Minh-Quan Quan Ho
email: minh-quan.ho@imag.fr

Bernard Tourancheau
email: bernard.tourancheau@imag.fr

Christian Obrecht
email: christian.obrecht@insa-lyon.fr

Benoît Dupont

Benoît Dupont De Dinechin

Jérôme Reybert
email: jerome.reybert@kalray.eu

MPI communication on MPPA Many-core NoC: design, modeling and performance issues

Keywords: Many-core, NUMA, Distributed memory, Networkon-Chip, MPI, Performance modeling, Linpack, HPL, MPPA

come

INTRODUCTION

In this paper, we propose the design of an MPI Message-Passing library [START_REF] William D Gropp | Using MPI: portable parallel programming with the message-passing interface[END_REF] for the intra communication on many-core processors, using the vendor support library (MPPAIPC [START_REF] Dupont De Dinechin | A Distributed Run-Time Environment for the Kalray MPPA R -256 Integrated Manycore Processor[END_REF]) as the transfer-fabric to build MPI protocols from scratch, while porting any of existing MPI implementations such as MPICH or OpenMPI would not be possible due to limited on-chip memory of most recent many-core processors.

Based on studied MPPA hardware specifications presented in [START_REF] Dupont De Dinechin | A clustered manycore processor architecture for embedded and accelerated applications[END_REF], [START_REF] Dupont De Dinechin | A Distributed Run-Time Environment for the Kalray MPPA R -256 Integrated Manycore Processor[END_REF], this paper does a brief hardware summary and focuses on an MPI design over (but not limited to) the MPPA architecture, with detailed implementation algorithms and formulated models following vendor-hardware characteristics (K, h) and different optimizing approaches (Lazy, Eager). These studies is generic enough to be compared/ported to other very-similar architectures, such as Tilera [START_REF]Tile processor architecture overview for the Tilepro series[END_REF], STHORM [START_REF] Mottin | The STHORM Platform[END_REF] or Neo chip [START_REF] Hemsoth | The Tiny Chip That Could Disrupt Exascale Computing[END_REF], on which doing/optimizing MPI communication over Network-on-chip is still a challenging or never-posed question.

The remainder of this paper is organized as follows: Section I briefly introduces the MPPA architecture and the MPPAIPC components used in our implementation. Section II describes our MPI architecture design. Section III resumes our MPI implementation in pseudo-codes of blocking and non-blocking communication (MPI_Send and MPI_Isend). Some optimization ideas are then proposed and developed in this section such as (1) synchronization-free "eager send" and (2) implicit local-buffered "lazy send" for short and medium sized messages respectively. A throughput estimation model based on the data transmission time is also introduced in section IV to evaluate the communication performance. Section V presents our results for the ping-pong test following two scenarios, either symmetric ranks (MPI compute node -MPI compute node) or asymmetric ranks (MPI compute node -MPI I/O), corresponding on MPPA to CC-CC and CC-I/O subsystem respectively. Different optimization approaches are also tested and compared.

Using the MPPA-MPI library, the HPL benchmark [START_REF] Petitet | HPL -A Portable Implementation of the High-Performance Linpack Benchmark for Distributed-Memory Computers[END_REF] [START_REF] Jack J Dongarra | The LINPACK benchmark: past, present and future[END_REF] was ported on MPPA with the support of the standard BLAS-Netlib [START_REF] Chuck L Lawson | Basic linear algebra subprograms for Fortran usage[END_REF] [10] (mono-threaded) and OpenBLAS [START_REF] Xianyi | OpenBLAS, version 0.2. 8[END_REF], an OpenMP optimized implementation. These benchmark results are summarized in section VI. Related MPI-oriented works on other many-core platforms will also be compared in section VII and conclusions are given in section VIII.

I. MPPA-256 ANDEY HARDWARE AND SOFTWARE

A. Architecture overview

The MPPA-256 Andey [START_REF] Dupont De Dinechin | A clustered manycore processor architecture for embedded and accelerated applications[END_REF] embeds 256 VLIW compute cores grouped into 16 compute clusters (CC) and four I/O subsystems (IOS), with theoretical performance of 230 GFlops (in single-precision) and 70 GFlops (in double-precision) and an energy consumption of 10 W.

