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ARTICLE

Periodontal Ehlers-Danlos Syndrome Is Caused
by Mutations in C1R and C1S, which Encode
Subcomponents C1r and C1s of Complement

Ines Kapferer-Seebacher,1 Melanie Pepin,2 Roland Werner,3 Timothy J. Aitman,4,5 Ann Nordgren,6,7

Heribert Stoiber,8 Nicole Thielens,9 Christine Gaboriaud,9 Albert Amberger,3 Anna Schossig,3

Robert Gruber,3,10 Cecilia Giunta,11 Michael Bamshad,12,13,14,15 Erik Björck,6,7 Christina Chen,13

David Chitayat,16,17 Michael Dorschner,2 Marcus Schmitt-Egenolf,18 Christopher J. Hale,2

David Hanna,2 Hans Christian Hennies,3,10,19,20 Irene Heiss-Kisielewsky,1 Anna Lindstrand,6,7

Pernilla Lundberg,21 Anna L. Mitchell,22 Deborah A. Nickerson,13 Eyal Reinstein,23

Marianne Rohrbach,11 Nikolaus Romani,10 Matthias Schmuth,10 Rachel Silver,16,17 Fulya Taylan,6

Anthony Vandersteen,24 Jana Vandrovcova,25 Ruwan Weerakkody,26 Margaret Yang,2

F. Michael Pope,27,28 Molecular Basis of Periodontal EDS Consortium, Peter H. Byers,2,29,*
and Johannes Zschocke3,*

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to

premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at

12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 in-

dividuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the

physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion

mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first

component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits.

Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention

andmild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing peri-

odontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin

and vascular fragility, easy bruising, and variablemusculoskeletal symptoms. Our findings open a connection between the inflammatory

classical complement pathway and connective tissue homeostasis.
Introduction

Ehlers-Danlos syndrome (EDS) is a clinically and geneti-

cally heterogeneous group of connective tissue disorders

defined by joint laxity and skin alterations that include

hyperextensibility, atrophic scarring, and bruising.1 Peri-

odontal EDS (pEDS, previously EDS VIII), a specific subtype

of EDS with autosomal-dominant inheritance, was first
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identified by Stewart et al. in 19772 and has been subse-

quently reported in 29 case reports and seven pedigree an-

alyses3–7 (MIM: 130080). The defining feature is an EDS

phenotype combined with severe periodontal inflamma-

tion. In childhood, periodontal inflammation in pEDS

is characterized by extensive gingivitis in response to

mild plaque accumulation. In the teens, early-onset peri-

odontitis (EOP) leads to inflammatory destruction of
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dental attachment and premature loss of teeth. Other

clinical features previously reported include pretibial hy-

perpigmentation, acrogeria, skin and gum fragility, scar-

ring, generalized and/or distal joint hypermobility, and

bruising out of proportion to trauma. There are single

case reports of life-threatening complications like arterial

or gastrointestinal ruptures.8

In three families, pEDS was previously mapped to a 7 cM

(5.8 MB) interval on chromosome 12p134 but so far the

genetic cause of the condition has not been identified.

We have found that in 17 of 19 families we studied,

pEDS is associated with heterozygous mutations in either

of two adjacent genes in the linked region: C1R (MIM:

613785) (in 15 families) or C1S (MIM: 120580) (in 2 fam-

ilies). This identifies a unique link between connective tis-

sue pathology and the classical complement pathway in a

monogenic condition.
Subjects and Methods

Ethical Considerations
The study was conducted in accordance with the Helsinki Declara-

tion of 1975, as revised in 2000, and was approved as part of the

Biobank for Rare Diseases by the Ethics Committee of the Medical

University Innsbruck, Austria (study no. UN4501). UK patients

were recruited according to Ethics Protocol Reference 11/LO/

0883 (West London Research Ethics Committee). US study partic-

ipants were consented through the University of Washington

Research Repository of Heritable Disorders of Bone, Blood Vessels

and Skin (IRB protocol 27083) or Cedars-Sinai Medical Center IRB

protocols 0359 and 0463. The study was part of the Institution

Review Board-approved Repository of Heritable Connective Tissue

Disorders at the University of Washington. Each individual or the

parents of under-age individuals signed informed written consent

before investigation. Consent of individuals was obtained to

publish their intraoral photographs.
Genomic Analysis
Exome-sequence analysis was performed in ten families (families 1,

2, 4, 5, 11, 15–19) by four different groups (Innsbruck, Edinburgh,

Seattle Center for Mendelian Genomics, and Seattle Center for

Precision Diagnostics), using standard methods. In Innsbruck, the

analysiswasprecededby linkage studies todefine theregionswithin

the previously linked locus that co-segregated with the phenotype.

In theothers,whole-exomeanalysiswascompletedandtheanalysis

performed genome-wide with attention to the region previously

identified on chromosome 12. Presence of the same mutation was

confirmed in all available affected family members and excluded

in the non-affected individuals by Sanger sequencing.

