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When crawling on a flat substrate, living cells exert forces on it via adhe-
sive contacts, enabling them to build up tension within their cytoskeleton and
to change shape. The measurement of these forces has been made possible by
traction force microscopy (TFM), a technique which has allowed us to obtain
time-resolved traction force maps during cell migration. This cell “footprint”
is however not sufficient in order to understand the details of the mechanics
of migration, that is, how cytoskeletal elements (respectively, adhesion com-
plexes) are put under tension and reinforce or deform (respectively, mature
and/or unbind) as a result. In a recent paper, we have validated a rheological
model of actomyosin linking tension, deformation and myosin activity. Here,
we complement this model with tentative models of the mechanics of adhesion
and explore how closely these models can predict the traction forces that we
recover from experimental measurements during cell migration. The resulting
mathematical problem is a PDE set on the experimentally observed domain,
which we solve using a finite-element approach.

1 Introduction

During immunoresponse and cancer metastasis formation, cells crawl on the
blood vessel wall [1]. This type of cell motion has been reproduced in vitro [2]
and has been the subject of many modelling studies [3, 4, 5].

Since inertial effects and body forces are vanishingly small in this process,
all forces are instantaneously balanced in the system and in particular, the re-
sultant of the traction forces that the cell exerts on its environment has to be
zero. The motion of the crawling cell is thus necessarily driven by its de-
formation, as the cell changes shape both by growth and shrinkage due to
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1 INTRODUCTION 2

(de)polymerisation at its leading edges [6, 7]. and simultaneously as actin cy-
toskeleton undergoes a persistent centripetal deformation, called retrograde
flow [8, 9, 10], In order to result in a net displacement of the cell with respect to
its surroundings, forces need to be transmitted to it. Although fluid drag and
non-specific interactions with the solid substrate are present, most of the stress
is transmitted via specific adhesion interaction between ligands present on the
surface of the substrate and transmembrane receptors which are bound to the
actin cytoskeleton [11].

The mechanical models attempting to explain cell migration from the dy-
namics of its microstructure are thus focusing on the dynamics of actomyosin
and adhesion complexes [12]. Important modelling efforts have been made
since in order to understand the initiation and maintenance of motility [13, 14,
15, 16, 17]. These works are using the simple and stable shape of keratocyte
cells, or a one-dimensional simplification. While this allows for a fine under-
standing of possible detailed mechanisms of motility and is based on the same
mechanisms of actin (de)polymerisation and myosin-driven retrograde flow,
the migration of keratocyte does not present the cycle of events observed in
most other cell types during migration [18]. Moreover, altough these mod-
els are shown to fit experimental results, in general they have not yet been
exploited in a systematic manner. Indeed, quantitative prediction of cell dy-
namics and exerted forces is only at its beginning [19, 20, 21]: while fitting
models remains in all cases necessary to acquire a minimal set of parameters
from a subset of the experiments available, these recent papers are additionally
predictive of other experimental conditions for which no further adjustment is
done.

Here we combine the prediction of a simple yet quantitatively validated
rheological model of actomyosin [21] with a nonlinear model of cell adhesion
adapted from [16] and simulate it on the actual geometry of cells tracked while
crawling. Monitoring the deformation of the substrate during the experiment
[22] and a traction force microscopy (TFM) method [23, 24, 25, 26, 27] allows
us to compute independently the traction forces that the cell exerts on the sub-
strate, to which the predicted traction fields can be compared. The number of
adjustable parameters is reduced to a minimum (two for the linear model, four
for the nonlinear adhesion model) and the robustness of the parameter choice
is assessed in a systematic way and the preditive capability of the model is
tested over different cell migration events and cell types.

Experimental observations in the literature give consistent pictures of two
different scales: the microscopic scale, at which the dynamics of the relevant
molecules are well described (actin, actin-binding molecules and adhesion mol-
ecules), and the mesoscopic scale of the cell itself. Our approach is to write a
mechanical model based on the microscale knowledge, and investigate how
these microscale dynamics yield the emergent mesoscale behaviours that are
observed. In a previous paper [21], we have successfully used this type of ap-
proach and validated quantitatively at the mesoscale a rheological constitutive
law based on a microscale model of actomyosin dynamics.

However, the setup used in that work did not require a precise model of the
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mechanics of cell adhesion, whereas this is needed here in order to address cell
crawling. Cell adhesion models of graded complexity have been introduced
by many authors [28, 29, 16]. Our numerical resolution procedure and quanti-
tative comparison with experimental data will allow us to investigate which of
these models match best the observations.

2 Mesoscale experimental observations

We observe cancer cells from two different cancer cell lines (T24 and RT112 cell
lines) which are crawling on a relatively stiff gel, E = 10 kPa. Our experimen-
tal observations, traction force recovery and the relevant other observations in
the literature are described briefly in the appendices 6.1 and 6.2, and at length
in [27]. Here we summarise only some salliant features that will need to be
accounted for by the model predictions.

When plated on the gel, T24 cells assume an elongated and digitated shape,
while RT112 cells have a rounded shape, figure 1. For both lines, as well as in all
other observations in the literature, the traction forces they exert are minimal
close to their geometric center and increases distally (close to the cell edge). The
tractions are oriented approximately along the normal to the cell edge, pointing
inwards, figure 1c. The rate of increase of traction force along an imaginary line
from cell centroid to cell edge is greater when the cell edge is close to centroid,
but the intensity of traction goes generally to much larger values close to the
part of cell edges which are more distal (farther away from centroid). In many
instances, the maxima of the traction field are not situated right at the cell edge
but somewhat proximal (inwards) from it, and tractions can be vanishingly
small at the edge. In what follows, we will attempt to link these observations
with both the phenomenology of adhesion complexes (as is done e.g. in [30])
and with the mechanics of the cytoskeleton.

