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Abstract

Amyloids are ordered protein aggregates, found in all kingdoms of life, and are involved in 

aggregation diseases as well as in physiological activities. In microbes, functional amyloids are 

often key virulence determinants, yet the structural basis for their activity remains elusive. We 

determined the fibril structure and function of the highly toxic, 22-residue phenol-soluble modulin 

α3 (PSMα3) peptide secreted by Staphylococcus aureus. PSMα3 formed elongated fibrils that 

shared the morphological and tinctorial characteristics of canonical cross-β eukaryotic amyloids. 

However, the crystal structure of full-length PSMα3, solved de novo at 1.45 angstrom resolution, 

revealed a distinctive “cross-α” amyloid-like architecture, in which amphipathic α-helices stacked 

perpendicular to the fibril axis into tight self-associating sheets. The cross-α fibrillation of PSMα3 

facilitated cytotoxicity, suggesting that this assembly mode underlies function in Staphylococcus 
aureus.

One Sentence Summary

Fibrillation-dependent cytotoxicity of PSMα3 functional amyloid is encoded by a cross-α 
architecture.

Amyloids are structured protein aggregates that encompass a variety of structures, ranging 

from small soluble oligomers to plaques of insoluble fibrils. Amyloids are most notorious 

for their involvement in human neurodegenerative diseases (e.g., Alzheimer’s and 

Parkinson’s diseases) (1). Insights into amyloid structures were long challenged by their 

polymorphic and partially disordered nature (2, 3), but advances in x-ray and electron micro-

crystallography [e.g., (3–6)], cryo-electron microscopy [e.g., (7, 8)] and solid-state nuclear 

magnetic resonance (NMR) spectroscopy [e.g., (2, 9–12)] have substantially furthered the 

understanding of eukaryotic disease-associated amyloid properties and notable stability. 
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Eukaryotic amyloids share a common structural feature, namely, the cross-β spine, in which 

individual β-strands run perpendicular to the fibril axis (13).

In contrast to disease-associated amyloids, functional amyloids, evident mostly in microbes, 

participate in diverse activities that benefit the producing organism (14–16). Thus far, 

structural knowledge of microbial amyloids has been lacking, as have been the possible 

differences between functional and disease-associated amyloids (17, 18). Functional 

amyloids were recently suggested to play a role in the pathogenicity of Staphylococcus 
aureus, a prominent cause of aggressive infections and an emerging public-health concern 

(19, 20). These amyloids are formed by several members of a family of secreted virulent 

peptides called phenol-soluble modulins (PSMs). PSMs stimulate inflammatory responses, 

lyse human cells, and contribute to biofilm structuring (20, 21). High expression of PSMαs 

is linked to the virulence potential of methicillin-resistant S. aureus (MRSA) (22). Amyloid 

fibrillation of some PSMs promote biofilm stability (20), yet the role of the amyloid state in 

other PSM activities is unclear.

The 22-residue peptide PSMα3 is the most cytotoxic and lytic member of the PSM family 

(21, 23). PSMα3 forms amphipathic helices (21, 23), as shown by solution NMR (24). Yet 

the helix alone is not sufficient to achieve biological activities (21). We found that PSMα3 

formed elongated and un-branched fibrils (Fig. 1A), which bound the amyloid-indicator dye 

Thioflavin T, generating high levels of fluorescence emission and a characteristic amyloid-

fibrillation curve (Fig. 1B and fig. S1). Whereas previously characterized amyloid proteins 

convert into β-pleated structures during fibril formation (1), we found that PSMα3 

maintained its α-helical conformation, both in solution and in the fibrils (fig. S2 and table 

S1). The x-ray diffraction pattern of PSMα3 indicated that the fibrils were indeed built from 

the stacking of α-helices (fig. S3 and supplementary methods).