Once we identified two candidate genes, C1R and C1S, we

searched our available laboratory databases for additional families

with the possible diagnosis of pEDS and analyzed C1R and C1S by

Sanger sequencing in samples from families 3 and 6–13. Addition-

ally, C1R and C1S were analyzed by Sanger sequencing in samples

from 11 individuals who had been referred for diagnostic testing

to exclude vascular EDS (MIM: 130050) and in samples from 71 in-

dividuals diagnosed with aggressive periodontitis. Aggressive peri-

odontitis (MIM: 170650) is a main differential diagnosis of pEDS.

It is a complex genetic disease and is characterized by a high rate of
1006 The American Journal of Human Genetics 99, 1005–1014, Nove
disease progression, an early age of onset, and the absence of

systemic diseases.9

Clinical Investigations
Clinical data were obtained from all mutation-positive fam-

ilies (families 1–17) through detailed questionnaires (available

from the authors on request), which were completed with the

attending physicians or—if not otherwise possible—by the family

members.

In families 1 and 14, the clinical diagnosis of early-onset peri-

odontitis was based on four or more interproximal sites with

clinical attachment loss R 6 mm (not on the same tooth) and

four or more interproximal sites with probing pocket depth R

5 mm, or history of complete tooth loss due to tooth mobility at

an age of %35 years. In other individuals the case finding de-

pended on severe periodontal bone loss or tooth loss due to tooth

mobility at young ages (<35 years), validated radiographically or

by history and recollection. Additional investigations in family 1

included electron microscopic analysis of cultured fibroblasts of

skin biopsy samples and collagen biochemical analyses, as well

as activity analyses of the classical complement pathway (CH50-

assay), using standard methods.10–12

Statistical Methods
Standard descriptive methods were used to summarize the clinical

parameters studied.

Variant Modeling
To map the position of identified variants, 3D models of C1r and

C1s were constructed using previously determined X-ray struc-

tures. The C1s model is a composite structure obtained after super-

imposing the PDB structures 1ELV and 4LMFA onto 4LOT.13 The

C1r model combines the X-ray structure of its CCP1-CCP2-SP

structure14 and a model of the CUB1-EGF-CUB2 interaction

domain based on its homology with C1s.15 Pymol was used to

draw the structural illustrations.16

Expression Studies
C1R mutations c.149_150TC>AT (p.Val50Asp), c.927C>G

(p.Cys309Trp), and c.1113C>G (p.Cys371Trp), as well as a 26 bp

frameshift insertion at position c.899_900 as non-functional con-

trol, were generated by site-directed mutagenesis (QuikChange

Lightning kit, Agilent Technologies) in a mammalian C1R

expression vector (GenScript). Vectors were transfected into C1R-

negative HEK293 cells (Sigma Aldrich). Test for mycoplasma

contamination (Minerva Biolabs) in cells was negative. Stably

transfected cells were selected in the presence of G418

(600 ng/mL; Sigma Aldrich). Cells were rinsed two times in PBS

to remove serum components and incubated in serum-free me-

dium (LONZA Inc.) for 3 days. Thereafter cells and supernatants

were harvested separately; supernatants were concentrated to

1/20 volume using centrifugal concentrators (Sartorius). For pro-

tein isolation, cells were disrupted using RIPA buffer containing

protease inhibitor (SIGMA), and the protein concentration was

photometrically determined using Bradford reagent (BIORAD).

Western blot analysis of cell lysates and supernatants was per-

formed with C1r-specific primary antibody diluted 1:1,000 (Ab-

cam cat# ab66751, RRID: AB_1860204; which recognizes the first

100 residues of the A chain) as described.17 Normal human serum

(diluted 1:10) and non-transfected HEK293 cells were used as

controls.
mber 3, 2016



Figure 1. The Pedigrees for 17 Families with C1S or C1R Mutations
The colored symbols are defined in the key. X denotes individuals with normal result of molecular testing; asterisk (*) indicates samples
included in linkage studies in family 1. Hatch sign (#) indicates individual in family 4 described as ‘‘affected’’ in a previous publication3

but not confirmed bymolecular testing. For families 5 (Rahman et al.4), 8 (Hartsfield and Kouseff22), and 11 (Stewart et al.2), a more com-
plete pedigree has been previously published.
Transfected and non-transfected HEK293 cells were fixed in sus-

pension with Karnovsky’s formaldehyde-glutaraldehyde fixative

for 1 hr, followed by rinsing in 0.1 M Cacodylate buffer. All spec-

imens were postfixed in 3% aqueous osmium tetroxide, contrasted

with 0.5% veronal-buffered uranyl acetate, embedded in Epon 812

resin. Sections were examined by transmission electron micro-

scopy (Phillips EM 400, FEI Company Electron Optics; operating

voltage 80 kV) as described.18
Results

Genetic Results

A total of 19 families fromUSA and Europe comprising 107

individuals with the clinical diagnosis of pEDS were avail-

able for molecular investigations. Genome-wide linkage

analysis in family 1 confirmed thepreviously reported locus

for pEDS on chromosome 12p13.1. Exome sequencing

identified sequence variants in C1R (GenBank: NM_

001733.4) in six families and in C1S (GenBank: NM_

201442.2) in two families. Subsequent targeted sequencing

revealed C1R sequence variants in nine additional families

(Figure 1, Table 1). None of the identified variants was listed

in the ExAC database of more than 60,000 exomes of

normal individuals, the 1000 Genomes database, ClinVar,

or the SNP data base (last accessed 03/2016).