3 Microscale-based mechanical model

It is well established experimentally that the mechanical properties of crawling
cells are controlled by their actin structures and the proteins that bind to actin
[2]. Although other cytoskeletal components have a smaller contribution in the
mechanical balance, we will neglect them in what follows. Above a timescale
between 0.1 to 10 s, the pressure in the cytosol equilibrates [31] and the poro-
elastic behaviour of the cell becomes negligible. Thus the variable of interest
is the stress tensor σ3D in the actin meshwork (and its strain and rate-of-strain
tensors ε3D and ε̇3D) at any position in the cell. In the absence of inertia and at
sufficiently long timescale, the force balance writes

∇ · σ3D = F in Ω3D

where F are bulk forces, discussed below. This internal stress of the actin needs
to be balanced at the boundaries of the actin meshwork: thus the actin stress
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100 Pa 100 Pa

(c)

Figure 1: Migration of epithelial cancer cells on a 10 kPa substrate. (a) T24 cell
line, (b) RT112 cell line. (c) Traction field recorded at selected instants for both
cells.



3 MICROSCALE-BASED MECHANICAL MODEL 5

–T

σxx

σyy

–Ty

x

σxx

σyy

–T v

Ωc

Ω

Ω3D

contact line
substrate

cytoplasm, including
actin cytoskeleton

nucleus

lamella
h

σyx

σxy

σxx
3D

σtt

σnn=σnt=0

3Dσzz  ≈ 0

σyy
3D

z

y x

 .
εσa

(a)

(b)

(c) (d)

–T

σxz
3Dσyz

3D
z

y x

(e)

(g) relative velocity |v|

fr
ic

tio
n 

nu
m

be
r ζ

ζ1

ζ0

v*0
0

z

xy

=–cf vx

–Txz=σxz
3D vx

(f)

n

Figure 2: Mechanical balance and dynamics of the cell. (a) Three-dimensional
mechanical balance. (b) Two-dimensional mechanical balance (top view). The
two-dimensional stress tensor (components σxx, σxy = σyx, σyy) and the trac-
tion field T are defined over the cell domain Ωc. The stress vanishes along ∂Ωc,
σn = 0. (c) Stresses applied to a 2D element: the stress σ of the neighbouring
actin elements is felt at the boundaries, the reaction force of the substrate for
traction T is distributed over the area of the element, and σa is the pre-stress
created by myosin contractility. Neglecting the fast elastic response for simplic-
ity, the resultant of these stresses must be balanced by viscous stresses, equal to
ταGε̇. (d) Rate-of-strain ε̇ of a 2D element and associated velocity field v. (e) The
traction force field T , assumed tangential, is equal and opposite to the shear
components (σ3D

αz of σ3D at the contact surface. (f ) The binding of transmem-
brane adhesion complexes (red symbols) to actin is highly dynamic, resulting
in an effective viscous friction law for T . (g) The dependence of the friction
number ζ = D2c f (|v|)/(L2

f c0
f ) on the local actin speed |v| is modelled in dif-

ferent ways: dashed red line, constant by piece (for 1D analytical model), solid
blue line, decreasing hyperbolic tangent (for comparison with [16] and numer-
ical simulations), dotted red line, decreasing exponential (in good agreement
with experimental measurements [30])



3 MICROSCALE-BASED MECHANICAL MODEL 6

acting at boundaries where adhesion molecules are present is equal to the stress
T that these exert on the environment at its boundaries.

As the actin flows, its density ρ will evolve. However, there is strong ex-
perimental evidence that the density of actin is tightly regulated by filament
nucleators and various molecules favouring growth or shrinkage of actin fil-
aments [32]. Denoting by ρ̄ the target density field of this regulation, and as-
suming that it has a characteristic time τρ, we can write describe this with an
advection–reaction equation:

∂ρ

∂t
+∇ · (ρv3D) =

1
τρ
(ρ̄− ρ)

where v3D is the velocity of actin. In what follows, we will assume τρ �
D/|v3D|, where D is the cell diameter, which leads to the solution of the above
equation ρ ' ρ̄, a uniform constant. This is supported by fluorescent speckle
microscopy [33] and indeed, although there are visible local variations in the
actin density on fluorescence images, the distribution of fluorescence intensity
is well peaked and has a standard deviation of less than 50% of the peak inten-
sity.

When adhering on a substrate of sufficiently large stiffness [34], cells spread
until their projected surface Ωc =

{
(x, y) | ∃ z, (x, y, z) ∈ Ω3D} has a diameter

D of the order 40 (RT112) to 100 µm (T24), and present a flat structure called
the lamella [33] whose height is typically less than a few microns, and a dome-
like structure referred to as the actin-cap, under which the nucleus is located,
which has a height of 5 to 10 µm [35]. In the present work, we will consider
that this aspect ratio is sufficiently small to justify a two-dimensional approach
in which the cell is treated as a thin layer of thickness h subject to tangential
surface tractions T and bulk forces F only, but it should be borne in mind that
this is only a first approximation. In this context, we will consider also that the
variations of h are small. This geometric setting constrains some components of
the 3D stress tensor σ3D: we have σ3D

zz = 0 and ∂zσ3D
αz = −Tα/h for α ∈ {x, y}

[36], figure 2e, which allows to rewrite the problem in terms of a 2D stress
tensor, with components σαβ = hσ3D

αβ , and write the 2D force balance as

∇ · σ = hF − h∂zσ3D = hF + T .