1) Compute Clusters (CC): Each compute cluster operates 2MB of banked parallel memory shared by 17 VLIW cores running at 400 MHz. These cores are divided into 16 user cores referred to as Processing Elements (PEs) and one systemreserved core known as Resource Manager (RM). Each PE and RM are fitted with private 2-way associative 8KB instruction cache and 8KB data cache. The shared memory owns one Rx and one Tx NoC interface, paired with a 8-channel DMA engine and a Debug Support Unit (DSU). An MPPA-256 processor amounts to a total 32MB of memory distributed over the 16 CCs.

2) I/O Subsystems (IOS):

The four I/O subsystems (North, South, East, West), each containing four cores, integrate DRAM controllers managing the off-chip DDR memory, a 8-lane Gen3 PCI-Express and Ethernet links, as well as an Interlaken link intended to extend the NoC across multiple MPPA-256 chips, and other I/O devices.

3) Network-on-Chip: CCs and IOS are connected by two network-on-chip. The both Data NoC (D-NoC) and Control NoC (C-NoC) [START_REF] Dupont De Dinechin | A Distributed Run-Time Environment for the Kalray MPPA R -256 Integrated Manycore Processor[END_REF] ensure reliable delivery (lossless) thanks to the credit-based flow control mechanism [START_REF] Khorsandi | Robust non-probabilistic bounds for delay and throughput in credit-based flow control[END_REF] and FIFO packet arrival using static NoC routing [START_REF] Bertozzi | NoC synthesis flow for customized domain specific multiprocessor systems-on-chip. Parallel and Distributed Systems[END_REF]. No acknowledgment is needed at the packet reception. As a result, there is no need to consider a TCP layer implementation when building any communication library above these NoCs (e.g MPI).

B. MPPA Inter-Process-Communication (MPPAIPC)

One of several programming models currently available on the MPPA platform that matches our working scope in this paper is MPPAIPC -an MPPA-specific POSIX-compliant library [START_REF] Dupont De Dinechin | A Distributed Run-Time Environment for the Kalray MPPA R -256 Integrated Manycore Processor[END_REF] following the distributed memory model, where communication and synchronization between CCs and IOS are explicitly done by developer. These actions are achieved using IPC primitives through connecting objects listed in Tab. I.

Sync object provides light-weight and low-latency synchronization barriers by exchanging 64-bits messages on CNoC. This connector can be used to implement two types of barriers:

• Master-Slaves (1 : M) between an I/O subsystem and several (or all) compute clusters in case of sequential process splitting

• All-to-all (M : M) barrier between compute clusters, similar to MPI_Barrier()

Portal object supports data transfer on DNoC using onesided communication with zero-copy transfer. The sender (Tx) can write to the receiver's buffer (Rx) via a known dnoc_tag number, with an optional offset. This can be used to implement N-to-1-data-collection by many distinct writes from one (or several) Tx process(es) to the same Rx buffer, and at different offsets (see Fig. 2). RQueue object implements FIFO 120-byte-message queues with user-defined receive buffer length (120×nb slot). The inbound flow is controlled by a credit mechanism that ensures available buffer space to store incoming messages before being handled by the Rx rank. Callback function on message arrival can be defined to implement an Active Message Server [START_REF] Von Eicken | Active messages: a mechanism for integrated communication and computation[END_REF].

Channel object proposes point-to-point communication link with rendez-vous behavior. The Rx rank sends its buffer size to the Tx rank in a CNoC packet. The Tx rank then reads the buffer size and sends data through DNoc on a known dnoc_tag.

Both Portal and Channel objects contain primitives for data transfer. Otherwise, the current implementation of Portal provides higher performance and is more feature-rich than the Channel one. Portal integrates one-sided communication in either unicast or multicast, supports both blocking and nonblocking data sending (Tab. II). Meanwhile, Channel, at the time of this writing, provides only rendez-vous blocking sends. Indeed, the Portal object was used to implement the transfer layer of our MPPA-MPI model. An RQueue-message active server is also an important module as well. • exchanging information about MPI transaction type (send/receive, communicator split, etc.).

Mode

• synchronization point in case of rendez-vous protocol.

We implemented an RQueue-based active message server [START_REF] Von Eicken | Active messages: a mechanism for integrated communication and computation[END_REF] on each MPI rank (CC and IOS) to handle incoming control messages from all other ranks (including itself on loopback). Upon control message arrival, a callback function is executed on the RM, consisting typically on saving it into an internal buffer which later will be read by MPI calls from the main function (PE0).

Control messages exchanged in the MPIC layer contain either one of the structures defined in Fig. 3. In an MPI send/receive, The Tx rank posts a Request-To-Send (send_post_t) to the Rx rank; idem, the Rx rank sends back a Clear-To-Send (recv_post_t) containing its allocated dnoc_tag, to which the Tx rank will send data. Beforehand, this dnoc_tag needs to be configured and linked to the receive buffer to enable remote writing.

