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Abstract 
 

Ultrasound (US) probes have been used as guiding tools 

for Computer Assisted Orthopedic Surgeries (CAOS) [1]. 

Because of the US data uncertainty, the process of 

recognition - the localization of regions of interest in the 

image-  requires a registration to a more precise, but 

invasive, imaging modality such as Computed Tomography 

(CT). A millimetric precision and a real-time processing are 

intraoperative requirements. Iterative Closest Point (ICP) [2] 

is a simple and non symmetric rigid registration algorithm 

that is sensitive to the initial position of the point sets. The 

aim of this study is to show the contribution of initializing 

ICP in rigid US-CT registration and to illustrate it on data of 

a proximal femur. First, an iterative initialization of the 

model (CT) to the partial view (US) is performed using ICP 

with annealed filtering. The first obtained local minimum is 

then used to initialize a refinement step that maps the partial 

view to the model. One femur phantom was imaged both in a 

water bath using a calibrated 3D ultrasound probe and by 

CT. For each of the ten US acquisitions (five in the Anterior 

neck A, and five in the Posterior neck P), the CT scan is 

brought by means of fiducials pair-point matching. The 

initialization step improves ICP successful registrations from 

(A:25%, P:21%) to (A:76%, to P:52%) and the registration 

takes about 3s in average whilst ICP takes about 1s. 

 

1. Introduction 
 

Skin markers [3], time of flight cameras [4] and ultrasound 

probes [5] have been proposed as guiding tools in non 

invasive CAOS. US based guidance for CAOS generally 

relies on a prior knowledge on the bone shape that is 

elaborated in a preoperative step of the surgery. In the 

Operating Room (OR), a fast and accurate transfer of a 

preoperative plan helps the surgeon in locating regions of 

interests in the bone.  

ICP is a simple and fast rigid registration method. It is 

based on the iterative search of point to point 

correspondences in sets of 3D points.  It is used to map a 

partial view (source) to a model (destination). Non suitable 

initial state and incorrect correspondences are major sources 

of ICP failure. Points in the model that have no homologues 

are ignored in the iterative registration process. The full 

model information can be used in the initialization. Obtaining 

a suitable initial state for ICP can be done by matching 

anatomical landmarks [6]. Landmarks can be extracted 

manually, which hinders the “real-time” constraint. 

Curvilinear features (such as the curvature) of the meshes [7], 

challenging to extract from US data, have also been proposed. 

Matching principal axes of the meshes was also used [8,9], 

but non overlapping regions in CT scans and US noise change 

the estimate of the principal axes. Genetic algorithms are a 

possible way to initialize ICP [10] but complexity is a critical 

issue. Recently [11], nested annealing was used to initialize 

ICP. High convergence rates and running times were 

reported. It was also reported that the proposed method 

experiences troubles aligning symmetric shapes, since local 

minima would resemble to the global one. Generally, the 

annealing process can be used as a tool to help iterative 

algorithms traverse local minima. In previous work [8], we 

showed that it helps ICP in the non-overlapping regions 

detection.  

Registration performances are also affected by ultrasound 

noise. Preprocessing steps were proposed in order to better 

reconstruct US data: Poisson [8], anisotropic diffusion [12] 

and weighting the reconstruction using the cosine of the 

incidence angle [13].  

 

In this paper, an initialized ICP approach is tested for US-

CT registration of proximal femur. An iterative initialization 

maps the model to the partial view using ICP. The minimized 

cost function is made convex by the use of US point’s 

confidence in an annealing process. The first obtained local 

minimum is then used to initialize a refinement step that maps 

the partial view to the model. Data are collected using a CT 

scanner and a localized 3D ultrasound probe imaging a femur 

phantom fixed in a water bath. Registration results are 

evaluated using a ground truth given by fiducial pair-point 

matching. 

 

2. Registration in ultrasound based CAOS 
 

Non invasive means to track bones include: skin markers, 

Time of Flight or RGB-D cameras, ultrasound probes. This 

study focuses on 3D US. US to CT image registration aims at 

transferring pre-operative information and planning in the 

OR. The Fig 1 shows major steps in US-based CAOS. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1: Pre-Intraoperative steps of an ultrasound based CAOS 

 

2.1. Preoperative steps 
 

Medical decisions prior to the surgery and a prior 

knowledge on the bone shape need to be available to the 

guidance system in the OR. Statistical Shape Models (SSM) 

or CT/MRI acquisitions are used for this purpose. The 

intraoperative imaging tool is a tracked 3D ultrasound probe. 

A probe to tracker calibration is then required [14].  

 

2.2. Intraoperative guidance 
 

The matching between intraoperative US and preoperative 

data helps localizing a target visible on the preoperative data 

in the OR. Acquiring and processing intraoperative data is 

constrained by accuracy (millimetric to be able to replace 

existing invasive fiducials [15]) and speed (processing must 

not take longer than the acquisition). The process has to be 

repeatable within the surgery time frame if required. 