See figure 2a,b for a sketch of this mechanical balance. In practice, F = 0 as
bulk forces such as gravity are negligible and no external force is applied on
the cell. At the cell edge ∂Ωc (which is noted experimentally to correspond
to the contact line of the cell with the substrate, ∂Ω3D ∩ {z = 0}), there is no
specific line force so the stress tensor σ along this boundary must vanish, figure
2b,

σn = 0 on ∂Ωc. (1)

The stress tensor σ needs then to be related with the deformations by a con-
stitutive law. Since most of the intracellular stress is borne by the actin mesh-
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work, it is the deformation of actin which is relevant to study in a first approx-
imation. We have derived and validated such a rheology for the actomyosin
cortex in [21], by taking into account the dynamics of crosslinkers that bind to
actin and the input of mechanical energy by the myosin motor molecules. The
dynamics of crosslinkers is modelled by a single constant residence time, τα,
which was found to be of the order of 103 s for two cell types (fibroblasts and
myoblasts). The myosin molecular motors, which are among the crosslinks that
bind and unbind, are in addition responsible for a supplementary term in the
constitutive relation, which reads as a pre-stress σa = (τα/τmyo)Gαmyo(`β)2,
where αmyo is the fraction of crosslinkers which are myosin filaments, and ef-
fectuate a power-stroke of step length ` at frequency 1/τmyo. G is the elastic
modulus of the crosslinked actin network and β is inversely proportional to
its Kuhn length. In [37], we have shown that the fluorescence intensity of la-
belled myosin molecules could provide a proxy for the local variations of αmyo,
however here, in the absence of measurements for most of individual terms in
σa, we will treat it globally as a constant, as was done successfully in [21]. For
the sake of simplicity, we will also assume that the actin filaments are isotropi-
cally distributed in the plane parallel to the substrate, and define the pre-stress
tensor σa = σa I. With these assumptions, the constitutive equation writes:

τα
O
σ +σ − τακtr ε̇− 2ταGε̇ = σa, (2)

where ε̇ is the rate-of-strain tensor,
O
σ the objective upper-convected time-derivative

of the stress tensor σ, and κ is Lamé’s first coefficient. The group ταG has the
dimension of a viscosity and this terms corresponds to the energy dissipated in
(slowly) deforming the actomyosin network [38] in an irreversible manner due
to crosslinker unbinding [21]. This balance of stresses and the deformations
linked with the viscous stresses are described in figure 2c,d. This rheology is
in line with early models of actomyosin [39] and active gels models [40]. We
do not supplement this contractile liquid behaviour with an elastic resistance
term of the cell, contrarily to what is done in mechanosensing [41, 42] and mi-
gration models [17]. Other models have also considered the same rheology for
cell migration, with an additional inertial term used for numerical stabilisation
[4].

Finally, a rheological law must be proposed for the relationship between
the traction forces T and the relative displacement between the substrate and
the cell [3, 36]. Here again, the relevant structure to define a displacement
within the cell is the actin meshwork, which is mechanically bound to adhe-
sion molecules. In a first approximation, we assume that the substrate dis-
placement rate is small compared to the velocity of the actin within the cell,
|u̇s| � |v|. This hypothesis will need to be questioned in future work, as exper-
iments show that substrate displacement rates are of the order of 10−3 µm/s,
comparable with the speed of retrograde flow. With this simplifying hypothe-
sis, the relative speed of actin with respect to the substrate is the velocity v of
actin in the laboratory reference frame, and ε̇ = 1

2 (∇v +∇vT). On the ground
that adhesion complexes are very dynamic [11], we can expect a friction-like
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behaviour, figure 2f ,

T = c f (|v|)v, (3)

where c f may depend on the velocity |v|. This is assumed in many modelling
approaches, including [28, 17] where c f is taken constant, and in [43] where
position-dependent and dissymmetric adhesion is implemented.

However, experiments show that although local traction force and actin
velocity are positively correlated on the whole, above some critical velocity the
traction forces drop by several folds [30, 16], indicating that c f is not uniformly
constant. The causes of the drop in c f are only speculated, since locations with
a lower c f share three related characteristics: the actin flow speed is above
a threshold v∗ which seems to be a cell-type specificity (v∗ ' 0.2 µm/s in
fast-migrating keratocytes [16], v∗ ' 0.01 µm/s in mammalian Ptk1 epithelial
cells [30]), they are located more distally and adhesion complexes there are less
mature [30]. In [16], they propose a differential equation that implements these
different effects. Note that the precise role of the different terms in this model
has not been experimentally tested so far, and [16] claim that a simple algebraic
relation as exemplified in figure 2g captures the phenomenology. We choose to
use the same algebraic relationship as they do, c f = c f (|v|), in order to test
whether it is able to produce a fair quantitative prediction of traction stresses.

The modelling discussed so far describes only a (dynamic) mechanical equi-
librium, giving a snapshot of the force balance and rate of strain of the actin net-
work. It is not in the scope of the present paper to try to predict the subsequent
dynamics of the cell, which would require to describe also processes such as
actin polymerisation-based protrusion [2], or to provide some other more or
less explicit dissymetrisation of the dynamics. Indeed, in order to obtain a per-
sisting motility, models require a more or less explicit dissymetrisation either
of the actin treadmilling [28, 44], of the myosin contractility σa [45, 16] or of
the curvature of a contractile structure [15]. In one dimension, the need for
such an effect can be proven [46]. Here, we show that the traction forces ob-
served in cells are not dominated by this dissymetrical component, since an
entirely symmetrical model allows us to give good predictions of the observa-
tions. Further refinement of the model and comparison with the experiments,
and new experiments tracking explicitely myosin and adhesion molecules will
be needed in the future to address this question.

Two length scales appear in the problem: one, the cell diameter D, is di-
rectly observable but depends on cell type and fluctuates during migration, the
other is a friction length

√
ταG/c f . The speed of retrograde flow vt measured at

the leading edge in [47] and calculated from the modelling of cell-scale experi-
ments in [21] is convenient to scale the rate of deformation of the cytoskeleton:
since vt is of the order 10−3 to 10−2 µm/s, and the cell radius of the order of
tens of microns, a characteristic time is T = 103 to 104 s. The other timescale
in the problem is the relaxation time τα, in [21] we find τα ' 103 s: thus the

viscoelastic term τα
O
σ can be expected to be of a lower magnitude than σ in the
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consitutive equation (2), although it is not a priori negligible. If we choose to
scale stresses with ταvtG/D, the nondimensional model is:

ζṽ− ∇̃ · σ̃ = 0, (4a)

De
Õ
σ̃ +σ̃ − κ

G
tr ˜̇ε− 2˜̇ε = σ̃a. (4b)

where we introduce the friction nondimensional number ζ = D2c f (|v|)/(L2
f c0

f ),

based on a friction length L f =
√

ταG/c0
f for some reference friction coefficient

c0
f , and the Deborah number De = ταvt/D.