2) MPI-inter-process Data-Transfer (MPIDT): is a lightweight wrapper of MPPAIPC Portal primitives. Once the Tx rank has got a matching control message, it configures a data transfer using received information (e.g. dnoc_tag). Data can then be sent in either blocking or non-blocking mode dependent on the calling MPI function, using appropriate Portal primitives (see Tab. III for detailed function mapping). Fig. 4 illustrates the structure of our MPPA-MPI implementation. Each rank emits control-message(s) to its involved partner(s) at each MPI call. The active server runs on the RM core and processes incoming control-messages. Furthermore, depending on MPI transactions and their status at runtime, the server can decide whether to perform a data send if this has not been or could not be done by the main thread, especially in case of a pending MPI_Isend request or a matching registered "lazy" message.

MPPA-MPI MPPAIPC Portal

III. MPPA-MPI IMPLEMENTATION

As mentioned above, on-flight control messages carry essential information depending on their purpose. We present now their usage as well as algorithms of the two communication scenarios in our work:

(1) synchronous blocking send (MPI_Send) and (2) asynchronous non-blocking send (MPI_Isend)

A. MPI Send -MPI Recv

Most well-known and optimized MPI libraries contain many (combined) techniques to perform the MPI_Send call. In the first time, we chose to implement this function with rendez-vous blocking behavior, in order to avoid extra buffer space and minimize memory usage. This choice certainly adds more synchronization cost but does not change the functionality of the send/receive transaction. Some optimization approaches will be presented in the coming sections. Algorithms 1 and 2 summarize the implementation of MPI_Send and MPI_Recv.

Algorithm 1 MPI Recv(buf, count, datatype, source, tag, comm, status) recv post ← find recv post(count, datatype, tag, ...); 7: until recv post = NULL 8: /* send data (MPIDT layer), using mppa pwrite(s) */ 9: send data(buf, count, datatype, recv post.dnoc tag); 10: return MPI SUCCESS;

The implementation of MPI_Irecv is the same as the one of MPI_Recv, except that the function returns right after having posted the receive to the sender, and the completion of reading (mppa_aio_wait) is done in MPI_Wait.

B. MPI Isend -MPI Recv

The implementation of MPI_Isend uses non-blocking Portal primitives on both PE and RM on the Tx side. When the Tx rank (PE0) reaches MPI_Isend in its execution without having received any matching recv_post, it creates a "non-started" pending_isend request containing related information (buffer pointer, dest, count, tag etc.) and returns. On arrival of the matching recv_post, the RM core (callback handler) reads the previous pending_isend request and triggers a non-blocking data send (to the recv_post.dnoc_tag of the Rx rank). The request is then set to "started" state to be distinguished from other "nonstarted" requests.

On the other hand, when the recv_post arrives before MPI_Isend, the RM core saves it into the internal buffer. The PE core executing MPI_Isend later reads this recv_post, performs a non-blocking send and marks the pending_isend request as "started". This propriety ensures that the transfer is performed only once for each transaction, either by the PE core (in MPI_Isend) or by the RM core (in callback handler). At the end, "started" requests will be finished and cleaned by MPI_Wait. Algorithms 3 and 4 present in more details the implementation of MPI_Isend and of the callback handler. save recv post(recv post); 10: end if 11: return ; C. Optimization 1) Eager send optimization: Our idea is to pack any MPI message which can fit into a 120-byte space, as a controlmessage and send it directly to the Rx's active server. In reality, the maximum data payload is about 96 bytes (24 bytes is used for control header). An eager_buffer needs to be allocated on each MPI rank and can be defined by the EAGER_BUFFER_LENGTH macro in main.c. This approach is synchronization-free when the MPI_Send call can return before a matching receive is posted (non-local). It also leads to an improvement of about 6 to 10% in performance for the HPL benchmark on MPPA (see Section VI).

For longer messages, using several "eager sends" introduces segmentation and reassembly costs. We implemented a test case where messages are splitted into "eager" pieces in order to determine the best communication trade-off in Fig. 6. Such segmentation however consumes memory for buffers and therefore puts more pressure on RM's resources and limits its usage in practice.

2) Lazy send optimization: Lazy send consists in copying medium-size message into a local buffer and returns. The RM is then responsible for sending it to the destination. Unlike eager_buffer on the Rx side, lazy_buffer is allocated on the Tx side and can be tuned via some macros (LAZY_THRESHOLD, LAZY_BUFFER_LENGTH).

