
HAL Id: hal-01398190
https://hal.univ-grenoble-alpes.fr/hal-01398190v1

Submitted on 18 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MPI communication on MPPA Many-core NoC: design,
modeling and performance issues

Minh-Quan Ho, Bernard Tourancheau, Christian Obrecht, Benoît Dupont de
Dinechin, Jérôme Reybert

To cite this version:
Minh-Quan Ho, Bernard Tourancheau, Christian Obrecht, Benoît Dupont de Dinechin, Jérôme Rey-
bert. MPI communication on MPPA Many-core NoC: design, modeling and performance issues. ParCo
2015, Sep 2015, Edinburgh, United Kingdom. �10.3233/978-1-61499-621-7-113�. �hal-01398190�

https://hal.univ-grenoble-alpes.fr/hal-01398190v1
https://hal.archives-ouvertes.fr

MPI communication on MPPA Many-core NoC:
design, modeling and performance issues

Minh Quan HO ∗, Bernard TOURANCHEAU ∗, Christian OBRECHT †,
Benoı̂t Dupont de DINECHIN ‡, Jérôme REYBERT ‡

∗Grenoble Informatics Laboratory (LIG) - University Joseph Fourier Grenoble, France
{minh-quan.ho, bernard.tourancheau}@imag.fr

†INSA-Lyon, CETHIL UMR 5008 Villeurbanne, France
christian.obrecht@insa-lyon.fr

‡Kalray Inc. S.A. - Montbonnot, France
{benoit.dinechin, jerome.reybert}@kalray.eu

Abstract—Power dissipation and energy consumption has
become a major issue for high performance computing and
embedded systems. Keeping up with the performance trend of
the last decades cannot be achieved anymore by stepping up
the clock speed of processors. The usual strategy is nowadays
to use lower frequency and to increase the number of cores. On
such recent systems, data communication and memory bandwidth
can become the main barrier, since there are more and more
processing units to coordinate. In this paper, we introduce an
MPI design and its implementation on the MPPA-256 (Multi
Purpose Processor Array) processor from Kalray Inc., one of
the first worldwide actors in the many-core architecture field. A
model was developed to evaluate the communication performance
and bottlenecks on MPPA. Our achieved result of 1.2 GB/s,
e.g. 75% of peak throughput, for on-chip communication shows
that the MPPA is a promising architecture for next-generation
HPC systems, with its high performance-to-power ratio and high-
bandwidth network-on-chip. However, the lack of a globally
addressable memory on this distributed-memory architecture still
requires the developer to take care of cache coherence and to
pay attention to the limited local memory space of each compute
element.

Keywords—Many-core, NUMA, Distributed memory, Network-
on-Chip, MPI, Performance modeling, Linpack, HPL, MPPA.

INTRODUCTION

In this paper, we propose the design of an MPI Message-
Passing library [1] for the intra communication on many-core
processors, using the vendor support library (MPPAIPC [2]) as
the transfer-fabric to build MPI protocols from scratch, while
porting any of existing MPI implementations such as MPICH
or OpenMPI would not be possible due to limited on-chip
memory of most recent many-core processors.

Based on studied MPPA hardware specifications presented
in [3], [2], this paper does a brief hardware summary and
focuses on an MPI design over (but not limited to) the
MPPA architecture, with detailed implementation algorithms
and formulated models following vendor-hardware characteris-
tics (K,h) and different optimizing approaches (Lazy, Eager).
These studies is generic enough to be compared/ported to other
very-similar architectures, such as Tilera [4], STHORM [5] or
Neo chip [6], on which doing/optimizing MPI communication
over Network-on-chip is still a challenging or never-posed
question.

The remainder of this paper is organized as follows:
Section I briefly introduces the MPPA architecture and the
MPPAIPC components used in our implementation. Section
II describes our MPI architecture design. Section III resumes
our MPI implementation in pseudo-codes of blocking and
non-blocking communication (MPI_Send and MPI_Isend).
Some optimization ideas are then proposed and developed in
this section such as (1) synchronization-free “eager send” and
(2) implicit local-buffered “lazy send” for short and medium
sized messages respectively. A throughput estimation model
based on the data transmission time is also introduced in
section IV to evaluate the communication performance. Section
V presents our results for the ping-pong test following two
scenarios, either symmetric ranks (MPI compute node - MPI
compute node) or asymmetric ranks (MPI compute node -
MPI I/O), corresponding on MPPA to CC-CC and CC-I/O
subsystem respectively. Different optimization approaches are
also tested and compared.

Using the MPPA-MPI library, the HPL benchmark [7] [8]
was ported on MPPA with the support of the standard BLAS-
Netlib [9] [10] (mono-threaded) and OpenBLAS [11], an
OpenMP optimized implementation. These benchmark results
are summarized in section VI. Related MPI-oriented works on
other many-core platforms will also be compared in section
VII and conclusions are given in section VIII.

I. MPPA-256 ANDEY HARDWARE AND SOFTWARE

A. Architecture overview

The MPPA-256 Andey [3] embeds 256 VLIW compute
cores grouped into 16 compute clusters (CC) and four I/O
subsystems (IOS), with theoretical performance of 230 GFlops
(in single-precision) and 70 GFlops (in double-precision) and
an energy consumption of 10 W.

1) Compute Clusters (CC): Each compute cluster operates
2MB of banked parallel memory shared by 17 VLIW cores
running at 400 MHz. These cores are divided into 16 user
cores referred to as Processing Elements (PEs) and one system-
reserved core known as Resource Manager (RM). Each PE and
RM are fitted with private 2-way associative 8KB instruction
cache and 8KB data cache. The shared memory owns one
Rx and one Tx NoC interface, paired with a 8-channel DMA
engine and a Debug Support Unit (DSU). An MPPA-256

Fig. 1: MPPA-256 processor overview.