4 Results

4.1 One-dimensional model predictions

In order to reach a good understanding of the mechanical balance that the
model describes, we first study it in 1D. The cell is assumed to occupy a seg-
ment of the real axis, and since we do not introduce explicitly a dissymetry,
our model will predict a solution which is symmetrical with respect to the mid-
point of this segment. This simplistic setting thus corresponds to cells which
are not migrating or polarised. The nondimensional equations for the perma-
nent regime on the domain (−1, 1) are:

−ζv + ∂xσ = 0, (5a)
De(∂tσ + v∂xσ− 2σ∂xv) + σ = ∂xv + σa, (5b)

σ = 0 at x = ±1, (5c)

where we have slighlty changed the nondimensionalisation, using κ1D + 2G1D

instead of G when scaling stresses. Note the nonlinear coupling term 2De σ∂xv,
which arises from the upper-convected objective derivative of the stress tensor,
in [36, 43] an analogue 1D model with the co-rotational derivative is proposed.

Analytical solutions can be obtained in the case De = 0, and numerical ap-
proximations otherwise, the solution procedure is described in supplementary
text ??. An example of dynamical mechanical equilibrium is shown in figure
3b, for the case of a uniform friction number ζ = ζ0 and a vanishing relaxation
time De = 0. A centripetal flow,

v(x) = − σa√
ταG c f

sinh (x
√

ζ)

cosh
√

ζ
,

corresponding to the retrograde flow, is observed [36]. It is maximal close to the
cell edge, and its intensity is proportional to the myosin activity σa, consistent
with experiments [33, 47]. The traction force density T pattern is by hypothesis
directly proportional to the retrograde flow here, and thus centripetal and max-
imal close to cell edges too. The stress in the actomyosin vanishes at the cell
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Figure 3: One-dimensional model and results (see full caption on page 11).
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Figure 3: One-dimensional model and results (see figure on page 10). (a)
Schematic of the relevant structures for cell mechanics and of the variables
of interest. We define the stress tensor σ and the velocity v of the filamen-
tous actin network at every point of the 1D domain corresponding to the cell.
The cell interacts with its environment mostly through specific adhesion com-
plexes, which link the intracellular actin network with the substrate, we name
T the traction forces that actin exerts on the substrate via these adhesions. The
relationship between stress tensor σ and velocity v is modelled by the rheolog-
ical constitutive law (2), the relationship between the relative velocity of actin
with respect to the substrate v and the traction force field T is given by the
friction model (3). (b) Analytical result of system (5) with De = 0, σa = 1 and
a uniform friction with friction length L f = 0.1D. The stress tensor σ (reduced
to its xx component), velocity v and traction field T are represented by their
magnitude (respectively, green, black and red curves) and vector or tensor rep-
resentation (green, black and red arrows or double-pointing arrows). The stress
is mostly constant and positive in the cell lamella and body, corresponding to
a tension, which is balanced by centripetal traction forces concentrated at the
periphery. The tension gives rise to a deformation rate of the actin, resulting in
the retrograde flow. (c) Same as (b) but with L f = 0.3D. The weaker friction
number leads to a wider peripheral zone of large tractions, but also to build up
a lower tensile stress σ, as the actin yields more and flows at higher velocity. (d)
Same as (c) but with a nonuniform friction number, equation (6), ζ1/ζ0 = 0.16,
and v∗ = 0.26.
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edge, which corresponds to our imposed boundary condition, and is maximal
at the cell center in proportion with myosin activity σa:

σ(x) = σa

(
1− cosh (x

√
ζ)

cosh
√

ζ

)
It is thus myosin activity that puts the actin network under tension, a tension
which is balanced at the cell edges by friction via the friction number ζ. If ζ is
large, the tension is constant in most of the domain and balanced by traction
forces in a narrow zone close to the edge, figure 3c.

In the case when De = 0.1, which corresponds to our estimates for exper-
imental cases, the solution differs little from the De = 0 solution, figure ??.
For De ≥ 1, a quantitative deviation can be appreciated, supplementary fig-
ure ??, but there is no strong qualitative difference. We will thus focus on the
case De = 0 from this point, as this allows analytical 1D calculations and less
involved numerical simulations in 2D (although the visco-elastic case De > 0
can be treated, see e.g. [48] using the approach in [49]).

We then turn to the case of a nonlinear friction number ζ = ζ(|v|), in order
to allow analytical resolution we take a piecewise constant function, figure 2g:

ζ(x) =
{

ζ0 if |v(x)| < v∗,
ζ1 else, (6)

with ζ1 < ζ0 consistently with observations [30, 16]. In figure 3d, we see that
this results in a more uniform the retrograde flow close to the cell edge, which
is due to the fact that there is less of a gradient of tension there, due to a lower
local friction. Because of the low friction number locally, traction is low close
to the cell edge, which is the phenomenology that we wanted to reproduce.

Numerically, we can solve with ζ = ζ0 exp(−|v|/v∗), figure 2g, which is
closer to the experimental observations [30], this gives a smoother behaviour
but no essential qualitative difference.