No potentially pathogenic mutations in C1R or C1Swere

identified in families 18 and 19, previously reported to be
The American Jou
affected by pEDS but not available for clinical re-assess-

ment,5,19 in 11 individuals clinically diagnosed with

vascular EDS, or in 71 individuals diagnosed with aggres-

sive periodontitis but without EDS-like features. C1Q was

sequenced in families 18 and 19, but no potentially path-

ogenic variants were identified by exome sequencing.
Protein Variant Modeling

C1r and C1s are multidomain proteins that share similar

structures (Figure 3A). C1r and C1s are assembled into a

Ca2þ-dependent C1s-C1r-C1r-C1s tetramer that associates

with the recognition protein C1q (Figures 3A–3C).13,20

Most of the alterations in C1r and C1s structure involved

the domains CUB2 and CCP1 in C1r and the domain

CCP1 in C1s (Table 1, Figures 3D and 3E). The C-terminal

catalytic serine-protease domains were unaffected. The C1r

variants in families 7–11 and 13 affected paired cysteines

involved in disulfide bonds that stabilize the C1r CCP1

module. The variant in family 16 substitutes a cysteine in

the CCP1 module of C1s. The introduction of an addi-

tional cysteine in C1r CUB2 or CCP1 (families 6 and 12)

could affect the native disulfide bond formation. The dele-

tion of five residues and insertion of three amino acids in

C1r CCP2 in family 14 changes the structure adjacent to

a cysteine (position 406) involved in the disulfide bond

(406–447) that stabilizes the CCP2 module.
rnal of Human Genetics 99, 1005–1014, November 3, 2016 1007



Table 1. Identified Pathogenic Variants in the Present Cohort with pEDS

Family Affected (n) Gene DNA (c.) (GRCh38) Protein, p. (Mature Protein) Domain

1 15 C1R c.149_150TC>AT p.Val50Asp (Val32Asp) CUB1 (EGF)

2 1 C1R c.869A>G p.Asp290Gly (Asp272Gly) C1q binding site

3 1 C1R c.890G>A p.Gly297Asp (Gly279Asp) CUB2

4 3 C1R c.899T>C p.Leu300Pro (Leu282Pro) CUB2 (near CCP1)

5 13 C1R c.902G>C p.Arg301Pro (Arg283Pro) CUB2 (near CCP1)

6 7 C1R c.905A>G p.Tyr302Cys (Tyr284Cys) CUB2 (near CCP1)

7 1 C1R c.917_927delinsGGACA p.Ile306_Cys309del-insArgArg
(Ile288_Cys291 del-insArgArg

Sushi CCP1

8 1 C1R c.927C>G p.Cys309Trp (Cys291Trp) Sushi CCP1 (near CUB2)

9 3 C1R c.927C>G p.Cys309Trp (Cys291Trp) Sushi CCP1 (near CUB2)

10 4 C1R c.1012T>C p.Cys338Arg (Cys320Arg) Sushi CCP1 (near CCP2)

11 3 C1R c.1073G>T p.Cys358Phe (Cys340Phe) Sushi CCP1 (near CUB2)

12 1 C1R c.1092G>C p.Trp364Cys (Trp346Cys) Sushi CCP1 (near CUB2)

13 1 C1R c.1113C>G p.Cys371Trp (Cys353Trp) Sushi CCP1 (near CCP2)

14 10 C1R c.1200_1215delinsTCATGTAATA p.Arg401_Tyr405del-insHisValIle
(Arg383_Tyr387del-insHisValIle)

Sushi CCP2

15 12 C1R c.1303T>C p.Trp435Arg (Trp417Arg) Sushi CCP2

16 7 C1S c.880T>C p.Cys294Arg (Cys279Arg) Sushi CCP1 (near CUB2)

17 9 C1S c.945-947del p.Val316del (Val301del) Sushi CCP1 (near CUB2)

Abbreviations are as follows: n, number; C1R, complement 1 subcomponent r; C1S, complement 1 subcomponent s. For both C1R and C1S, c.1 is the first nucle-
otide of the initiator codon and p.1 is the initiator methionyl residue. The GenBank reference sequences used are NM_001733 and NM_001734 for C1R and C1S,
respectively. The signal sequences for C1r and C1s are 18 and 15 amino acids in length, respectively. Most of the literature about these proteins uses p.Ser19 (C1r)
and p.Glu16 (C1s) for the start residues of these two proteins. We have included the reference in the mature protein alignment for the sites of the pathogenic
variant in parentheses.
Expression Studies