 

3. Methods 
3.1. ICP 
 

    Consider the problem of positioning a shape X in a 

model Y (represented by n and m points respectively). ICP 

iteratively provides an estimate of the optimal transformation 

T that maps X (source) to Y (destination). It minimizes a 

Surface Registration Error (SRE):  

 

                 
 

 
            

 
      (1) 

 

Where    is the nearest point in set Y to      . Equation 

(1) yields to a lack of robustness to noise which is mainly 

ultrasound noise in this study. A commonly used strategy is 

to introduce a weighting parameter related to the quality of 

the match [8, 16]. We use the cosine of the incidence angle 

(     [15] between the line joining the US emitter to the 

surface point and the local surface normal at this point. 
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A visualization of the obtained reference positions is 

provided in Fig 4. A color map shows the value of (3) at each 

US point. Important factors influence the registration 

accuracy: The surface areas selected for registration (which 

can be controlled by the FoV of the US emitter), the quality 

of the meshes (which can be improved by elaborating a more 

sophisticated segmentation, for example local phase features 

for US bones detection [17]), and the initial estimate of the 

correspondences.  

 

3.2. Iterative initialization 
 

In ICP, using the model as the source shape can provide 

more information to the registration process, where all the 

model points participate in the estimate of the optimal 

transform. In this case, the minimized SRE includes non-

overlapping regions, and convergence is not guaranteed. We 

propose to use the model as the source shape in an iterative 

initialization. The registration is guided by the confidences 

accorded to the US points. Initially, all correspondences are 

given the same weight 1. Iteratively, the filtering effect 

increases using deterministic annealing and following:  

 

             
                      

     
 

Where   is the annealing rate, a compromise between 

accuracy and runtime. We fix         similarly to [9]. 

Mapping CT points to US correspondences using ordered 

weights is done using Singular Value Decomposition [18]. 

The first obtained local minimum (SRE starts increasing or 

stabilizing) is used to initialize the refinement step: The 

obtained optimal transformation that maps the CT to US, is 

inverted and applied on the US mesh (Initialized US). The 

latter is registered to the original CT using standard ICP. This 

way a comparison to classic ICP becomes undemanding. 

 

4. Data 
4.1. CT Data 

 
A CT scan of a femur phantom (sawbones®) (Siemens 

Biograph, with an imaging resolution of 0.7mm) is used as 

the model in the study. Thirteen 1-mm metal fiducials were 

attached to the bone. Thresholding segmentation was 

performed and a 3D surface mesh was extracted from the 

segmented CT volume. The mesh was then filtered using 

Laplace smoothing [19]. We only keep the proximal part of 

the femur ( 
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calculated as the sum of the triangles surfaces, and 29.000 

points).  

 

4.2.  Ultrasound data 

 
Ultrasound data are obtained using a tracked 3D 

transducer (Voluson 730 ultrasound machine, GE Medical 

Systems) imaging the femur phantom fixed in a water tank. 

The Field of View (FoV) is 90°, the depth is 7 cm and the 

resolution is 0.47 mm. Probe calibration [14] was performed 

using a membrane phantom in nylon. It enables to define a 

reference attached to the US volume in the reference frame of 

the tracking device. A point, virtually corresponding to the 

center of the arc of piezo elements is defined and named “US 

emitter”. The proximal neck of the femur is the focus of this 

study. 10 US volumes were taken: 5 from the anterior and 5 

from the posterior femur.  

 

A region growing segmentation, using manual thresholds 

was first applied on US images. The obtained rough and thick 

US surface, were then smoothed using Poisson surface 

reconstruction [8]. We chose to use a ray-casting of the 

volumes using the spatial location of the US emitter to extract 

the external surface: points in the volume that are closer to 

the US emitter. Ray-casting was performed using 

vtkCellLocator [20]. Segmentation steps are summarized in 

Fig 2. 

 

 
.  

Fig 2: Segmentation steps: A) US image (Top left),  

B) Threshold US image (Top right), C) Poisson surface 

reconstruction (Bottom left), D) Ray-casting (Bottom right). 

 

4.3. Reference positions 

 

In order to evaluate the registration results, a ground truth 

is computed using fiducials attached to the sawbone. Their 

position is extracted from CT data. Fiducials are represented 

in the CT volumes as round shapes, and we estimate a 

fiducial location at the center of mass of its corresponding 

shape. Then they are digitized using an NDI Spectra Polaris 

system and transferred to the US reference frame using the 

US probe calibration information. Fiducials paired-points 

matching enables bringing the CT scan to the US image in a 

single reference system (Fig 3 and 4). The mean fiducials 

matching error is equal to 1.29 mm. The calibration had an 

average error of (0.50 mm, 0.88°). We propose to perform a 

local systematic research of the minimum US-CT SRE (1), in 

[+- 2mm, +-2°]. The final mean (US-CT) SRE at GT is 0.66 

mm.   

 

 
 
Fig 3: Visualization of the CT surface superimposed on the US 

volume 
 

5. Experiments and results 
 

Initial relative positions of the CT and US are randomly 

generated from the ground truth positions. 500 random 

transformations following normal distribution are generated 

and applied on the US surfaces in the reference positions. The 

tested translation parameters are in [-20 mm, 20mm] and the 

rotational angles are in [-90°, 90°] (around the 3 principal 

axes of the US meshes, each transformation parameter is 

generated independently). Standard ICP and the proposed 

initialized ICP (I_ICP) are compared.  