4.2 Prediction of the traction field of a motile cell

Turning now to a two-dimensional approach, we ask whether for a given cell
shape, the above model can predict the traction pattern that we measure by
traction force microscopy, as in figure 1. Starting from the data of Ωc for a
typical experimental result, we calculate using a finite element approach (see
section 6.3) the traction field for a linear friction law (c f independent of v) and
a choice of the two parameters: friction number ζ0 and myosin contractility
σa. As in 1D, the magnitude of the stress, retrograde flow and traction forces
are in direct proportion to σa (see supplementary text ??), while changes in
ζ0 will modify the pattern of retrograde flow and traction forces. In conse-
quence, we can find explicitly an optimal value for σa for a given value of ζ0,
and optimize for this parameter in order to get the best fitting approximation
of the experimental traction field, figure 4a. The relative error on the traction
vectors is

∥∥Th − Texp
∥∥ /
∥∥Texp

∥∥ = 0.73, that is, the error vectors Th − Texp
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Figure 4: Two-dimensional linear model predictions compared to experimental
results (see full caption on page 14).
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Figure 4: Two-dimensional linear model predictions compared to experimental
results (see figure on page 13). Throughout this figure, the friction number ζ is
a uniform constant equal to ζ∗0 . The only two free parameters of the model are
adjusted to ζ∗0 = 19.4 and σ∗a = 27.7 (both nondimensional) so as to match best
experimental traction field Texp in panel (a), they are used to predict traction
fields for observed cell shapes Ωi

c in panels (b)–(e). (a) Comparison of traction
field predicted by the model (red arrows) and calculated from experimental
observations (blue arrows) at the initial instant t = 0 of a migration experi-
ment of a T24 cell. In the uropod (right), a good agreement is found with an
alignment mismatch ranging from close to 0 up to nearly 90 degrees in a small
subregion. In the slender part linking the uropod with the cell body, intensity
of traction is low in predictions and experiment. Around the cell body (thicker
part where the nucleus is located), the magnitude of traction is rather well pre-
dicted, and the alignment mismatch ranges from 0 to 45 degrees. The model
predicts the observed tractions oriented from nucleus area towards the lamella
at the cell front with a very good alignment and magnitude. Finally, in the
lamella region (left), the global centripetal traction field is predicted, although
the location of the maximal traction is not predicted: indeed, close to the lead-
ing edge, we note experimentally low tractions which cannot be reproduced by
the linear model, and which may be due to unmature or rupturing adhesions.
(b) Comparison of traction field predicted by the model (red arrows) and cal-
culated from experimental observations (blue arrows) at the initial instant of a
migration experiment of an RT112 cell. No parameter adjustment. The RT112
morphology is much simpler, and the model predicts a centripetal traction field
which globally agrees with observations. The same shortcomings of the model
as for the lamella region in T24 cells, panel (a), are noted. (c) Comparison
of the field of traction intensity across a full migration cycle as predicted by
the model (left) and calculated from experimental observations (right) for the
T24 cell in panel (a). Magnitudes are given in Pascals. From top to bottom,
a subsample of the experimentally recorded steps is presented, every 6 min-
utes (t = 0, 6, 12, 18, 24, 30, 36 min). No parameter adjustment was done for
t > 0. Although the maximum traction observed experimentally is not always
right at the leading edge, the global pattern and size of high-traction regions
are predicted by the model throughout the migration cycle, across variations in
cell area, aspect ratio and orientation. (d) Same for the RT112 cell in panel (b) at
t = 0. See supplementary figure ?? for t > 0. Magnitudes are given in Pascals,
no parameter adjustment. (e) Relative error of the predicted tractions com-
pared to experiments for the n = 21 instants at which a frame was recorded in
experiments. Relative error on traction vectors

∥∥Th − Texp
∥∥ /
∥∥Texp

∥∥, and on
intensity of traction

∥∥|Th| − |Texp|
∥∥ /
∥∥|Texp|

∥∥ is presented for the three exper-
iments on cell types T24 and RT112. No parameter adjustment was done for
individual experiments and instants, ζ∗0 and σ∗a are used throughout the n = 66
frames.
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have a magnitude 0.73 times the experimental vectors Texp in L2 norm. This
can be considered a fair result for a two-parameter fit of a vector field with
rich features. Indeed, the experimental traction field at this instant indicates
that there is probably no mature adhesion under the protrusion visible on the
left hand side, since the traction field decreases dramatically there. This fea-
ture cannot described by this first model where the friction number is taken
to be a homogeneous constant, thus limiting the possibility to approximate
the experimental observations. The relative error on the intensity of traction
is
∥∥|Th| − |Texp|

∥∥ /
∥∥Texp

∥∥ = 0.59, thus the error is shared between a mis-
match between experimental and predicted magnitude of traction field, and
some misalignment of the experimental and predicted traction vectors. The
optimal parameters are found to be ζ∗0 ' 20, which implies a friction length
of the order of 10 µm, and σ∗a ' 30. Using the numerical value of parameters
τα and vt that we have obtained in [21] for two other cell types, this would
imply that the myosin pre-stress σa is about three times the zero-shear elastic
modulus G of the actomyosin meshwork, in [21] the same ratio was found to
be 4.3.

During the experiments, cell position and shape Ωi
c and traction forces T i

exp

were acquired at several instants ti two minutes apart. We now ask whether
our model and the parameters σ∗a and ζ∗0 can, for these different cell shapes Ωi

c,
predict the traction forces T i

exp without further parameter adjustment. We find
that for the 21 frames of the experimental results, the relative error on traction
vectors ranges from 0.53 to a maximum of 0.75, with a median of 0.60, which
indicates that the parameters that where optimal for one instant give as good
results for other frames, figure 4c,e, even though the aspect ratio of the cell
changes by a factor two depending on the stage of the migration process. The
relative error on traction intensities ranges from 0.48 to 0.61, with a median of
0.57.

Thus the parameters describing the mechanical behaviour of a migrating
T24 cell are approximately conserved over more than half an hour during
crawling. We then tested whether these parameters could also predict a good
approximation of the traction stresses exerted by another cell of the same type
in the same conditions. The comparison of the predictions of the model, using
the same values ζ∗0 and σ∗a as for the first T24 cell, are shown in supplementary
figure ??, the error of the predicted traction field varies in the same range as for
the first cell, figure 4e.

Next we considered the other cell type that was studied experimentally,
RT112 cells. These cells spread to a much lower area on the substrate and main-
tain a rounded shape which evolves little in the course of migration. Although
these characteristics are reminiscent of amoeboid migration, RT112 crawl at
smaller speed and exert larger tractions than T24 [27]. All these characteristics
make RT112 cells very different from T24, and we asked whether this is due
to a different mechanical balance altogether, or different quantitative impor-
tance of several effects. However, when applying the same mechanical model
as above with the parameters ζ∗0 and σ∗a , a fair approximation of the traction
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Figure 5: Two-dimensional nonlinear model predictions compared to experi-
mental results (see full caption on page 17).

field obtained experimentally is recovered, figure 4b,d. This is equally true for
the all 20 frames of this RT112 experiment, supplementary figure ??, the me-
dian of the relative error on traction vectors is 0.41 and its range from 0.33 to
0.51, and traction intensities have a median error of 0.36 and a range from 0.22
to 0.42, figure 4e.

