) = − 1

Γ(a)Γ(b)

(
g(1− z) + log(1− z)f(1− z)

)
for |1 − z| < 1 and |arg(1 − z)| < π. Clearly, the series g(z) is in G1 but not in G0. This
observation is not surprising because a second solution at z = 0 is g(z) + log(z)f(z), again
involving G-functions not all in G0. In general, it seems to us (but we can’t prove it) that if
a G-operator has a local basis of solutions involving only G-functions in G0 at any algebraic
point, then all these G-functions are algebraic, and the solutions of this G-operator are
algebraic over Q(z).

Since we are not able to use analytic continuation, we did not succeed in proving any
result concerning f(ξ) when f ∈ Gs and |ξ| > Rf . It is not even clear to us whether one
should expect that f(ξ) ∈ Gs.
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However we have seen in several examples that when ρ is a singularity of f ∈ Gs with
|ρ| = Rf , the local expansion

f(z) =
∞∑

n=−N

K∑
k=0

cn,k(ρ− z)n/d log(ρ− z)k

as z → ρ has coefficients cn,k ∈ Gs. Arguing as in [11, §4] this means that all connection
constants of f with respect to a local basis at ρ belong to Gs; it would be a refinement
upon Theorem 2. In this respect we remark that the connection constants of f with respect
to local bases at algebraic points z with |z| < Rf are simply the derivatives f (j)(z) of f at
z, so that they belong to Gs.

To conclude, let us mention that algebraic numbers can be written as f(1) with f =∑∞
n=0 anz

n ∈ G0 having coefficients an in Q(i): this follows from [11, Lemma 7]. However
we do not know if all elements of G0 have the same property.
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[2] Y. André, G-functions and Geometry, Aspects of Mathematics, E13. Friedr. Vieweg
& Sohn, Braunschweig, 1989.
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Paris-Saclay, 91405 Orsay, France.

T. Rivoal, Institut Fourier, CNRS et Université Grenoble 1, 100 rue des maths, BP 74,
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