Source: Kalray Architecture documentation.

processor amounts to a total 32MB of memory distributed over
the 16 CCs.

2) I/O Subsystems (IOS): The four I/O subsystems (North,
South, East, West), each containing four cores, integrate
DRAM controllers managing the off-chip DDR memory, a
8-lane Gen3 PCI-Express and Ethernet links, as well as an
Interlaken link intended to extend the NoC across multiple
MPPA-256 chips, and other I/O devices.

3) Network-on-Chip: CCs and IOS are connected by two
network-on-chip. The both Data NoC (D-NoC) and Control
NoC (C-NoC) [2] ensure reliable delivery (lossless) thanks to
the credit-based flow control mechanism [12] and FIFO packet
arrival using static NoC routing [13]. No acknowledgment is
needed at the packet reception. As a result, there is no need
to consider a TCP layer implementation when building any
communication library above these NoCs (e.g MPI).

B. MPPA Inter-Process-Communication (MPPAIPC)

One of several programming models currently available
on the MPPA platform that matches our working scope in
this paper is MPPAIPC - an MPPA-specific POSIX-compliant
library [2] following the distributed memory model, where
communication and synchronization between CCs and IOS are
explicitly done by developer. These actions are achieved using
IPC primitives through connecting objects listed in Tab. I.

Sync object provides light-weight and low-latency synchro-
nization barriers by exchanging 64-bits messages on CNoC.
This connector can be used to implement two types of barriers:

• Master-Slaves (1 : M) between an I/O subsystem and
several (or all) compute clusters in case of sequential
process splitting

• All-to-all (M : M) barrier between compute clusters,
similar to MPI_Barrier()

Portal object supports data transfer on DNoC using one-
sided communication with zero-copy transfer. The sender (Tx)
can write to the receiver’s buffer (Rx) via a known dnoc_tag
number, with an optional offset. This can be used to implement
N-to-1-data-collection by many distinct writes from one (or
several) Tx process(es) to the same Rx buffer, and at different
offsets (see Fig. 2).

data2data0 data1

Tx0 Tx2Tx1

offset0 offset1 offset2

write write write

data0 data1 data2

Rx

Fig. 2: Data collection on portal

RQueue object implements FIFO 120-byte-message
queues with user-defined receive buffer length (120×nb slot).
The inbound flow is controlled by a credit mechanism that
ensures available buffer space to store incoming messages
before being handled by the Rx rank. Callback function
on message arrival can be defined to implement an Active
Message Server [14].

Channel object proposes point-to-point communication
link with rendez-vous behavior. The Rx rank sends its buffer
size to the Tx rank in a CNoC packet. The Tx rank then
reads the buffer size and sends data through DNoc on a known
dnoc_tag.

Both Portal and Channel objects contain primitives for
data transfer. Otherwise, the current implementation of Portal
provides higher performance and is more feature-rich than the
Channel one. Portal integrates one-sided communication in
either unicast or multicast, supports both blocking and non-
blocking data sending (Tab. II). Meanwhile, Channel, at the
time of this writing, provides only rendez-vous blocking sends.
Indeed, the Portal object was used to implement the transfer
layer of our MPPA-MPI model. An RQueue-message active
server is also an important module as well.

Mode Functions
Blocking send mppa_pwrite()

mppa_pwrites()
Non-blocking send mppa_aio_write()

(DMA engine)
Receive mppa_aio_read()
Termination mppa_aio_wait()

TABLE II: Portal connector primitives associating to send/re-
ceive modes

II. MPPA-MPI DESIGN

In the MPPA context, each CC is referred to as an
MPI rank. Thus, the MPPA-256 processor supports up to 16
MPI ranks. Each MPI rank owns a private memory space
of 2MB. Moreover, a hybrid MPI I/O rank is introduced
running on the North IOS and manages the off-chip DDR
memory. This MPI I/O rank is started from the host via the
k1-mpirun command and is responsible for spawning MPI

2

Type Pathname Tx:Rx aio_sigevent.sigev_notify

Sync /mppa/sync/rx nodes:cnoc tag N : M
Portal /mppa/portal/rx nodes:dnoc tag N : M SIGEV_NONE, SIGEV_CALLBACK
RQueue /mppa/rqueue/rx node:dnoc tag/tx nodes:cnoc tag/credits.msize N : 1 SIGEV_NONE, SIGEV_CALLBACK
Channel /mppa/channel/rx node:dnoc tag/tx node:cnoc tag 1 : 1 SIGEV_NONE

TABLE I: NoC connector pathnames, signature, and asynchronous I/O sigevent notify actions

compute ranks on CCs subsequently. To keep the portability
of any MPI legacy code, this extra MPI I/O rank is not
listed in the MPI_COMM_WORLD. Any communication with
this rank can be achieved through a “local communicator”
(MPI_COMM_LOCAL) that groups all MPI ranks within an
MPPA processor (i.e 17 ranks). The MPPA-MPI architecture
on each rank is then divided in two layers:

1) MPI-inter-process Control (MPIC): Each MPI transac-
tion begins by exchanging control messages at the MPIC layer
between MPI ranks. Control messages are used for:

• exchanging information about MPI transaction type
(send/receive, communicator split, etc.).

• synchronization point in case of rendez-vous protocol.