For both RT112 and T24 cell types, experimental results show that the trac-
tion field maxima are generally not located quite at the cell edge, but somewhat
proximal from it. As seen in the 1D calculations, figure 3d, this is compatible
with the model provided that there is a switch from a large friction number
ζ0 to a lower one ζ1 above some relative velocity v∗. As seen on figure 5a, for
an appropriate choice of these parameters, the model prediction is improved.
The median error on traction vectors drops from 0.73 to 0.61 and the one on the
traction intensity from 0.59 to 0.48, the better agreement is in a large part due
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Figure 5: Two-dimensional nonlinear model predictions compared to experi-
mental results. (see figure on page 16). Two of the free parameters of the model
are kept equal to ζ∗0 = 19.4 and σ∗a = 27.7 (both nondimensional) as in figure 4.
(a) Comparison of traction field predicted by the model (red arrows) and calcu-
lated from experimental observations (blue arrows) at the initial instant t = 0
of a migration experiment of a T24 cell. To the difference of figure 4a, a noncon-
stant friction number ζ is used (see figure 2g) and the additional parameters v∗

and ζ1 are adjusted so as to fit best the experimental data. Compared to figure
4a, the agreement in the large protrusion behind the cell leading edge (right)
is better both in term of the local magnitude of traction field and in terms of
the alignment in areas where the magnitude is large. The agreement is also
better in one of the sides of the uropod (top left). (b) Paired test of the change
in relative error for the nonlinear model with fixed v∗ and with v∗ adjusted
at each frame. The test is relative to the linear case, results shown in figure 4e.
The ‘nonlinear (NL) model with fixed v∗’ makes use of the nonconstant friction
number ζ (figure 2g) whose extra parameters are adjusted on the first frame of
the experiment only. The ‘nonlinear model with adjusted v∗’ corresponds to
the same model, but extra parameters are adjusted on each frame of the ex-
periment. There is no significant change in the case of fixed v∗ (p = 0.53 and
p = 0.38 for the two error measures, respectively), but the error significantly
decreases at each frame when v∗ is adjusted (p = 0.010 and p = 1.4 · 10−6,
respectively). Significance tests were performed with a paired t-test with 20
degrees of freedom. (c) Comparison of the field of traction intensity across a
full migration cycle as predicted by the nonlinear model (left) and calculated
from experimental observations (right) for the T24 cell in panel (a). Magnitudes
are given in Pascals. From top to bottom, a subsample of the experimentally
recorded steps is presented, every 6 minutes (t = 0, 6, 12, 18, 24, 30, 36 min).
Parameter adjustment was performed for v∗ and ζ1 only for t > 0.
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to a better match in magnitude of the traction in the protrusion at the cell front,
but also in a better match of the directionality of tractions in this area.

Next we asked whether this choice of parameters is robust in the same sense
as the choice of ζ∗0 and σ∗a allowed the linear model to be predictive of the trac-
tions at later migration stages and for other cells. We find that if v∗ and ζ1 are
assumed to remain constant across the different stages of migration, the nonlin-
ear model does not significantly improve the match between predictions and
experiments. However, if v∗ is adjusted for each frame, we obtain a significant
decrease of the error, figure 5b. In figure 5c, it is seen that the characteristic
pattern of traction increase toward distal followed by an abrupt drop near the
foremost areas of protrusions is recovered by this adhesion model.

5 Discussion

Cell migration is known to rely on a complex machinery subject to a large num-
ber of regulatory pathways [2]. Here however we show that cells which are
migrating in a smooth way without shape changes (RT112) and cells which
exhibit a multi-stage cycle of protrusion and retraction (T24) have a similar
mechanical behaviour, whose baseline can be predicted with a simple model
of actomyosin contraction and of adhesion. In particular, there is no obvious
adjustment of the global mechanical balance corresponding to specific steps of
mesenchymal migration, since all can be approximated with the same model
parameters, which describe the myosin activity (pre-stress) and the effective
friction due to the dynamics of adhesions.

This tends to imply that in a significant measure, the dynamics of acto-
myosin and of adhesions are not orchestrated at the time scale of the migra-
tion steps, but left to their self-organised assembly and disassembly pace. As
shown in [21], this is not in contradiction with the ‘sensing’ properties of ac-
tomyosin, since the collective dynamics of actin and myosin give an emergent
material which is intrinsically sensitive to the mechanical behaviour of the en-
vironment, even in the absence of a regulatory signal. This reliance of the me-
chanics of motility on self-organised processes is in agreement with the robust-
ness of this behaviour—indeed even lamellar fragments of cells lacking nuclei,
microtubules and most organelles can exhibit motility [13]. This is not to say
that regulation via biochemical pathways would not be crucial to the migra-
tion process, but rather that they need to act only in order to tune an otherwise
self-maintained system, just as adjusting the throttle control of an engine.

Beyond the fact that the global mechanical balance is well approximated,
the traction fields observed contain many further details that cannot be cap-
tured by the linear model. The most prominent of these are the decreased trac-
tion forces at the leading edges, which are noted at most stages of mesenchymal
migration in both T24 cells figure 5c, supplementary figure ?? and RT112 cells
supplementary figure ??, and had been noted in the literature before [30, 16].
We find that these features can be reproduced by a nonlinear model which in-
cludes a velocity-dependent friction coefficient. In [30], they conclude from
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experimental data on local traction and actin velocity that the ageing and mat-
uration of adhesion complexes are not correlated with their strength, and that
the switch is based on a critical velocity v∗. Here we find however that the crit-
ical velocity v∗, contrarily to the myosin contractile pre-stress σa, varies at the
scale of a few minutes during cell crawling. This suggests that v∗ may be the
target of a biochemical regulation that would be coupled with the migration
steps.