To understand the atomic basis of these α-helical fibrils, we solved the micro-

crystallographic fibril structure of full-length PSMα3 at 1.45 Å resolution (Fig. 1 and table 

S2), using de novo phasing methods (25). The structure revealed amphipathic α-helices 

positioned perpendicular to the fibril axis, which stacked into sheets that ran parallel to the 

fibril axis and mated through the hydrophobic faces of the helix (Fig. 1, D and E, and figs. 

S4 and S5). This “cross-α” amyloid-like fibril is has not been observed previously in 

structures of eukaryotic amyloids solved to date. The structural characteristics of PSMα3 

fibrils were nevertheless reminiscent of those displayed by cross-β fibrils, which also feature 

in-register stacking of a structural element into sheets, that mate through a dry interface (Fig. 

2 and fig. S6). The chemical properties governing cross-α fibril stability, i.e., buried surface 

area and shape complementarity between sheets, resembled those of cross-β structures (figs. 

S4 to S7 and table S3). These structural characteristics suggested that the binding of the 

amyloid-indicator dye Thioflavin T to PSMα3 fibrils (Fig 1B and figs. S1 and S8) probably 

occurs via cavities running parallel to the fibril axis. These cavities bear the characteristics 

of repeating structures that exist mainly in β-rich amyloid fibrils, but also within some α-

helical rich environments (26, 27). Thioflavin T binding to these cavities is often mediated 

by aromatic side chains (26), which were indeed abundant in the PSMα3 sequence (Fig. 

1C). Overall, PSMα3 fibrils not only shared the morphological and tinctorial properties of 

amyloid fibrils, but also exhibited a cross-α architecture reminiscent of cross-β amyloids, 
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notwithstanding the fundamental difference that the fibrils were formed of α-helices rather 

than β-strands (Fig. 2).

To explore whether fibrillation plays a role in PSMα3 cytotoxicity, we performed 

mutagenesis analysis to identify PSMα3 mutants that do not fibrillate, and discovered F3A 

and the K9P/F11P double mutant (A, Ala; F, Phe; K, Lys; P, Pro) (figs. S8 and S9). The two 

mutants displayed much lower T-cell cytotoxicity compared to wild-type PSMα3 (Fig. 3A). 

In contrast, the G16A mutant (G, Gly), which forms fibrils recognized by Thioflavin T, thus 

serving as control, was highly cytotoxic (Fig. 3A and figs. S8 and S9). Whereas the K9P/

F11P double mutant was mostly unstructured in solution, both G16A and F3A mutants 

maintained α-helical conformation (fig. S8), reinforcing the notion that helical conformation 

alone is not sufficient for cytotoxicity. Furthermore, the addition of a biocompatible 

surfactant maintained α-helicity, but diminished fibrillation and abrogated PSMα3 toxicity 

(Fig. 3B and figs. S8 and S10). The same pattern of fibrillation-dependent cytotoxicity was 

recorded also against human embryonic kidney 293 (HEK293) cells (fig. S11), suggesting 

that the lytic activity of PSMα3 fibrils is not cell-specific. It is possible that this cytotoxicity 

stems from self-assembly of helices that form large “carpets” of amphipathic sheets (fig. S6) 

on the membrane surface, triggering its deformation (28). The exact conformation that 

contributes to amyloid toxicity is still under debate. In some human disease-associated 

amyloids, the toxic entity has been attributed to a prefibrillar conformation, whereas the 

mature β-rich fibrils detoxify the amyloid (29). Several eukaryotic amyloid proteins contain 

α-helices in their monomeric or prefibrillar intermediate states [e.g., (30)], or even in the 

fibril state [e.g., (27)], suggesting a link to the cytotoxicity induced by the fibrillation of 

PSMα3 into purely helical species.