This approach must be used with care because bad communication scheduling may lead to wasting and lazy messages remaining for too long. Inversely, a dense communication scheme should neither be set to "lazy" mode in order to be able to send data directly rather than spending time doing memcpy in local memory.

3) DMA thread usage: MPI_Isend uses Portal nonblocking primitive to configure a Tx DMA thread for data sending. The DMA engine implements a fetch instruction that loads the next cache line while pushing the current line into the NoC. This fetch is nowadays not available on PE cores, meaning that outbound throughput using PE is 4 times lower than using DMA engine (1 B/cycle vs. 4 B/cycle). Thus, tuning to use non-blocking DMA on MPI_Send for messages of size greater or equal to DMA_THRESHOLD will maximize the transfer performance.

IV. MPPA-MPI THROUGHPUT MODELING

The MPPA-256 Network-on-chip [START_REF] Inc | MPPA-256 Cluster and I/O Subsystem Architecture[END_REF] is designed so that any path linking two CCs always contains less than eight hops (including two local hops -one at sender and one at receiver). The average switching time on a NoC router is 7 cycles, then it takes the packet at most 8 cycles to reach the next hop. In the worst case, the link distance (time a packet spends on NoC to reach its destination) is 112 cycles (7 × 8 + 8 × (8 -1)). However, the necessary time to send a buffer (transmission time -t) is about O(N) cycles [START_REF]MPPAIPC Performance[END_REF] (where N the buffer size in bytes), which is much longer than the link distance [START_REF] Kumar | A network on chip architecture and design methodology[END_REF].

As a result, we describe the transmission time t as a function of the buffer size N , a constant transfer ratio K and a default overhead h (aka. the cost of sending an empty buffer). This default overhead presents the initial cost of MPI implementation management (ID mapping, metadata setup, synchronization, error checking ...) and/or configuring the peripherals (cache, DMA) to prepare for data sending. This cost is paid on each MPI call and is independant to the subsequent data-sending process (which is presented by a datatransfer factor K). The ping-pong round-trip time (RTT) is approximately the sum of the transmission time on both sides, as the propagation time is negligible.

T ransmissionT ime : t = K × N + h (cycles) (1) RT T 2 × t = 2 × (K × N + h) (cycles) (2)
T hroughput :

T = 2 × N RT T N K × N + h = 1 K + h N (bytes/cycle) (3) lim N →∞ T lim N →∞ 1 K + h N = 1 K (bytes/cycle) = 400 × K -1 (M B/s) (at f requency 400 M Hz) (4)
The constant K is a value specific to each send function with its own underlying transport primitive. For example, the MPI_Isend which uses the DMA engine with peak throughput of 4 B/cycle, would have its transfer ratio K of about 0.25. The MPI_Send, with default peak throughput of 1 B/cycle (no DMA engine), should obtain a transfer ratio K around 1.

V. RESULTS AND DISCUSSION

Using the MPPA Developer platform [START_REF] Inc | Kalray platforms and boards[END_REF] with AB01 board and MPPA-256 Andey processor integrated, we set up pingpong tests between: In each case, the same MPI send function is used on both sides (MPI_Send or MPI_Isend). At the first time, all tests are run without any optimization in order to calibrate the proper throughput of each context (Fig. 5). At the second time, we enable all optimization on the MPI_Send test and compare our optimization approaches in term of latency, throughput and messages sent per second (Fig. 6).

Each ping-pong is repeated 50 times. We assume that there is no waiting time inside the MPI send function, since all ranks start at the same time and run at the same clock speed. Hence, the duration of the MPI send function can be considered as the transmission time. Depending on the send context, the measured transmission time is fitted into a linear correlation K × N + h presented in Tab. IV. The standard deviation from all obtained results is always less than 0.2%.

A. Compute cluster ↔ Compute cluster

Communication links between CCs are bi-directionally symmetric. According to our model and the K values from Tab. IV, the estimated maximum throughput (given by 400 × MPI_Send and MPI_Isend respectively. The ratio h N can be ignored in this case. Fig. 5a shows obtained results that match with our estimation model.

K -1 M B/s) should

B. Compute cluster ↔ I/O subsystem

Contrary to the symmetric communication performance between CCs, the transmission rate on I/O subsystem relies on the DDR bandwidth, which is much lower than the on-chip memory on CCs. We observed higher K values and much more considerable overhead h on the IOS 128, showing that the communication link from IOS to CCs might be the bottleneck on the MPPA. It is then difficult ignoring h N in this case. Keeping on our throughput estimation by 400 × (K + h N) -1 now matches with experiment results on Fig. 5b, where the performance gap between the CC 15 and the IOS 128 is also illustrated.