We implemented an RQueue-based active message server
[14] on each MPI rank (CC and IOS) to handle incoming
control messages from all other ranks (including itself on loop-
back). Upon control message arrival, a callback function is
executed on the RM, consisting typically on saving it into an
internal buffer which later will be read by MPI calls from the
main function (PE0).

Control messages exchanged in the MPIC layer contain
either one of the structures defined in Fig. 3.

/∗ Message s e n t by Tx t o Rx (Reques t−To−Send) ∗ /
t y p e d e f s t r u c t s e n d p o s t s {

mppa pid t s e n d e r i d ; /∗ ID of Tx p r o c e s s ∗ /
i n t mpi tag ; /∗ MPI message t a g ∗ /
. . .

} s e n d p o s t t ;
/∗ Message s e n t by Rx t o Tx (Clea r−To−Send) ∗ /
t y p e d e f s t r u c t r e c v p o s t s {

i n t d n o c t a g ; /∗ DNoc a l l o c a t e d on Rx ∗ /
mppa pid t r e a d e r i d ; /∗ ID of Rx p r o c e s s ∗ /
i n t mpi tag ; /∗ MPI message t a g ∗ /
. . .

} r e c v p o s t t ;

Fig. 3: Control message structures

In an MPI send/receive, The Tx rank posts a Request-To-
Send (send_post_t) to the Rx rank; idem, the Rx rank
sends back a Clear-To-Send (recv_post_t) containing its
allocated dnoc_tag, to which the Tx rank will send data.
Beforehand, this dnoc_tag needs to be configured and linked
to the receive buffer to enable remote writing.

2) MPI-inter-process Data-Transfer (MPIDT): is a light-
weight wrapper of MPPAIPC Portal primitives. Once the Tx
rank has got a matching control message, it configures a

data transfer using received information (e.g. dnoc_tag).
Data can then be sent in either blocking or non-blocking
mode dependent on the calling MPI function, using appropriate
Portal primitives (see Tab. III for detailed function mapping).

MPPA-MPI MPPAIPC Portal
MPI_Send, MPI_Ssend mppa_pwrite,

mppa_pwrites
MPI_Isend, MPI_Issend mppa_aio_write
MPI_Recv, MPI_Irecv mppa_aio_read
MPI_Wait mppa_aio_wait

TABLE III: MPI send/receive implementation in MPIDT level

Fig. 4 illustrates the structure of our MPPA-MPI imple-
mentation. Each rank emits control-message(s) to its involved
partner(s) at each MPI call. The active server runs on the RM
core and processes incoming control-messages. Furthermore,
depending on MPI transactions and their status at runtime, the
server can decide whether to perform a data send if this has
not been or could not be done by the main thread, especially
in case of a pending MPI_Isend request or a matching
registered “lazy” message.

Server (RM)

MPI_NOC_API
MPI implementation

DMA
manager NoC barrier

send_post

recv_post

pending_isend

datatype

comm

pending_irecv

Callback Handler

Local buffers

Control messages
buffers

MPPAIPC

Network-on-Chip

Data

Control messages
(outgoing)

Data

Control
messages
(incoming)

MPPAMPI components

Main thread (PE)

Fig. 4: MPPA-MPI components and interaction with
Network-on-chip through MPPAIPC.

3

III. MPPA-MPI IMPLEMENTATION

As mentioned above, on-flight control messages carry
essential information depending on their purpose. We present
now their usage as well as algorithms of the two communica-
tion scenarios in our work:
(1) synchronous blocking send (MPI_Send) and
(2) asynchronous non-blocking send (MPI_Isend)

A. MPI Send - MPI Recv

Most well-known and optimized MPI libraries contain
many (combined) techniques to perform the MPI_Send call.
In the first time, we chose to implement this function with
rendez-vous blocking behavior, in order to avoid extra buffer
space and minimize memory usage. This choice certainly adds
more synchronization cost but does not change the function-
ality of the send/receive transaction. Some optimization ap-
proaches will be presented in the coming sections. Algorithms
1 and 2 summarize the implementation of MPI_Send and
MPI_Recv.

Algorithm 1 MPI Recv(buf, count, datatype, source, tag,
comm, status)

1: my rank ← get rank(comm);
2: dnoc tag ← allocate dnoc tag();
3: /* configure to receive data on this dnoc tag */
4: aio request ← configure aio read(buf, dnoc tag, ...);
5: if source == MPI ANY SOURCE then
6: send post ← find send post(count, datatype, tag, ...);
7: real source ← send post.source;
8: else
9: real source ← source;

10: end if
11: /* send recv post to real source (MPIC layer) */
12: send recv post(my rank, dnoc tag, real source, tag,

comm, ...);
13: /* wait data (MPIDT layer) */
14: mppa aio wait(aio request);
15: return MPI SUCCESS;

Algorithm 2 MPI Send(buf, count, datatype, dest, tag, comm)

1: my rank ← get rank(comm);
2: /* send send post to dest */
3: send send post(my rank, dest, tag, comm, ...);
4: /* wait for matching recv post from Rx (MPIC layer) */
5: repeat
6: recv post ← find recv post(count, datatype, tag, ...);
7: until recv post 6= NULL
8: /* send data (MPIDT layer), using mppa pwrite(s) */
9: send data(buf, count, datatype, recv post.dnoc tag);

10: return MPI SUCCESS;

The implementation of MPI_Irecv is the same as the
one of MPI_Recv, except that the function returns right after
having posted the receive to the sender, and the completion of
reading (mppa_aio_wait) is done in MPI_Wait.