6 Appendix: Methods

6.1 Cell crawling assays and image analysis

The detailed protocol is described in [27]. Briefly, 10 kPa-polyacrylamide gels
were prepared with 0.2-µm fluorescent beads and coated with fibronection.
Epithelial bladder cancer cell lines T24 and RT112 were seeded on the gel and
left overnight to spread. Images were acquired with a time interval of 120
seconds for 2 hours. The cell shape Ωc was acquired either by transmission
microscopy or by fluorescence reflection microscopy of actin-GFP transfected
cells. Within a domain Ω (the field of view), the position xi

j of bead j in frame
i is obtained with ‘ParticleTracker’ [50] in ImageJ software, the relaxed (also
called initial) bead position x0

j is actually acquired at the end of the experiment
by detaching cells using distilled water, allowing to construct the set of dis-
placements ui

exp(x) = ∑j(xi
j − x0

j )δxi
j
(x) (see [51] for details). Ω is chosen so

that |uexp| is vanishingly small close to ∂Ω. We note that generally speaking,
|ui

exp(xj)| . 1 µm while the diameter of Ωc is of the order of 50 µm.

6.2 Traction force inverse problem resolution

Details can be found in [27, 52, 53]. The mechanical characterization of the gel
is approximated as isotropic and elastic and the displacements are observed to
be small enough so that linear elasticity applies. We assume that the gel can
be approximated by a half-space {z ≤ 0}, the gel depth of 70 µmis sufficient
to guarantee this for RT112 cells which have a diameter of 50 µm[54], but can
introduce an error on some of the frames of the T24 cell migration, since it can
transiently reach a length of the order of 100 µm. Following [25], a reduced 2D
problem is obtained by averaging in z over an effective thickness w (typicall
1.5 µm) and the adjoint problem is written on Ω ⊂ {z = 0} in terms of an
auxiliary unknown p:

−µ∆us − (λ + mu)∇(∇ · us) = −
χc

ε
(p− p̄) in Ω, us = 0 on ∂Ω (7a)

−µ∆p− (λ + mu)∇(∇ · p) = χexp(us − uexp) in Ω, p = 0 on ∂Ω (7b)

where χc is the indicator function of Ωc, χexp = ∑j δx0
j
(x), p̄ =

∫
Ωc

p dx is the

resultant of p over Ωc and the reduced 2D Lamé coefficients are µ = wE
2(1+ν)

and
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λ = wEν
1−ν2 . Problem (7) is solved for all frames i using a finite element method

on a triangulation T i
h = T i

c,h ∪ T
i

o,h of Ω, where (xi
j)j are among the nodes and

T i
c,h is a triangulation of a polygonal approximation Ωc,h of order h2 of Ωc. The

calculated traction field is Texp = − χc
ε (p− p̄), which vanishes in Ω \Ωc and

has zero resultant. For the same reason as the resultant is zero, the torque of
the traction field also has to be zero. However, we do not enforce this currently
in the method and the fact that the torque is small is only checked a posteriori
on the calculated traction field.

6.3 Finite-element simulations and parameter fitting

In section 3, we derive a tensorial visco-elastic model allowing to predict cell
traction field Th from the knowledge of cell shape Ωc and some scalar param-
eters, namely σa, ζ0, and in the nonlinear case ζ1 and v∗. The algorithm for the
resolution of the full visco-elastic problem is given in [48]. Here we show in one
dimension that within the range of experimentally-relevant parameters, visco-
elastic effects do not affect strongly the results. Thus simulations are shown
only for the reduced viscous limit.

Briefly, we define a finite element space Vh of piecewise quadratic functions
based on the triangulation T̃ i

c,h of Ω̃c at frame i, where Ω̃c is the cell domain
Ωc observed experimentally but with distances normalized by D = 50 µm.
Using the finite element software Rheolef, we solve the variational problem,
supplementary equation (??), in Vh for a given choice of σa = σ1

a and a uniform
ζ = ζ0 for a solution v1

h,0. In the case of nonlinear friction, ζ depends on v, a
fixed-point algorithm is used to construct a sequence of solutions v1

h,k using the
friction field ζ(x) = ζ(|v1

h,k−1|(x)), until convergence.
Next, the parameters can be optimized in order to best fit the experimental

observations Texp. Note that best-fit is performed on one cell at the initial frame
only throughout the paper to acquire parameters σa and ζ0, no fitting is done
for the other frames and the other cells. We normalize Texp by a typical value

100 Pa, and aim to minimize
∥∥∥Th − T̃exp

∥∥∥ by adjusting ζ0 and σa. Thanks to the
linearity of operators and the scale-invariance of our choices for the function ζ
(see supplementary text ??), minimisation for a given ζ0 with respect to σa can
be done explicitly, and the minimisation writes:

σ∗a =

∫
Ω̃c

T̃exp · T1
h dx∥∥∥T1

h(ζ0)
∥∥∥ σ1

a , ζ∗0 = arg min
ζ0

∥∥∥∥(T̃exp −
σ∗a
σ1

a
T1

h(ζ0)

)∥∥∥∥ .

In the rest of the article, we denote Ω̃c and T̃exp simply by Ωc and Texp.
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[40] K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, and K. Sekimoto. Generic theory
of active polar gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. E,
16:5–16, 2005.



REFERENCES 24

[41] L. Trichet, J. Le Digabel, R. J. Hawkins, S. R. K. Vedula, M. Gupta, C. Ri-
brault, P. Hersen, R. Voituriez, and B. Ladoux. Evidence of a large-scale
mechanosensing mechanism for cellular adaptation to substrate stiffness.
Proc. Natl. Acad. Sci. USA, 109:6933–6938, 2012.

[42] P. Marcq, N. Yoshinaga, and J. Prost. Rigidity sensing explained by active
matter theory. Biophys. J., 101:L33–L35, 2011.