C. Optimization comparison

We focus now on finding, on a given message size, the best send method among the four (Normal, Eager, Lazy and DMA) to use on MPI_Send, in order to obtain lowest latency (roundtrip-time) and/or highest ping-pong throughput, by enabling all optimizations and re-running our experiments between CCs. We also evaluate the number of messages sent per second in each approach by dividing the clock frequency (400 MHz) by the duration of the MPI_Send call (in cycles). As the message will now be "eagerly" sent or "lazily" buffered and MPI_Send returns right afterward, this duration on Eager(-splitting) or Lazy could no longer be evaluated as the transmission time in the Tab. IV, but respectively by :

E × (f loor(N 96) + 1) (cycles, E ≈ 3800) (5)
O memcpy (N) = 1.28 × N + 5300 (cycles)

where E is the constant necessary cost to send 1 eager-split and O memcpy is a linear function of memcpy cost. Note that in the Lazy approach, the message is sent in background by the RM.

Hence, Eager and Lazy methods provide lower latency and higher message rate on short buffers, since they were designed to get rid of two-sided synchronization and the buffer size is still small enough not to be outperformed by the DMA's highthroughput capacity. Fig. 6a shows that the ping-pong latency for [1 .. 256 B] using eager-splitting is reduced by half compared to DMA or Normal. Otherwise, this latency increases radically as soon as its transmission time, despite being smaller at the beginning, getting repeated as many times as split segmentation (f loor(N 96) + 1). On the other hand, using DMA on large buffers optimizes bandwidth utilization compared to Normal (using PE) or Lazy (using RM) methods. (Fig. 6b).

Fig. 6c illustrates the message-rate of the four send methods. Not only this kind of measure gives user a high-level point of view about the implementation's capacity to support communication load, but it shows interesting advantages of Eager and Lazy methods in tuning MPI applications, thanks to their fast sending time for short messages and synchronizationfree algorithm.

VI. HIGH PERFORMANCE LINPACK (HPL) ON MPPA-256 HPL benchmark was ported on MPPA-256 using our MPI implementation and cross-compiling of BLAS-Netlib and OpenBLAS. Each MPI compute rank, assigned to a compute cluster, only disposes 2 MB of memory, that make a total onchip memory of 32 MB, enable to store up to 4 million double precision floating point numbers or a 2000 × 2000 matrix. Operating system space and user code (BLAS, MPI, HPL) must be taken into account as well. In practice, the HPL can run on the MPPA-256 with 1250 × 1250 matrix, which is a very small problem size for this kind of benchmark. As a result, communication, local indexing etc. has a significant cost with respect to the number of floating point operations (O(N 3)). Fig. 7b. does an estimation on further problem sizes if MPPA disposes more on-chip memory than its current capacity. Fig. 7a shows the HPL result on MPPA-256 using BLAS and OpenBLAS. Note that 70 GFLOPS of annouced theoretical performance is for all the 256 cores, while the best benchmark score (R max = 1.2 GFLOPS) was achieved using only 1 core per CC (i.e 16 cores in total) and MPI "eager" send. Also, we have seen no performance change by enabling MPI "lazy" optimization. This can be explained by well-scheduled HPL overlapping [START_REF] Jack J Dongarra | The LINPACK benchmark: past, present and future[END_REF] in which, either MPI processes arrive to the communication step at the same time, or all heavy sends are done asynchronously by MPI_Isend, while lazy sending only shows its advantage in bad-scheduled MPI_Send. Furthermore, multi-threading on MPI compute ranks (OpenMP on CCs) did never give better HPL result, because of the small working set and the OpenMP overhead.

VII. RELATED WORKS

A. MPI libraries design

Our design is similar to the co-processor-only MPI model on the Intel Xeon-Phi TM platform [START_REF] Jeffers | Intel Xeon Phi Coprocessor High Performance Programming[END_REF], with support of OpenMP for hybrid multi-threaded programming. Besides MPI ranks running on CC, we introduce an MPI I/O rank running on an I/O subsystem of the chip as bridge to communicate with the host through the PCI-e interface, while there are no direct communication link between the host and the compute clusters on MPPA. Along the way, some collective MPI functions were also implemented (MPI_Comm_split, MPI_Bcast, MPI_Reduce, MPI_Allreduce and MPI_Barrier).