To assess the effects of identified variants, we overexpressed

mutantC1r (p.Val50Asp, p.Cys309Trp, p.Cys371Trp), wild-

type C1r, and a C1r non-functional control as cDNAs in

HEK293 cells. Western blot analyses were performed with

a monoclonal antibody directed against the N-terminal

part of C1r (which includes the binding domains); the anti-

body recognizes the full-length protein, the A chain gener-

ated by C1r activation, and the a-fragment generated by

autoproteolysis (Figure 4).21 Analysis of cell culture super-

natant showed C1r protein only in medium of cells trans-

fected with wild-type C1R (the 35 kDa autoproteolytic

a-fragment; Figure 4A). Analysis of lysed cells identified

an additional band at approximately 55 kDa (A chain) in

cell lines transfectedwith plasmidsharboringC1Rmissense

mutations; this band was not present in the other cell lines

(Figure 4B). Electron microscopy showed an increased

proportion of dilated rough endoplasmic reticulum (RER)

cisternae in C1R mutation-transfected HEK cells compared

to wild-type and non-transfected control cells (Figures

4D–4F). Semiquantitative analysis of randomly selected sec-

tion profiles showedRER dilatation in 36/63 profiles in cells

transfectedwithp.Cys371Trp compared to 18/60profiles in

cells transfected with the wild-type sequence and 13/38

profiles in non-transfected cells.
1008 The American Journal of Human Genetics 99, 1005–1014, Nove
Clinical Characteristics of Periodontal EDS

The 17 families with mutations in C1R or C1S comprised

93 individuals with pEDS (Figure 1). Clinical characteris-

tics in individuals with C1R or C1S mutations are summa-

rized in Table 2. Family descriptions as well as clinical

data of each individual are provided in the Supplemental

Data.

Defining oral features of pEDS are (1) extensive gingival

inflammation in response to mild dental plaque accumula-

tion and (2) early-onset periodontitis (EOP) characterized

by a rapid destruction of the periodontal attachment appa-

ratus in the teens. EOP was present in 99% of clinically or

genetically ascertained adults (which partly reflects EOP as

a selection criterion). The median age of the periodontal

diagnosis—in some individuals the age of first periodontal

tooth loss—was 14 years (range 2–35 years). One affected

adult (1:IV-3) did not have periodontitis at the age of 24

years, but had extreme gingival recession. Gingival reces-

sion (i.e., receding gums) was diagnosed in 98% of individ-

uals. Affected individuals, when specifically examined

(families 1, 4, 8, 11, 14), had a striking lack of attached

gingiva causing oral tissue fragility (Figure 2), which was

a unique structural gingival anomaly.

Another defining feature of pEDS was pretibial hyperpig-

mentation (83%). No pretibial changes were found in
mber 3, 2016



Table 2. Summary of Clinical Features in Periodontal EDS

Clinical Features Prevalence

Oral Features

Early-onset periodontitisa 99%

Gingival recessions 98%

Thin gingiva and/or absence of attached gingival 93%

Skin

Easy bruising 96%

Pretibial hyperpigmentation (not observed in family 1) 83%

Skin fragility 83%

(Mild) elastic skin 73%

Abnormal scarring (atrophic or wide) 50%

Prominent vasculature 50%

Joint Features

Joint hypermobilityb 44%

Joint pain 31%

Flat feet 30%

Scoliosis 22%

Osteoarthritis 9%

Joint dislocation 4.8%

Others

Recurrent infections (e.g., bladder, epididymitis, eye,
zoster, otitis media)

40%

Marfanoid facial features 30%

Hernia (inguinal, umbilical, hiatal, abdominal, surgical) 25%

Aneurysms (present only in families 5, 6, and 14) 16%

Cancer (more prevalent in individuals with C1S
mutations)

11%

Autoimmune disorder (present only in family 1) 7.7%

Organ rupture (3 times in individual 1:III-10) —

Prevalence rates are based on 93 individuals with mutations in C1R or C1S, and
with respective clinical data from the present cohort (Table S1).
aAge of first tooth loss, 2–30 years; age of complete tooth loss, 14–48 years;
prepubertal periodontitis (age <10 years), 16%.
bFingers, 30%; elbows, 19%; knees, 11%; hips, wrist, and ankle, 3%.
family 1 where the skin had normal elasticity but appeared

rather soft and dry. Almost all affected individuals had easy

bruising (96%), skin fragility (83%), and mild skin hy-

perextensibility (73%). Abnormal scars (atrophic or wide)

were present in 50% of individuals. Some individuals had

additional dermatological findings such as marked facial

flushing, thin nails, or thin hair. One individual (9:II-1) re-

ported difficulties in wound healing, with open wounds

that took months or even years to heal. Joint hypermo-

bility was not a consistent finding (44%), and if present

wasmild and often limited to small joints. Joint pain, scoli-

osis, and pes planus were rare. Affected individuals in

family 4 reported no musculoskeletal symptoms.
The American Jou
Of the affected individuals, 40% were prone to recurrent