B. MPI Isend - MPI Recv

The implementation of MPI_Isend uses non-blocking
Portal primitives on both PE and RM on the Tx side. When

the Tx rank (PE0) reaches MPI_Isend in its execution
without having received any matching recv_post, it cre-
ates a “non-started” pending_isend request containing
related information (buffer pointer, dest, count, tag etc.) and
returns. On arrival of the matching recv_post, the RM
core (callback handler) reads the previous pending_isend
request and triggers a non-blocking data send (to the
recv_post.dnoc_tag of the Rx rank). The request is then
set to “started” state to be distinguished from other “non-
started” requests.

On the other hand, when the recv_post arrives be-
fore MPI_Isend, the RM core saves it into the internal
buffer. The PE core executing MPI_Isend later reads this
recv_post, performs a non-blocking send and marks the
pending_isend request as “started”. This propriety ensures
that the transfer is performed only once for each transaction,
either by the PE core (in MPI_Isend) or by the RM core
(in callback handler). At the end, “started” requests will be
finished and cleaned by MPI_Wait. Algorithms 3 and 4
present in more details the implementation of MPI_Isend
and of the callback handler.

Algorithm 3 MPI Isend(buf, count, datatype, dest, tag, comm,
request)

1: my rank ← get rank(comm);
2: /* send send post to dest */
3: send send post(my rank, dest, tag, comm, ...);
4: req ← new request(buf, count, ..., PENDING ISEND);
5: /* look for a matching recv post (MPIC layer) */
6: recv post ← find recv post(count, datatype, tag, ...);
7: if recv post 6= NULL then
8: /* configure/start a non-blocking write (MPIDT layer)

*/
9: aio request ← configure aio write (buf,

recv post.dnoc tag, ...);
10: req→status := STARTED;
11: req→aio request := aio request;
12: else
13: /* Do nothing (request initialized NON STARTED) */
14: end if
15: request ← req;
16: return MPI SUCCESS;

Algorithm 4 callback recv post(recv post)

1: /* look for a matching pending isend */
2: req ← find pending isend(recv post);
3: if req 6= NULL then
4: /* configure/start a non-blocking write (MPIDT layer)

*/
5: aio request ← configure aio write (req→buf,

recv post.dnoc tag, ...);
6: req→status := STARTED;
7: req→aio request := aio request;
8: else
9: save recv post(recv post);

10: end if
11: return ;

C. Optimization

4

1) Eager send optimization: Our idea is to pack any MPI
message which can fit into a 120-byte space, as a control-
message and send it directly to the Rx’s active server. In
reality, the maximum data payload is about 96 bytes (24 bytes
is used for control header). An eager_buffer needs to
be allocated on each MPI rank and can be defined by the
EAGER_BUFFER_LENGTH macro in main.c. This approach
is synchronization-free when the MPI_Send call can return
before a matching receive is posted (non-local). It also leads
to an improvement of about 6 to 10% in performance for the
HPL benchmark on MPPA (see Section VI).

For longer messages, using several “eager sends” intro-
duces segmentation and reassembly costs. We implemented a
test case where messages are splitted into “eager” pieces in
order to determine the best communication trade-off in Fig. 6.
Such segmentation however consumes memory for buffers and
therefore puts more pressure on RM’s resources and limits its
usage in practice.

2) Lazy send optimization: Lazy send consists in copying
medium-size message into a local buffer and returns. The
RM is then responsible for sending it to the destination.
Unlike eager_buffer on the Rx side, lazy_buffer is
allocated on the Tx side and can be tuned via some macros
(LAZY_THRESHOLD, LAZY_BUFFER_LENGTH).

This approach must be used with care because bad com-
munication scheduling may lead to buffer wasting and lazy
messages remaining for too long. Inversely, a dense commu-
nication scheme should neither be set to “lazy” mode in order
to be able to send data directly rather than spending time doing
memcpy in local memory.

3) DMA thread usage: MPI_Isend uses Portal non-
blocking primitive to configure a Tx DMA thread for data
sending. The DMA engine implements a fetch instruction
that loads the next cache line while pushing the current line
into the NoC. This fetch is nowadays not available on PE
cores, meaning that outbound throughput using PE is 4 times
lower than using DMA engine (1 B/cycle vs. 4 B/cycle). Thus,
tuning to use non-blocking DMA on MPI_Send for messages
of size greater or equal to DMA_THRESHOLD will maximize
the transfer performance.

IV. MPPA-MPI THROUGHPUT MODELING

The MPPA-256 Network-on-chip [15] is designed so that
any path linking two CCs always contains less than eight hops
(including two local hops - one at sender and one at receiver).
The average switching time on a NoC router is 7 cycles, then
it takes the packet at most 8 cycles to reach the next hop. In
the worst case, the link distance (time a packet spends on NoC
to reach its destination) is 112 cycles (7 × 8 + 8 × (8 − 1)).
However, the necessary time to send a buffer (transmission
time - t) is about O(N) cycles [16] (where N the buffer size
in bytes), which is much longer than the link distance [17].

As a result, we describe the transmission time t as a
function of the buffer size N , a constant transfer ratio K
and a default overhead h (aka. the cost of sending an empty
buffer). This default overhead presents the initial cost of MPI
implementation management (ID mapping, metadata setup,
synchronization, error checking ...) and/or configuring the

peripherals (cache, DMA) to prepare for data sending. This
cost is paid on each MPI call and is independant to the
subsequent data-sending process (which is presented by a data-
transfer factor K). The ping-pong round-trip time (RTT) is
approximately the sum of the transmission time on both sides,
as the propagation time is negligible.