 

Target Registration Error (TRE) is defined as the SRE 

between the registered US mesh and the US mesh on the 

reference position and this is done knowing the 

correspondences. The SRE is given following (1) where the 

set X is the US mesh and the set Y is the CT model. Only 

“successful” registrations (defined as: TRE < 2 mm) are 

considered. Registration is tested on 10 US volumes; 5 are 

anterior (resp. posterior) and named Ai (resp. Pi). 

Quantitative measures of accuracy and runtime are shown in 

Table 1. With an average of 23 (resp. 15) iterations for A 

(resp. P), ICP success rates increase from 25% (resp. 21.1%) 

for A (resp. P) to more than 76% (resp. 52%) for A (resp.P). 

ICP accuracy, both with and without initialization, can be 

clinically accepted. On a 4th generation i5 processor, the 

registration takes about 3s, and the mean initialization 

runtime is nearly twice classical ICP runtime approach. 

Visualization of random initial states, ICP and I_ICP results 

are shown in Fig 5.  Symmetry descriptors for a 3D shape are 

provided in [21]. This study does not include such features, 

but it is clear that the iterative initialization profits from the 

closed form of the femur. 



 
Fig 4: Visualization of the reference positions of the registrations and corresponding mean residuals 

 

6. Conclusion 
 

Once calibrated US data are registered to CT, the location 

of femoral structures in the OR and preoperative plan transfer 

become possible. Clinical applications of femur recognition 

in ultrasound volumes are: ultrasound guided femur-tumor 

ablation, total hip and knee arthroplasty. ICP is a fast and 

iterative rigid registration method that is sensitive to its initial 

state. An iterative initialization using combined ICP with 

annealed filtering is proposed and has been tested for 

proximal femur recognition in US volumes. Five US 

acquisitions, by femur side and focusing on the neck of a 

fixed femur phantom in a water bath, were used in this study 

along with a CT scan. We show that the use of the full model 

of the bones as the source helps initializing ICP. Posterior US 

acquisitions, where the trochanteric crest can hinder the US 

beam spread, had less successful registrations to CT than 

anterior acquisitions. Registration runtimes are equivalent to 

US volume acquisition and construction. 

  

 The tested range of capture was significant [±20mm, 

±90°], and the obtained success rates make ICP a good 

candidate for transferring a preoperative plan in CAOS. 

Among feature based registrations, a sequential least squares 

estimation technique, the Unscented Kalman Filter (UKF) 

[22], overpasses ICP   on a general case of US bones to CT 

registration. UKF showed quite worse results than ICP on 

scapula data [23]. UKF is also computationally demanding 

compared to ICP. A Genetic algorithm for registering femur 

data was proposed [24]  and it was reported that the obtained 

results are not impressive as compared to ICP.   

More phantoms and US focus zones need to be tested. The 

effect of the registration error (TRE, SRE) on the 

intraoperative system feed-back uncertainty is a crucial 

information for the validation. This requirement depends on 

the surgery into focus: Bone-tumor localization uncertainty 

for navigated bone tumor ablation and offset (with the leg 

length) for navigated total hip arthroplasty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Quantitative results 

 

 

 

US 

acquisition 

 

Percentage of successful 

registrations  (Success criteria: 

TRE < 2 mm) 

 

Mean run time 

(seconds) 

 

Mean TRE 

(mm) 

 

Mean SRE 

(mm) 

 

Mean number of 

iterations 

(round to nearest) 

ICP I-ICP ICP I-ICP ICP I-ICP ICP I-ICP ICP I-ICP 

A1 24.6 75.8 1.16 3.15 0.37 0.21 0.612 0.610 89 21 + 57 

A2 29.8 72.8 1.56 3.88 0.21 0.17 0.641 0.640 122 26 + 82 

A3 25 79.2 1.12 3.14 0.22 0.25 0.683 0.685 88 22 + 63 

A4 22.4 81.6 0.79 2.59 0.37 0.23 0.768 0.767 71 22 + 49 

A5 23.2 75.2 1.17 3.63 0.34 0.28 0.737 0.736 87 25 + 58 

Mean (A) 25 76.92 1.16 3.27 0.30 0.22 0.688 0.687 91 23 + 62 (85) 

P1 16.8 33.4 1.45 2.54 0.61 0.52 0.568 0.573 112 12 + 92 

P2 22.4 59.2 1.70 2.80 0.59 0.60 0.541 0.540 140 11 + 115 

P3 21.1 62.4 1.99 3.47 0.66 0.78 0.520 0.515 155 10 + 158 

P4 18.4 37 1.49 2.55 0.44 0.22 0.614 0.608 127 13 + 98 

P5 26.8 70.4 1.27 3.27 0.99 1.18 0.875 0.888 103 27 + 72 

Mean (P) 21.1 52.48 1.58 2.92 0.65 0.66 0.623 0.624 127 15 + 107 (122) 



 
Fig 5: Qualitative results 
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