infections such as otitis media, herpes zoster, bladder infec-

tions, empyema, kidney infections, or pneumonia. There

was a history of aneurysms in 16% of affected individuals

(families 6, 7, and 15). In total, four individuals had cere-

bral aneurysms leading to hemorrhages at ages 23–62,

and two individuals died in their mid 40s after aortic

dissection. There were two instances of autoimmune disor-

ders (Crohn disease and Sjögren syndrome in family 1). In-

dividual 2:II-1 had chronic hoarseness that resulted from

an abnormality of the cricoarytenoid joint (A.V., unpub-

lished data).
Clinical Laboratory Studies

Electron microscopy examination of skin reported in fam-

ilies 4 and 5 showed decreased collagen content, abnormal

variation in collagen fibril diameter, and some abnormally

shaped fibrils.3,4 Similar abnormalities were observed in

skin from three individuals from family 1 (Figures S1 and

S2) as well as individuals 2:II-1 and 5:V-6.4 Biochemical

analysis of collagen in cultured skin fibroblasts in family

1 did not show abnormalities in the production and secre-

tion of type I, III, and V collagens. Results of collagen ana-

lyses in individuals 5:III-3 and 8:II-2 were reported as

normal,4,22 as were those in cells from the probands in

families 2, 3, 12, 13, 14, and 16. Complement studies in

family 1 (CH50 and circulating levels of C1s and C1r)

showed no consistent alterations in classical pathway acti-

vation (data not shown).
Discussion

Periodontal EDS is a distinct clinical entity that we have

now shown to be caused by mono-allelic missense or in-

frame insertion/deletion alterations in C1R or C1S, the

genes that encode complement 1 subunits C1r and C1s.

The cardinal clinical feature is severe early-onset periodon-

titis with marked gingival recessions that in some individ-

uals affects primary teeth. In contrast to individuals with

non-syndromic chronic or aggressive periodontitis, those

with pEDS have strikingly thin and fragile oral soft tissue

with absence of attached gingiva (Figure 2). This feature

of pEDS facilitates the clinical diagnosis prior to evident

periodontitis: usually, the free gingival margin (the termi-

nal edge of the gingiva surrounding the teeth) is contin-

uous with the attached gingiva, which is tightly bound

to the underlying periostum by collagenous anchoring fi-

brils that provide protection during chewing or tooth

brushing (Figure 2). In pEDS-affected individuals, attached

gingiva is lacking, and the thin and mobile alveolar mu-

cosa directly proceeds to the free gingival margin, causing

oral tissue fragility. Connective tissue pathology in pEDS

also includes atrophic pretibial skin with areas of hyperpig-

mentation (83%), easy bruising (96%), and increased risk

of arterial aneurysms (16%). Joint symptoms are generally

mild, with hypermobility mostly of small joints.
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Figure 2. Oral FeaturesofPeriodontal EDS
(A) Gingival tissues of a non-affected con-
trol child (1:V-1). The gingiva is subdi-
vided into the non-attached free gingival
margin (FG), the attached gingiva (AG),
and the interdental papilla (IP). The
gingival epithelium is keratinized and per-
forms a protective function duringmastica-
tion. The attached gingiva is tightly bound
to the periostum via collagen structures.
The border between attached gingiva and
alveolar mucosa (AM) is the mucogingival
junction (MGJ). The oral mucosal epithe-
lium is non-keratinized and only loosely
connected to the periostum; therefore, it
is more fragile.
(B and C) Gingival tissues of an affected
child (1:V-2) (B) and of an affected adult
(1:IV-1) (C). The attached gingiva is
missing; the oral mucosa extends to the
free gingival margin and the interdental
papillae.
(D) Dental radiograph of a non-affected
individual (1:IV-4). The alveolar crest is
the most cervical rim of the alveolar
bone (arrow); in health, it is located

approximately 1 mm apical to the cemento-enamel junction (border between dental crown and root).
(E) Dental radiograph of an affected individual 1:IV-2, aged 24 years. Notice periodontal bone loss (BL) in the lower jaw. The alveolar crest
is now located more apically.
C1r and C1s are structurally similar proteins encoded by

C1R and C1S, adjacent genes within the pEDS locus. Both

proteins have an identical domain structure characterized

by CUB1-EGF-CUB2-CCP1(Sushi)-CCP2(Sushi)-SP(serine

protease) (Figure 3). Both proteins have amino-terminal

signal sequences that direct them to the lumen of the

rough endoplasmic reticulum. C1r and C1s associate as a

proenzyme calcium-dependent tetramer that binds to a

bouquet-like structure made of six C1q subunits to form

the C1 complex. Each C1q subunit is a heterotrimer of A,

B, and C chains that form a collagen-like stem (Figure 3).

Upon binding of C1q to appropriate targets such as anti-

gen-antibody complexes,20 C1r is auto-activated by cleav-

age at Arg463-Ile464 and can then cleave C1s at the

parallel site (Arg447-Ile448) to form the active C1esterase.