Our message-trigger handling mechanism using the RM core was inspired by the similar work of Prylli and Tourancheau [START_REF] Prylli | BIP: a new protocol designed for high performance networking on myrinet[END_REF] [START_REF] Prylli | Modeling of a high speed network to maximize throughput performance: the experience of BIP over Myrinet[END_REF] implementing the BIP protocol for an optimized MPI implementation over the Myrinet network, taking advantage of its dedicated hardware, an extra core like the MPPA RM core.

B. Similar architectures

Today, there exist other multi/many-core processors similar to the MPPA. Some of them has an MPI implementation, others do not. This section reviews these achitectures and, if existing, summarizes any MPI-oriented libraries and their performance related to our work.

Freescale P4080 multi-core processor [START_REF]QorIQ P4080 Communcations Processor Product Brief[END_REF], based on the PowerPC architecture and resources virtualization technology from IBM, is mostly used in avionic industries and critical real-time systems. The P4080 processor has eights cores connected through CoreNet -the proprietary NoC of Freescale. Cache-coherence is guaranteed by a hardware mechanism. Our research for MPI implementation and topic on this platform did not encounter any relevant reference.

Raw processor [START_REF] Bedford | The Raw microprocessor: A computational fabric for software circuits and general-purpose programs[END_REF], designed by the Computer Science Laboratory at MIT, combines 16 identical compute units, called tile. The 16 tiles are connected by one static NoC and two dynamic NoC. The static network is used for predefined memory access pattern at compile time, the dynamic ones are used for communication scheme at runtime. Psota and James [START_REF] Ryan | rMPI: An MPI-compliant message passing library for tiled architectures[END_REF] propose rMPI, the first MPI library over the Raw achitecture by inheriting some design aspects from MPICH and LAM/MPI also other specific implementation belonging to the Raw hardware. The highest throughput obtained on the ping-pong test of the Raw processor is about 150 MB/s with buffer size of 3.2 MB (100K words) [START_REF] Psota | rMPI: message passing on multicore processors with on-chip interconnect[END_REF].

STHORM processor [START_REF] Mottin | The STHORM Platform[END_REF] is a four-cluster-based Networkon-chip many-core from ST Microelectronics. Each cluster (named ENCore) hosts 16 STxP70-V4 processors (PE). Moreover, a special cluster unit, named fabric controller (FC) is responsible for interaction with the host memory and coordination of clusters. Coupled with an ARM processor as host, STHORM architecture mostly supports offloading model using either OpenCL [START_REF] Pierre G Paulin | OpenCL Programming Tools for the STHORM Multi-Processor Platform: Application to Computer Vision[END_REF] or through OpenMP [START_REF] Spiros N Agathos | Deploying OpenMP on an embedded multicore accelerator[END_REF] with extension primitives similar to #pragma omp target in OpenMP 4.0. Otherwise, no MPI library supporting the STHORM architecture was found as of this writing.

Neo chip [START_REF] Hemsoth | The Tiny Chip That Could Disrupt Exascale Computing[END_REF], announced on March 2015 by Rex Computing, is a 256 VLIW core MIMD, organized on a 2D Mesh NoC. It is designed to aim the HPC market with disruptive exascale power ratio. The cache and memory system on Neo is rethough to reduce energy consumption by cutting off the virtual memory translation and other unecessary components. This choice would further produce more complexity and security issues when implementing operating system and software stack over Neo chip.

Tilera processors [START_REF]Tile processor architecture overview for the Tilepro series[END_REF] are mainly used in high performance embedded systems such as networking and multimedia. The TilePro64 processor defines a flat 2D-mesh with 64 identical VLIW cores connected through the Tilera iMeshTM networkon-chip. Cache coherence on TilePro64 is guaranteed by a hardware mechanism called Dynamic Distributed Cache (DDC) [START_REF]Tile processor architecture overview for the Tilepro series[END_REF]. Kang et al. [START_REF] Kang | MPI performance analysis and optimization on tile64/maestro[END_REF] propose an MPI implementation on Tile64 processor which delivers up to 250 MB/s on MPI_Send/MPI_Recv communication, with the largest message size of 256 KB due to the limited memory per core. At this buffer size, our MPI implementation on MPPA delivers 400 MB/s on MPI_Send or up to 1 GB/s using DMA. Intel Single-Chip Cloud (SCC) is a prototype aimed to promote many-core processor. Its 48 cores are organized in 24 dual-core clusters with access to off-chip DRAM shared/private region for all/each core through a look-up table (LUT), also a dedicated shared on-chip Message Passing Buffer (MPB). This memory architecture gives extra advantage for implementing quick message sending based on shared buffers. However, the use of the dynamic NoC routing on Intel SCC (instead of static NoC in MPPA) makes it difficult to evaluate the maximum communication latency [START_REF] Bruno Dausbourg | Deterministic Execution on Many-Core Platforms: application to the SCC[END_REF] also incurs unordered packets, hence inappropriate for hard realtime applications.