TransmissionT ime : t = K ×N + h (cycles) (1)

RTT ' 2× t = 2× (K ×N + h) (cycles) (2)

Throughput : T =
2×N

RTT
' N

K ×N + h
=

1

K + h
N

(bytes/cycle)

(3)

lim
N→∞

T ' lim
N→∞

1

K + h
N

=
1

K
(bytes/cycle)

= 400×K−1 (MB/s)

(at frequency 400 MHz)

(4)

The constant K is a value specific to each send function
with its own underlying transport primitive. For example,
the MPI_Isend which uses the DMA engine with peak
throughput of 4 B/cycle, would have its transfer ratio K of
about 0.25. The MPI_Send, with default peak throughput of
1 B/cycle (no DMA engine), should obtain a transfer ratio K
around 1.

V. RESULTS AND DISCUSSION

Using the MPPA Developer platform [18] with AB01 board
and MPPA-256 Andey processor integrated, we set up ping-
pong tests between:
(1) MPI rank 0 (CC 0) - MPI rank 15 (CC 15) and
(2) MPI I/O 128 (IOS 128) - MPI rank 15 (CC 15).
All MPI cluster ranks run at the same clock frequency of 400
MHz. The North IOS running the MPI I/O rank is configured
to use the DDR controller at the default frequency of 600 MHz.

In each case, the same MPI send function is used on both
sides (MPI_Send or MPI_Isend). At the first time, all tests
are run without any optimization in order to calibrate the
proper throughput of each context (Fig. 5). At the second time,
we enable all optimization on the MPI_Send test and compare
our optimization approaches in term of latency, throughput and
messages sent per second (Fig. 6).

Each ping-pong is repeated 50 times. We assume that there
is no waiting time inside the MPI send function, since all ranks
start at the same time and run at the same clock speed. Hence,
the duration of the MPI send function can be considered as
the transmission time. Depending on the send context, the
measured transmission time is fitted into a linear correlation
K×N +h presented in Tab. IV. The standard deviation from
all obtained results is always less than 0.2%.

A. Compute cluster ↔ Compute cluster

Communication links between CCs are bi-directionally
symmetric. According to our model and the K values from
Tab. IV, the estimated maximum throughput (given by 400×
K−1 MB/s) should be around 408 MB/s and 1481 MB/s for

5

From To MPI Send MPI Isend
CC 0 CC 15 t = 0.98×N + 31430 t = 0.27×N + 33690
CC 15 CC 0 t = 0.98×N + 30240 t = 0.27×N + 32850

IOS 128 CC 15 t = 13.52×N + 159544 t = 0.84×N + 181300
CC 15 IOS 128 t = 0.98×N + 129200 t = 0.26×N + 144500

TABLE IV: Transmission time (cycles).

(a) Symmetric : Between ranks 0 and 15 (b) Asymmetric : Between ranks 128 and 15

Fig. 5: Ping-pong throughput MPI_Send (PE core) vs. MPI_Isend (DMA).

MPI_Send and MPI_Isend respectively. The ratio h
N can

be ignored in this case. Fig. 5a shows obtained results that
match with our estimation model.

B. Compute cluster ↔ I/O subsystem

Contrary to the symmetric communication performance
between CCs, the transmission rate on I/O subsystem relies
on the DDR bandwidth, which is much lower than the on-chip
memory on CCs. We observed higher K values and much more
considerable overhead h on the IOS 128, showing that the
communication link from IOS to CCs might be the bottleneck
on the MPPA. It is then difficult ignoring h

N in this case.
Keeping on our throughput estimation by 400 × (K + h

N)−1

now matches with experiment results on Fig. 5b, where the
performance gap between the CC 15 and the IOS 128 is also
illustrated.

C. Optimization comparison

We focus now on finding, on a given message size, the best
send method among the four (Normal, Eager, Lazy and DMA)
to use on MPI_Send, in order to obtain lowest latency (round-
trip-time) and/or highest ping-pong throughput, by enabling all
optimizations and re-running our experiments between CCs.
We also evaluate the number of messages sent per second in
each approach by dividing the clock frequency (400 MHz) by
the duration of the MPI_Send call (in cycles). As the message

will now be “eagerly” sent or “lazily” buffered and MPI_Send
returns right afterward, this duration on Eager(-splitting) or
Lazy could no longer be evaluated as the transmission time in
the Tab. IV, but respectively by :

E × (floor(
N

96
) + 1) (cycles, E ≈ 3800) (5)

Omemcpy(N) = 1.28×N + 5300 (cycles) (6)

where E is the constant necessary cost to send 1 eager-split
and Omemcpy is a linear function of memcpy cost. Note that
in the Lazy approach, the message is sent in background by
the RM.

Hence, Eager and Lazy methods provide lower latency and
higher message rate on short buffers, since they were designed
to get rid of two-sided synchronization and the buffer size is
still small enough not to be outperformed by the DMA’s high-
throughput capacity.

Fig. 6a shows that the ping-pong latency for [1 .. 256 B]
using eager-splitting is reduced by half compared to DMA or
Normal. Otherwise, this latency increases radically as soon
as its transmission time, despite being smaller at the begin-
ning, getting repeated as many times as split segmentation
(floor(N96) + 1). On the other hand, using DMA on large

6

buffers optimizes bandwidth utilization compared to Normal
(using PE) or Lazy (using RM) methods. (Fig. 6b).

Fig. 6c illustrates the message-rate of the four send meth-
ods. Not only this kind of measure gives user a high-level
point of view about the implementation’s capacity to support
communication load, but it shows interesting advantages of
Eager and Lazy methods in tuning MPI applications, thanks to
their fast sending time for short messages and synchronization-
free algorithm.