This enzyme can now cleave C4 and C2 to form the clas-

sical pathway C3 convertase (C4b2a).23–25

Heterozygous C1R or C1S mutations we identified in

pEDS-affected individuals appear to have gain-of-function

effects on as yet unidentified targets either within the cells

or in the matrix. In contrast, complete deficiency of C1r

or C1s caused by homozygous C1R- or C1S-null muta-

tions causes a lupus-erythematosus-like syndrome with

increased susceptibility to infections and increased risk of

developing autoimmune diseases. Individuals heterozy-

gous for C1R- or C1S-null mutations are reported to be

asymptomatic, and in particular have not been reported

to have periodontal disease.13,23,26 Loss of C1 esterase in-

hibitor results in intermittent and sometimes life-threat-

ening angioedema due to excessive bradykinin production

linked to an off-target effect of activated C1s.27 This is not a

feature of pEDS.
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Most mutations in our study alter residues that cluster

at the hinges between the CUB2 and CCP1 modules, i.e.,

the interaction and catalytic domains of C1r and C1s

(Figure 3). These hinges are the sites of a conformational

change that allows the extended tetramer to fit into the

C1q ‘‘cone.’’ Several mutations affect cysteines at positions

309/358 and 338/371 of C1r that form two stabilizing

intra-chain disulfide bonds close to the C1r/C1r interface,

which are essential for tetramer assembly (Figures 3A and

3C) and stabilization of Sushi modules (complement con-

trol protein [CCP] domains in complement and adhesion

proteins). Disulfide bond formation could be indirectly

affected by other identified mutations such as the C1R

deletion-insertion mutation that involves residues 401–

405 adjacent to the 406–447 disulfide bond or mutations

that introduce additional cysteines. The C1R mutation

c.869A>G (p.Asp290Gly, family 2) involves a C1q binding

site and may interfere with the assembly of the C1

complex, as previously shown for p.Asp290Ala.15 The

C1r p.Val50Asp substitution may affect the calcium-

dependent interaction of C1r with C1s and consequently

the interaction of the C1s-C1r-C1r-C1s tetramer with C1q.

In order to study the effects of mutations observed

in patients with pEDS, we overexpressed C1r variants

p.Val50Asp, p.Cys309Trp, and p.Cys371Trp in HEK293

cells. Western blots of cells and supernatants indicated

that the abnormal C1r proteins are retained in the cells

but can undergo autoactivation that may lead to interac-

tion with off-target substrates. Mutation-transfected cells

showed an increased proportion of dilated RER cisternae

(Figure 4), similar to that seen in skin in situ (provided in

the Supplemental Data). The C1r-C1s tetramer normally
mber 3, 2016



Figure 3. C1r and C1s Structure
(A)Modular structure of C1r andC1s andmain binding sites to assemble C1. The CUB domain (for complement C1r/C1s, uEGF, BMP1) is
a structural motif of approximately 110 residues found almost exclusively in extracellular and plasma membrane-associated proteins.
The EGF-like domain is an evolutionary conserved protein domain, which derives its name from the epidermal growth factor where
it was first described. It comprises about 40 amino acid residues with six cysteines that form characteristic intra-domain disulfide bonds
(1-3, 2-4, and 5-6). CCP (Complement Control Proteins) domains are also termed Sushi domains or Short Consensus Repeats and
contain about 60 amino acid residues, each with 4 conserved cysteines that form intradomain disulfide bonds (1-3 and 2-4). These
domains are involved in interaction between subunits of proteins and between proteins. The Serine Protease (SP) domains are mostly
catalytic domains evolutionary related to the trypsin-chymotrypsin enzymes. The same color code is used for the domains throughout
the figure.
(B) C1q (yellow) is a hexamer of heterotrimers that contains in its cone themain protease interfacial domains that are crucial for C1r/C1s
tetramer assembly. Each heterotrimer (A, B, C chains) contains a protease binding site in its collagen stem and a C-terminal globular
recognition domain. This incomplete C1model includes two copies each of C1r and C1s interaction domains (violet, red) and two copies
of C1r catalytic domains (blue).
(C) Schematic view of the main protease conformational changes during C1 assembly, with strong bending between the interaction and
catalytic domains. The central C1r/C1r interface (C/C, blue) involves C1r CCP1 and SP head to tail interactions.
(D and E) Mapping the C1r and C1s variants on 3D structure models. The wild-type residues affected by variants that cause pEDS are
shown in colored spheres. The homologous modules are about the same size in the two proteases, which are shown at a different scale.
binds to the N-terminal collagenous domain of C1q that

contains a phylogenetically conserved hexapeptide motif

Hyp-Gly-Lys-(Val/Asn)-Gly-(Pro//Lys/Met).28,29 Hyp-Gly-

Lys-Asn-Gly sequences are present in the triple helical

domains of the proa1(I) and proa2(I) chains of type I

collagen, as well as the proa1(III) chains of type III

collagen, and may represent alternative C1r/C1s binding

sites. C1q binding of C1r and C1s is mediated by the

CUB domains that are evolutionarily conserved and are

present in a number of proteins including procollagen

C-proteinase enhancers (PCPE1) and bone-morphogenetic

protein (BMP1).30 Both PCPE1 and BMP1, as well as C1s,

can bind through their CUB domains to the triple helix

of collagen and/or propeptides that can be degraded.31–35
The American Jou
This suggests that abnormal binding of (mutated) C1r/

C1s to connective tissue precursors could be a pathoge-

netic factor in pEDS.