In this work, we have demonstrated, at atomic resolution, that cross-α fibrillation of PSMα3 

into amyloid-like fibrils is required for cytotoxicity and suggest a key role for cross-α fibrils 

in S. aureus pathogenicity. PSMα3 is thus a functional amyloid, displaying architecture and 

properties similar to those of eukaryotic cross-β fibrils, but differs in its secondary structure 

elements. Among the large variety of super-helical assemblies found in nature, α-helices 

that stack perpendicular to the fibril axis are rare; the few examples include de novo-

designed amphiphilic peptides (28, 31, 32) and ultra-stable proteins of multiple tandem 

copies of a helix-loop-helix unit (33) that bear no sequence relationship to PSMα3. We thus 

conclude that the cross-α architecture is robust and compatible with divergent sequences. It 

remains to be seen whether PSMα3 is a unique example of a natural cross-α fibril. The 

crystal structure of the PSMα3 should contribute to research on protein aggregation, 

biomaterial design, and antibacterial therapeutics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The cross-α amyloid-like fibril of the full-length PSMα3.
(A) An electron micrograph of PSMα3 fibrils. (B) Fluorescence microscopy images of 

Thioflavin T stained PSMα3 fibrils. (C) The sequence of S. aureus PSMα3 (UniProt 

accession number is indicated in brackets). (D and E) The crystal structure of PSMα3 at 

1.45 Å resolution, colored according to hydrophobicity (a colored scale bar is shown). (D) A 

view down the fibril axis. PSMα3 forms parallel α-helical stacks, viewed as ribbons along 

with a semitransparent surface representation. Facing helical sheets are oriented head to tail. 

(E) A view perpendicular to the fibril axis. The helices, shown in surface representation, run 

horizontally. Eight layers of α-helices forming the cross-α structure are depicted. 

Theoretically, fibrils can contain tens of thousands of layers. The α-helical sheets interact 

via their hydrophobic face, creating a tight interface. The higher order packing of the crystal 

structure shows continuous rows of sheets that generate alternating hydrophobic and 

hydrophilic interfaces (fig. S6A). Single-letter abbreviations for the amino acid residues are 
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as follows: A, Ala; D, Asp; E, Glu; F, Phe; G, Gly; K, Lys; L, Leu; M, Met; N, Asn; and V, 

Val.
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Fig. 2. PSMα3 cross-α fibril is reminiscent of amyloid cross-β structure.
(A) The crystal structure of PSMα3. Two mating α-helical sheets are shown. (B) The steric 

zipper structure of the NNQQNY N, Asn; Q, Gln; Y,Tyr) segment from yeast prion Sup35 

(4) (PDB code 1YJO) forms the cross-β spine of amyloid-like fibrils. The two mating β-

sheets are composed of parallel β-strands. In both PSMα3 (A) and NNQQNY (B) structures, 

side-chains protruding from the two sheets intermesh to form a dry, tightly self-

complementing interface. The two sheets, in purple and gray, are shown as ribbons, with 

side chain as sticks. Heteroatoms are colored by atom type (nitrogen in blue, oxygen in red, 

and sulfur in yellow). In the left panels, the view looks down the fibril axis, and in the right 

panels, the view is roughly perpendicular to the fibril axis. The α-helices (A) and β-strands 

(B) run horizontally. Distances between mating sheets and between strands along the sheet 

are displayed (table S3).
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Fig. 3. PSMα3 toxicity against human T-cells is dependent on its ability to form fibrils.
(A) PSMα3 is toxic to human T-cells in a dose dependent manner. The F3A mutant and the 

K9P/F11P double mutant, which do not form fibrils (figs. S8 and S9), exhibited much lower 

levels of cytotoxicity compared to wild-type PSMα3. G16A, a mutant that is helical and 

which forms fibrils that bind Thioflavin T, served as a control mutant and proved cytotoxic 

(figs. S8 and S9). (B) Cytotoxicity of PSMα3 was significantly reduced with the addition of 

Tween 80, a biocompatible surfactant that diminishes fibrillation (figs. S8 and S10). In both 

panels, error bars represent the SEM of three replicates. The experiment was performed at 

least three times on different days. * P<0.05 and ** P<0.001 compared to 7.5 µM wild type 

PSMα3.
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