VI. HIGH PERFORMANCE LINPACK (HPL) ON MPPA-256

HPL benchmark was ported on MPPA-256 using our
MPI implementation and cross-compiling of BLAS-Netlib and
OpenBLAS. Each MPI compute rank, assigned to a compute
cluster, only disposes 2 MB of memory, that make a total on-
chip memory of 32 MB, enable to store up to 4 million double
precision floating point numbers or a 2000 × 2000 matrix.
Operating system space and user code (BLAS, MPI, HPL)
must be taken into account as well. In practice, the HPL can
run on the MPPA-256 with 1250 × 1250 matrix, which is a
very small problem size for this kind of benchmark. As a result,
communication, local indexing etc. has a significant cost with
respect to the number of floating point operations (O(N3)).
Fig. 7b. does an estimation on further problem sizes if MPPA
disposes more on-chip memory than its current capacity.

Fig. 7a shows the HPL result on MPPA-256 using BLAS
and OpenBLAS. Note that 70 GFLOPS of annouced theo-
retical performance is for all the 256 cores, while the best
benchmark score (Rmax = 1.2 GFLOPS) was achieved using
only 1 core per CC (i.e 16 cores in total) and MPI “eager” send.
Also, we have seen no performance change by enabling MPI
“lazy” optimization. This can be explained by well-scheduled
HPL overlapping [8] in which, either MPI processes arrive to
the communication step at the same time, or all heavy sends
are done asynchronously by MPI_Isend, while lazy sending
only shows its advantage in bad-scheduled MPI_Send. Fur-
thermore, multi-threading on MPI compute ranks (OpenMP on
CCs) did never give better HPL result, because of the small
working set and the OpenMP overhead.

VII. RELATED WORKS

A. MPI libraries design

Our design is similar to the co-processor-only MPI model
on the Intel Xeon-Phi

TM
platform [19], with support of

OpenMP for hybrid multi-threaded programming. Besides MPI
ranks running on CC, we introduce an MPI I/O rank running
on an I/O subsystem of the chip as bridge to communicate with
the host through the PCI-e interface, while there are no direct
communication link between the host and the compute clusters
on MPPA. Along the way, some collective MPI functions
were also implemented (MPI_Comm_split, MPI_Bcast,
MPI_Reduce, MPI_Allreduce and MPI_Barrier).

Our message-trigger handling mechanism using the RM
core was inspired by the similar work of Prylli and
Tourancheau [20] [21] implementing the BIP protocol for
an optimized MPI implementation over the Myrinet network,
taking advantage of its dedicated hardware, an extra core like
the MPPA RM core.

B. Similar architectures

Today, there exist other multi/many-core processors similar
to the MPPA. Some of them has an MPI implementation,
others do not. This section reviews these achitectures and,
if existing, summarizes any MPI-oriented libraries and their
performance related to our work.

Freescale P4080 multi-core processor [22], based on the
PowerPC architecture and resources virtualization technology
from IBM, is mostly used in avionic industries and critical
real-time systems. The P4080 processor has eights cores con-
nected through CoreNet - the proprietary NoC of Freescale.
Cache-coherence is guaranteed by a hardware mechanism. Our
research for MPI implementation and topic on this platform did
not encounter any relevant reference.

Raw processor [23], designed by the Computer Science
Laboratory at MIT, combines 16 identical compute units,
called tile. The 16 tiles are connected by one static NoC and
two dynamic NoC. The static network is used for predefined
memory access pattern at compile time, the dynamic ones
are used for communication scheme at runtime. Psota and
James [24] propose rMPI, the first MPI library over the Raw
achitecture by inheriting some design aspects from MPICH
and LAM/MPI also other specific implementation belonging
to the Raw hardware. The highest throughput obtained on the
ping-pong test of the Raw processor is about 150 MB/s with
buffer size of 3.2 MB (100K words) [25].

STHORM processor [5] is a four-cluster-based Network-
on-chip many-core from ST Microelectronics. Each cluster
(named ENCore) hosts 16 STxP70-V4 processors (PE). More-
over, a special cluster unit, named fabric controller (FC) is
responsible for interaction with the host memory and coordi-
nation of clusters. Coupled with an ARM processor as host,
STHORM architecture mostly supports offloading model using
either OpenCL [26] or through OpenMP [27] with extension
primitives similar to #pragma omp target in OpenMP
4.0. Otherwise, no MPI library supporting the STHORM
architecture was found as of this writing.

Neo chip [6], announced on March 2015 by Rex Comput-
ing, is a 256 VLIW core MIMD, organized on a 2D Mesh
NoC. It is designed to aim the HPC market with disruptive
exascale power ratio. The cache and memory system on Neo
is rethough to reduce energy consumption by cutting off the
virtual memory translation and other unecessary components.
This choice would further produce more complexity and secu-
rity issues when implementing operating system and software
stack over Neo chip.

Tilera processors [4] are mainly used in high performance
embedded systems such as networking and multimedia. The
TilePro64 processor defines a flat 2D-mesh with 64 identical
VLIW cores connected through the Tilera iMeshTM network-
on-chip. Cache coherence on TilePro64 is guaranteed by
a hardware mechanism called Dynamic Distributed Cache
(DDC) [4]. Kang et al. [28] propose an MPI implementa-
tion on Tile64 processor which delivers up to 250 MB/s
on MPI_Send/MPI_Recv communication, with the largest
message size of 256 KB due to the limited memory per core.
At this buffer size, our MPI implementation on MPPA delivers
400 MB/s on MPI_Send or up to 1 GB/s using DMA.