There is substantial evidence that altered complement

function plays an important role in the pathogenesis of

non-syndromic periodontitis.36 Induction of experimental

gingivitis in human volunteers causes progressive comp-

lement activation (as determined by C3 conversion in

gingival crevicular fluid) that is correlated with increased

clinical inflammation.37 Conversely, traditional peri-

odontal treatment can lead to decreased complement ac-

tivity38 and C3 downregulation.39 Local inhibition of C3

reduced experimental periodontitis in non-human pri-

mates, and this strategy has been suggested as a treatment
rnal of Human Genetics 99, 1005–1014, November 3, 2016 1011



Figure 4. Analyses of Cells, Lysates, and Serum-free Supernatants of Transfected and Control HEK Cells
(A) Western blot analysis of serum-free supernatants under reducing conditions (n ¼ 3). The strong signal at 35 kDa in supernatant of
wild-typeC1R transfected HEK239 (WT) corresponds to the a-fragment of autocatalytically cleaved C1r A chain. Cell lines withmissense
mutations c.149_150TC>AT (p.Val50Asp), c.927C>G (p.Cys309Trp), and c.1113C>G (p.Cys371Trp), non-transfected controls (ctr), and
a 26 bp frameshift insertion at position c.899_900 causing a nonsense mutation that is not expected to lead to a functional protein
(nonfunctional ctr.) showed no extracellular signal for C1r. Coomassie staining was used as loading control.
(B) Western blot analysis of cell lysates under reducing conditions (n ¼ 3). The analysis of cell lysates in cell lines that express missense
variants p.Val50Asp, p.Cys309Trp, and p.Cys371Trp showed additional bands at approx. 55 kDa corresponding to the uncleaved A chain
of C1r. These bands are absent in non-transfected controls (ctr), transfected nonsensemutations (nonfunctional ctr), and wild-type (WT)
C1r samples. This suggests a possible retention of mutated C1r within the cells. Loading control using a-tubulin antibody shows similar
amounts of protein in all samples.
(C) Schematic representation of C1r peptide subunits. C1r is autoactivated by cleavage into the 55 kDa A chain containing the domains
CUB1-EGF-CUB2-CCP1-CCP2 and includes the binding domain, and the 28 kDa B chain which represents the serine protease domain;
after activation the A chain is autoproteolytically cleaved into several fragments including a 35 kDa a-fragment (CUB1-EGF). The anti-
body used (Abcam cat# ab66751; RRID: AB_1860204) recognizes an N-terminal fragment encompassing residues 1–100 of human C1r
(A chain).
(D–F) Transmission electronmicroscopy. Ultrastructure of rough endoplasmic reticulum frommutation-transfected (D), wild-type-trans-
fected (E), and untreated (F) HEK293 cells. Semiquantitative analysis of randomly selected section profiles showed RER dilatation
(asterisk) in 36/63 profiles in cells transfected with c.1113C>G (p.Cys371Trp) compared to 18/60 profiles in cells transfected with the
wild-type sequence, and 13/38 profiles in non-transfected cells. Scale bar represents 200 nm in all panels.
in humans.40 No mutations in C1R or C1S were detected

in 71 individuals with aggressive periodontitis, which is a

main differential diagnosis to pEDS. Aggressive periodonti-

tis is a rare (prevalence 0.1% to 0.5%) complex genetic

disease with familial aggregation, characterized by rapid

progressing periodontal destruction in otherwise healthy

individuals, typically occurring before the age of 35 years.

Also, no mutations in C1R or C1S were detected in families

18 and 19. Individuals with suggested pEDS in these fam-

ilies presented with periodontitis and EDS-type connective

tissue features but had no pretibial plaques.5,19 The propo-

sita in family 19 had only moderate periodontal destruc-
1012 The American Journal of Human Genetics 99, 1005–1014, Nove
tion at age 37 (community periodontal index of treatment

needs [CPITN] grade III) and a history of severe caries, sug-

gesting chronic periodontitis.19 Neither family was avail-

able for clinical re-assessment.