The SCC-specific MPI-like native communication library (RCCE) delivers peak throughput of 55 MB/s on the ping-pong test [START_REF] Timothy G Mattson | The 48-core SCC processor: the programmer's view[END_REF]. By the same test, Clauss et al. [START_REF] Clauss | Evaluation and improvements of programming models for the Intel SCC many-core processor[END_REF] presented iRCCE (an improved RCCE version) and SCC-MPICH (an MPICHbased implementation over iRCCE) that reach respectively 150 MB/s and 120 MB/s of throughput. RCKMPI, an Intel MPI implementation for SCC is also bounded by the performance of the iRCCE layer. Our MPI library on MPPA was built from scratch over the MPPAIPC library, without any TCP/UDP layer, while an MPICH-based solution would not fit the cluster private memory space (2 MB). A such MPICH implementation on MPPA can be extrapolated to 1.0 GB/s by adding the same overhead of 20% of SCC-MPICH over to iRCCE.

Intel Many Integrated Core (MIC), known as Intel Xeon Phi co-processor family, is a many-core computer architecture with autonomous on-chip Linux operating system and x86 compatibility. Intel MIC proposes three MPI programming models [START_REF] Jeffers | Intel Xeon Phi Coprocessor High Performance Programming[END_REF] which are (1) offload (host-only), (2) coprocessor-only and (3) symmetric (both host and co-processor). The MPI communication in the intra-MPPA context corresponds to the co-processor-only intra-MIC case. Potluri et al. [START_REF] Potluri | MVAPICH2-MIC: A High Performance MPI Library for Xeon Phi Clusters with InfiniBand[END_REF] studied the communication throughput of the MVAPICH2 library on Xeon Phi and their results show that a MICoptimized MVAPICH2 library can delivers more than 9 GB/s of uni-direction throughput for messages up to 1 MB.

VIII. CONCLUSIONS

In this paper, we have introduced the design and performance issues of an MPI implementation on the Kalray MPPA-256. The MPPA-MPI library provides 1.2 GB/s of throughput for any inter compute-cluster point-to-point communication and this performance depends on the underlaying MPPAIPC library. Optimization ideas such as eager send and lazy message are proposed, implemented and compared to determine the best approach based on threshold. A synthetic model is also presented for each approach to evaluate their communication latency and throughput. We also learn that supporting MPI programming model is not an easy task on recent many-core processors, including MPPA, since MPI has become a large API with high-level abstractions and many-core hardware is taking more diversity and complexity. Thus, optimizing an MPI implementation on each of these platforms is even more not trivial.

On the other hand, the HPL benchmark is also successfully ported on MPPA as a validation test of our MPI library. The best performance of 1.2 GFLOPS is achieved by using only 16 cores instead of 256 available core due to limited on-chip memory makes us believe that traditional benchmark methods for supercomputers could hardly run effectively on many-core systems nowadays, given limited on-chip memory and the offchip bandwidth, as well as the cache coherence challenge. Some dedicated benchmark suites for embedded systems such as Core Mark [START_REF]The Embedded Microprocessor Benchmark Consortium[END_REF] and software APIs (like MCAPI [34]) may be a good match.

The next-generation MPPA processor aims at supporting global addressable DDR off-chip memory (Distributed Shared Memory) on clusters and will be more energy efficient. In a future work, we will study the performance gain and detailed power consumption of this new MPPA processor.

Fig. 1 :

 1 Fig. 1: MPPA-256 processor overview.

Fig. 2 :

 2 Fig. 2: Data collection on portal

Fig. 3 :

 3 Fig. 3: Control message structures

Fig. 4 :

 4 Fig. 4: MPPA-MPI components and interaction withNetwork-on-chip through MPPAIPC.

(1)

 1 MPI rank 0 (CC 0) -MPI rank 15 (CC 15) and (2) MPI I/O 128 (IOS 128) -MPI rank 15 (CC 15). All MPI cluster ranks run at the same clock frequency of 400 MHz. The North IOS running the MPI I/O rank is configured to use the DDR controller at the default frequency of 600 MHz.