7

(a) Ping-pong latency (RTT) on short buffers (b) Ping-pong throughput (c) Number of messages sent per second

Fig. 6: Optimization approaches comparison.

(a) HPL benchmark on MPPA-256 against number of
cores: BLAS vs. OpenBLAS. (b) HPL score extrapolation with increasing problem size.

Fig. 7: HPL current performance (a) and extrapolation (b)

Intel Single-Chip Cloud (SCC) is a prototype aimed
to promote many-core processor. Its 48 cores are organized
in 24 dual-core clusters with access to off-chip DRAM
shared/private region for all/each core through a look-up table
(LUT), also a dedicated shared on-chip Message Passing
Buffer (MPB). This memory architecture gives extra advantage
for implementing quick message sending based on shared
buffers. However, the use of the dynamic NoC routing on
Intel SCC (instead of static NoC in MPPA) makes it difficult
to evaluate the maximum communication latency [29] also
incurs unordered packets, hence inappropriate for hard real-
time applications.

The SCC-specific MPI-like native communication library

(RCCE) delivers peak throughput of 55 MB/s on the ping-pong
test [30]. By the same test, Clauss et al. [31] presented iRCCE
(an improved RCCE version) and SCC-MPICH (an MPICH-
based implementation over iRCCE) that reach respectively 150
MB/s and 120 MB/s of throughput. RCKMPI, an Intel MPI
implementation for SCC is also bounded by the performance
of the iRCCE layer. Our MPI library on MPPA was built
from scratch over the MPPAIPC library, without any TCP/UDP
layer, while an MPICH-based solution would not fit the cluster
private memory space (2 MB). A such MPICH implementation
on MPPA can be extrapolated to 1.0 GB/s by adding the same
overhead of 20% of SCC-MPICH over to iRCCE.

Intel Many Integrated Core (MIC), known as Intel Xeon

8

Phi co-processor family, is a many-core computer architec-
ture with autonomous on-chip Linux operating system and
x86 compatibility. Intel MIC proposes three MPI program-
ming models [19] which are (1) offload (host-only), (2) co-
processor-only and (3) symmetric (both host and co-processor).
The MPI communication in the intra-MPPA context corre-
sponds to the co-processor-only intra-MIC case. Potluri et al.
[32] studied the communication throughput of the MVAPICH2
library on Xeon Phi and their results show that a MIC-
optimized MVAPICH2 library can delivers more than 9 GB/s
of uni-direction throughput for messages up to 1 MB.

VIII. CONCLUSIONS

In this paper, we have introduced the design and perfor-
mance issues of an MPI implementation on the Kalray MPPA-
256. The MPPA-MPI library provides 1.2 GB/s of throughput
for any inter compute-cluster point-to-point communication
and this performance depends on the underlaying MPPAIPC
library. Optimization ideas such as eager send and lazy mes-
sage are proposed, implemented and compared to determine
the best approach based on threshold. A synthetic model is also
presented for each approach to evaluate their communication
latency and throughput. We also learn that supporting MPI
programming model is not an easy task on recent many-core
processors, including MPPA, since MPI has become a large
API with high-level abstractions and many-core hardware is
taking more diversity and complexity. Thus, optimizing an MPI
implementation on each of these platforms is even more not
trivial.

On the other hand, the HPL benchmark is also successfully
ported on MPPA as a validation test of our MPI library. The
best performance of 1.2 GFLOPS is achieved by using only
16 cores instead of 256 available core due to limited on-chip
memory makes us believe that traditional benchmark methods
for supercomputers could hardly run effectively on many-core
systems nowadays, given limited on-chip memory and the off-
chip bandwidth, as well as the cache coherence challenge.
Some dedicated benchmark suites for embedded systems such
as Core Mark [33] and software APIs (like MCAPI [34]) may
be a good match.

The next-generation MPPA processor aims at supporting
global addressable DDR off-chip memory (Distributed Shared
Memory) on clusters and will be more energy efficient. In a
future work, we will study the performance gain and detailed
power consumption of this new MPPA processor.

REFERENCES

[1] William D Gropp, Ewing L Lusk, and Anthony Skjellum. Using MPI:
portable parallel programming with the message-passing interface,
volume 1. MIT Press, 1999.

[2] Benoı̂t Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume
Lager, Clément Léger, Benjamin Orgogozo, Jérôme Reybert, and
Thierry Strudel. A Distributed Run-Time Environment for the Kalray
MPPA R©-256 Integrated Manycore Processor. Procedia Computer
Science, 18:1654–1663, 2013.

[3] Benoıt Dupont de Dinechin, Renaud Ayrignac, P-E Beaucamps, Patrice
Couvert, Benoıt Ganne, Pierre Guironnet de Massas, François Jacquet,
Samuel Jones, Nicolas Morey Chaisemartin, Frédéric Riss, et al. A
clustered manycore processor architecture for embedded and accelerated
applications. In High Performance Extreme Computing Conference
(HPEC), 2013 IEEE, pages 1–6. IEEE, 2013.

[4] Tilera Corporation. Tile processor architecture overview for the Tilepro
series, February 2013.

[5] Julien Mottin, Mickael Cartron, and Giulio Urlini. The STHORM Plat-
form. In Smart Multicore Embedded Systems, pages 35–43. Springer,
2014.

[6] Nicole Hemsoth. The Tiny Chip That Could Disrupt Exascale Com-
puting, March 2015. http://www.theplatform.net/2015/03/12/the-little-
chip-that-could-disrupt-exascale-computing.