In conclusion, pEDS in at least the great majority of

cases results from specific classes of heterozygous mutations

in C1R and C1S. The mechanism of pathogenesis of these

mutations differs fromhomozygous loss of functionof these

genes and from loss of the C1 esterase inhibitor. Clinical

diagnosis of pEDS should be based on severe periodontitis

with early onset in combination with absence of attached

gingiva, as well as pretibial hyperpigmentation and easy
mber 3, 2016



bruising and confirmation by genetic tests. Individuals

should receive specific surveillance for aneurysms.
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Hulmes, D.J., and Moali, C. (2011). Procollagen C-proteinase

enhancer stimulates procollagen processing by binding to

the C-propeptide region only. J. Biol. Chem. 286, 38932–

38938.

32. Steiglitz, B.M., Keene, D.R., and Greenspan, D.S. (2002).

PCOLCE2 encodes a functional procollagen C-proteinase

enhancer (PCPE2) that is a collagen-binding protein differing

in distribution of expression and post-translational modifica-

tion from the previously described PCPE1. J. Biol. Chem. 277,

49820–49830.

33. Wautier, J.L., Reid, K.B., Legrand, Y., and Caen, J.P. (1980). Re-

gion of the Clq molecule involved in the interaction between

platelets and subcomponent Clq of the first component of

complement. Mol. Immunol. 17, 1399–1405.

34. Yamaguchi, K., Sakiyama, H., Matsumoto, M., Moriya, H., and

Sakiyama, S. (1990). Degradation of type I and II collagen by

human activated C1-s. FEBS Lett. 268, 206–208.

35. Bourhis, J.M., Vadon-Le Goff, S., Afrache, H., Mariano, N.,

Kronenberg, D., Thielens, N., Moali, C., and Hulmes, D.J.

(2013). Procollagen C-proteinase enhancer grasps the stalk

of the C-propeptide trimer to boost collagen precursor matu-

ration. Proc. Natl. Acad. Sci. USA 110, 6394–6399.

36. Hajishengallis, G., Maekawa, T., Abe, T., Hajishengallis, E., and

Lambris, J.D. (2015). Complement involvement in periodon-

titis: molecular mechanisms and rational therapeutic ap-

proaches. Adv. Exp. Med. Biol. 865, 57–74.

37. Patters, M.R., Niekrash, C.E., and Lang, N.P. (1989). Assess-

ment of complement cleavage in gingival fluid during exper-

imental gingivitis in man. J. Clin. Periodontol. 16, 33–37.

38. Niekrash, C.E., and Patters, M.R. (1985). Simultaneous assess-

ment of complement components C3, C4, and B and their

cleavage products in human gingival fluid. II. Longitudinal

changes during periodontal therapy. J. Periodontal Res. 20,

268–275.

39. Beikler, T., Peters, U., Prior, K., Eisenacher, M., and Flemmig,

T.F. (2008). Gene expression in periodontal tissues following

treatment. BMC Med. Genomics 1, 30.

40. Maekawa, T., Abe, T., Hajishengallis, E., Hosur, K.B., DeAnge-

lis, R.A., Ricklin, D., Lambris, J.D., and Hajishengallis, G.

(2014). Genetic and intervention studies implicating comple-

ment C3 as a major target for the treatment of periodontitis.

J. Immunol. 192, 6020–6027.
mber 3, 2016

http://refhub.elsevier.com/S0002-9297(16)30376-7/sref16
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref16
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref17
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref17
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref17
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref17
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref17
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref17
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref18
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref18
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref18
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref18
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref18
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref18
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref19
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref19
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref19
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref20
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref20
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref20
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref20
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref20
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref21
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref21
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref21
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref21
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref22
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref22
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref22
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref23
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref23
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref23
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref23
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref23
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref23
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref24
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref24
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref24
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref25
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref25
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref25
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref25
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref26
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref26
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref26
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref26
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref26
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref27
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref27
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref27
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref28
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref28
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref28
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref28
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref28
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref28
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref29
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref29
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref29
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref29
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref29
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref30
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref30
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref30
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref31
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref31
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref31
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref31
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref31
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref31
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref32
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref32
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref32
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref32
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref32
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref32
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref33
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref33
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref33
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref33
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref34
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref34
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref34
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref35
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref35
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref35
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref35
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref35
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref36
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref36
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref36
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref36
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref37
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref37
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref37
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref38
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref38
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref38
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref38
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref38
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref39
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref39
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref39
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref40
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref40
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref40
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref40
http://refhub.elsevier.com/S0002-9297(16)30376-7/sref40

	Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement
	Introduction
	Subjects and Methods
	Ethical Considerations
	Genomic Analysis
	Clinical Investigations
	Statistical Methods
	Variant Modeling
	Expression Studies

	Results
	Genetic Results
	Protein Variant Modeling
	Expression Studies
	Clinical Characteristics of Periodontal EDS
	Clinical Laboratory Studies

	Discussion
	Accession Numbers
	Consortia
	Acknowledgments
	Web Resources
	References