15 Fig. 5 :

 155 Fig. 5: Ping-pong throughput MPI_Send (PE core) vs. MPI_Isend (DMA).

Fig. 6 :

 6 Fig. 6: Optimization approaches comparison.

Fig. 7 :

 7 Fig. 7: HPL current performance (a) and extrapolation (b)

TABLE II

 II

	Type	Pathname	Tx:Rx aio_sigevent.sigev_notify
	Sync	/mppa/sync/rx nodes:cnoc tag	N : M
	Portal	/mppa/portal/rx nodes:dnoc tag	N : M SIGEV_NONE, SIGEV_CALLBACK
	RQueue /mppa/rqueue/rx node:dnoc tag/tx nodes:cnoc tag/credits.msize N : 1	SIGEV_NONE, SIGEV_CALLBACK
	Channel /mppa/channel/rx node:dnoc tag/tx node:cnoc tag	1 : 1	SIGEV_NONE
		TABLE I: NoC connector pathnames, signature, and asynchronous I/O sigevent notify actions
	compute ranks on CCs subsequently. To keep the portability	
	of any MPI legacy code, this extra MPI I/O rank is not	
	listed in the MPI_COMM_WORLD. Any communication with	
	this rank can be achieved through a "local communicator"	
	(MPI_COMM_LOCAL) that groups all MPI ranks within an	
	MPPA processor (i.e 17 ranks). The MPPA-MPI architecture	
	on each rank is then divided in two layers:	
	1) MPI-inter-process Control (MPIC): Each MPI transac-	
	tion begins by exchanging control messages at the MPIC layer	
	between MPI ranks. Control messages are used for:	
		: Portal connector primitives associating to send/re-
		ceive modes	
			II. MPPA-MPI DESIGN
		In the MPPA context, each CC is referred to as an
		MPI rank. Thus, the MPPA-256 processor supports up to 16
		MPI ranks. Each MPI rank owns a private memory space
		of 2MB. Moreover, a hybrid MPI I/O rank is introduced
		running on the North IOS and manages the off-chip DDR
		memory. This MPI I/O rank is started from the host via the
		k1-mpirun command and is responsible for spawning MPI

TABLE III

 III

	MPI_Send, MPI_Ssend	mppa_pwrite,
		mppa_pwrites
	MPI_Isend, MPI_Issend mppa_aio_write
	MPI_Recv, MPI_Irecv	mppa_aio_read
	MPI_Wait	mppa_aio_wait

: MPI send/receive implementation in MPIDT level

 Algorithm 3 MPI Isend(buf, count, datatype, dest, tag, comm, request) 1: my rank ← get rank(comm); 2: /* send send post to dest */ 3: send send post(my rank, dest, tag, comm, ...); 4: req ← new request(buf, count, ..., PENDING ISEND); 5: /* look for a matching recv post (MPIC layer) */ 6: recv post ← find recv post(count, datatype, tag, ...); 7: if recv post = NULL then

	8:	/* configure/start a non-blocking write (MPIDT layer)
		*/			
	9:	aio request	←	configure aio write	(buf,
		recv post.dnoc tag, ...);	
	10:	req→status := STARTED;	
	11:	req→aio request := aio request;	
	12: else			
	13:	/* Do nothing (request initialized NON STARTED) */
	14: end if			
	15: request ← req;			
	16: return MPI SUCCESS;	
	Algorithm 4 callback recv post(recv post)	
	1: /* look for a matching pending isend */	
	2: req ← find pending isend(recv post);	
	3: if req = NULL then		
	4:	/* configure/start a non-blocking write (MPIDT layer)
		*/			
	5:	aio request	←	configure aio write	(req→buf,
		recv post.dnoc tag, ...);	
	6:	req→status := STARTED;	
	7:	req→aio request := aio request;	
	8: else			

9:

 be around 408 MB/s and 1481 MB/s for

	From	To	MPI Send	MPI Isend
	CC 0	CC 15	t = 0.98 × N + 31430	t = 0.27 × N + 33690
	CC 15	CC 0	t = 0.98 × N + 30240	t = 0.27 × N + 32850
	IOS 128 CC 15	t = 13.52 × N + 159544 t = 0.84 × N + 181300
	CC 15	IOS 128 t = 0.98 × N + 129200	t = 0.26 × N + 144500

TABLE IV :

 IV Transmission time (cycles).