[7] Antoine Petitet, Jack Dongarra, et al. HPL - A Portable Implementation
of the High-Performance Linpack Benchmark for Distributed-Memory
Computers, September 2008.

[8] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK
benchmark: past, present and future. Concurrency and Computation:
practice and experience, 15(9):803–820, 2003.

[9] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T.
Krogh. Basic linear algebra subprograms for Fortran usage. ACM
Transactions on Mathematical Software (TOMS), 5(3):308–323, 1979.

[10] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S Duff.
A set of level 3 basic linear algebra subprograms. ACM Transactions
on Mathematical Software (TOMS), 16(1):1–17, 1990.

[11] Z Xianyi, W Qian, and Z Chothia. OpenBLAS, version 0.2. 8. URL
http://www. openblas. net/. Fe tched, pages 09–13, 2013.

[12] Siavash Khorsandi and Alberto Leon-Garcia. Robust non-probabilistic
bounds for delay and throughput in credit-based flow control. In
INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE Com-
puter Societies. Networking the Next Generation. Proceedings IEEE,
volume 2, pages 577–584. IEEE, 1996.

[13] Davide Bertozzi, Antoine Jalabert, Srinivasan Murali, Rutuparna
Tamhankar, Stergios Stergiou, Luca Benini, and Giovanni De Micheli.
NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip. Parallel and Distributed Systems, IEEE Transactions
on, 16(2):113–129, 2005.

[14] Thorsten Von Eicken, David E Culler, Seth Copen Goldstein, and
Klaus Erik Schauser. Active messages: a mechanism for integrated
communication and computation, volume 20. ACM, 1992.

[15] Kalray Inc. MPPA-256 Cluster and I/O Subsystem Architecture, 2015.
Specification documentation.

[16] Kalray Inc. MPPAIPC Performance, 2013. Benchmark report.

[17] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell,
Mikael Millberg, Johny Öberg, Kari Tiensyrjä, and Ahmed Hemani.
A network on chip architecture and design methodology. In VLSI,
2002. Proceedings. IEEE Computer Society Annual Symposium on,
pages 105–112. IEEE, 2002.

[18] Kalray Inc. Kalray platforms and boards. Accessed March 30, 2015.

[19] James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High
Performance Programming. Newnes, 2013.

[20] Loic Prylli and Bernard Tourancheau. BIP: a new protocol designed for
high performance networking on myrinet. In Parallel and Distributed
Processing, pages 472–485. Springer, 1998.

[21] Loı̈c Prylli, Bernard Tourancheau, and Roland Westrelin. Modeling
of a high speed network to maximize throughput performance: the
experience of BIP over Myrinet. Parallel and Distributed Processing
Techniques and Applications-PDPTA, 2:341–349, 1998.

[22] Freescale Semiconductor. QorIQ P4080 Communcations Processor
Product Brief; Sep., 2008; Freescale Semiconductor.

[23] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae
Ghodrat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee,
Walter Lee, et al. The Raw microprocessor: A computational fabric for
software circuits and general-purpose programs. Micro, IEEE, 22(2):25–
35, 2002.

[24] James Ryan Psota. rMPI: An MPI-compliant message passing library
for tiled architectures. PhD thesis, Massachusetts Institute of Technol-
ogy, 2005.

[25] James Psota and Anant Agarwal. rMPI: message passing on multicore
processors with on-chip interconnect. In High Performance Embedded
Architectures and Compilers, pages 22–37. Springer, 2008.

[26] Pierre G Paulin. OpenCL Programming Tools for the STHORM
Multi-Processor Platform: Application to Computer Vision, 2013. 13th

9

International Forum on Embedded MPSoC and Multicore, July 15-19,
2013. Otsu, Japan, 24.

[27] Spiros N Agathos, Vassilios V Dimakopoulos, Aggelos Mourelis, and
Antonis Papadogiannakis. Deploying OpenMP on an embedded multi-
core accelerator. In Embedded Computer Systems: Architectures, Mod-
eling, and Simulation (SAMOS XIII), 2013 International Conference on,
pages 180–187. IEEE, 2013.

[28] Mikyung Kang, Eunhui Park, Minkyoung Cho, Jinwoo Suh, D Kang,
and Stephen P Crago. MPI performance analysis and optimization on
tile64/maestro. In Proceedings of Workshop on Multi-core Processors
for SpaceOpportunities and Challenges Held in conjunction with SMC-
IT, pages 19–23, 2009.

[29] Bruno dAusbourg, Marc Boyer, Eric Noulard, and Claire Pagetti.
Deterministic Execution on Many-Core Platforms: application to the
SCC. In 4th Many-core Applications Research Community (MARC)
Symposium, page 43, 2012.

[30] Timothy G Mattson, Michael Riepen, Thomas Lehnig, Paul Brett,
Werner Haas, Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin
Borkar, Greg Ruhl, et al. The 48-core SCC processor: the programmer’s
view. In Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 1–11. IEEE Computer Society, 2010.

[31] Carsten Clauss, Stefan Lankes, Pablo Reble, and Thomas Bemmerl.
Evaluation and improvements of programming models for the Intel SCC
many-core processor. In High Performance Computing and Simulation
(HPCS), 2011 International Conference on, pages 525–532. IEEE,
2011.

[32] Sreeram Potluri, Khaled Hamidouche, Devendar Bureddy, and Dha-
baleswar K DK Panda. MVAPICH2-MIC: A High Performance MPI
Library for Xeon Phi Clusters with InfiniBand.

[33] The Embedded Microprocessor Benchmark Consortium (EEMBC). The
Coremark benchmark suite, 2014.

[34] The Multicore Association (MCA), 2014.

10