[43] P. Recho and L. Truskinovsky. An asymmetry between pushing and
pulling for crawling cells. Phys. Rev. E, 87:022720, 2013.

[44] D. Ambrosi and A. Zanzottera. Mechanics and polarity in cell motility.
Physica D, 2016.

[45] P. Recho and L. Truskinovsky. Maximum velocity of self-propulsion for
an active segment. Math. Mech. Solids, 21:263–278, 2015.

[46] P. Recho, T. Putelat, and L. Truskinovsky. Contraction-driven cell motility.
Phys. Rev. Lett., 111:108102, 2013.

[47] O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M.-A. Fardin, P. Avi-
gan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and
M. P. Sheetz. Force generated by actomyosin contraction builds bridges
between adhesive contacts. EMBO J., 29:1033–1044, 2010.

[48] J. Étienne, A. Asnacios, D. Mitrossilis, V. Peschetola, and C. Verdier. How
the cell got its shape : A visco-elasto-active model of the cytoskeleton. In
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A Solution procedure for the one-dimensional model

We recall the problem in its dimensional form:
−c f v + ∂xσ = 0 in (−L, L)
τασ̇− 2τασ∂xv + σ = ταG∂xv + σa in (−L, L)
σ = 0 at x = ±L

Here we have grouped the bulk and shear viscosity terms, without loss of gen-
erality in 1D.

A.1 Viscous limit

Assume τα � 1, but ταG of order 1. In an interval of [−L, L] with a constant c f ,
we get

L2
f ∂xxv− v = 0

with L f =
√

ταG
c f

, thus v = −U0sinh x
L f

+ U1cosh x
L f

.

If c f is constant on [−L, L], U1 = 0 by symmetry and σ = σa

(
1−

cosh x
L f

cosh L
L f

)
,

thus V0 =
L f σa

ταG cosh L
L f

. These solutions are reported in figure 3b and figure 3c.

If c f = c0
f for |v| < v∗ and c f = c1

f for |v| > v∗, call x∗ > 0 the point at which

the increasing function v is such that v(x∗) = −v∗. Then if v∗ <
L f σa

ταG cosh L
L f

, we

have x∗ < L, and on the interval [x∗, L] we have:

v|[x∗ ,L]
= −v∗cosh

ξ(x− x∗)
L f

+

(
v∗sinh

ξ(L− x∗)
L f

− σa
L f

ταGξ

)
sinh ξ(x−x∗)

L f

cosh ξ(L−x∗)
L f

and

v|[0,x∗ ]
= −v∗sinh

ξ(x− x∗)
L f

with ξ =
√

c1
f c0

f .

We can prescribe v∗ by imposing the continuity of stress at x∗, which is
equivalent in 1D to impose the continuity of the derivative of v, we find :

v∗ =
L f σa

ταG

sinh x∗
L f

ξsinh x∗
L f

sinh ξ(L−x∗)
L f

+ cosh x∗
L f

cosh ξ(L−x∗)
L f
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Notation Meaning, measured or calculated value
α, β Any index among x and y
ε̇ Rate-of-strain tensor
κ Two-dimensional Lamé’s first coefficient

No experimental data
Ω3D Space occupied by cell
Ωc Projection of Ω3D on plane (x, y)
Ωi

c Same, specifying frame number i
Ω Field of view containg Ωc

τα Relaxation time of actomyosin
τα ' 103 s [21]

c f Effective friction coefficient
c0

f Friction coefficient where |v| � v∗

c1
f Friction coefficient where |v| � v∗

D Typical diameter of cell
D = 40 to 100 µm in experiments
Distances nondimensionalised by D = 50 µm

G Two-dimensional shear modulus
h Height of cell

h/D . 0.1, ∂αh . 0.1
n External normal to Ωc in (x, y) plane
T Characteristic time of actomyosin retrograde flow

T = 103 to 104 s [21]
Nondimensional model parameters
λ Second viscosity, λ = κ/G

Taken equal to 1 (arbitrary)
σa = σa I Myosin-generated 2D pre-stress [21]

Nondimensionalised by ταG/T = 5 kPa·µm from experiments
Found to be of the order of 30, i.e. 150 kPa·µm

ζ Velocity-dependent friction coefficient
Nondimensionalised by ταG/D2 = 10 kPa·s·µm−1

ζ0 Friction coefficient ζ where v� v∗

Found to be of the order of 20, i.e. 200 kPa·s·µm−1.
ζ1 Friction coefficient where v� v∗

Found to vary around 5, i.e. 50 kPa·s·µm−1.
v∗ Critical velocity (phenomenological parameter)

Found to vary around 0.1, i.e. 10−3 µm·s−1.
De Deborah number

De = τα/T . 1 from experiments
Taken from 0 to 1 in 1D solutions, 0 in 2D simulations

Nondimensional model unknowns
σ Two-dimensional stress tensor

Nondimensionalised by ταG/T = 5 kPa·µm from experiments
v Field of actomyosin velocity in plane (x, y)

Nondimensionalised by D/T ' 10−2 µm/s
T Field of traction

Nondimensionalised by ταG/(TD) = 100 Pa from experiments

Table 1: Parameters and variables reference list.
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This result is shown in supplementary figure ??
If now we want to prescribe v∗ rather than x∗, we can identify the desired

value by numerical inversion, as v∗ is strictly monotonic in x∗, see supplemen-
tary figure ??.

A.2 Full viscoelastic model

In permanent regime, σ̇ = v∂xσ, thus the system to solve is:

∂xv =
ταc f v2 + σ− σa

η + 2τασ

∂xσ = c f v

There is no known analytical solution to this system in general, we resort to
numerical integration using Octave software in order to approximate its solu-
tion.

Results are shown in supplementary figure ??. The purely viscous approx-
imation matches closely the solution of the visco-elastic problem for De . 0.1,
and is still a fair approximation for De and up to 1.

B Two-dimensional problem

B.1 Variational formulation

In this section we detail how the problem is transformed into the variational
form. Following the 1D results, we take De = 0. With the hypothesis that
substrate deformation rate is small, ˜̇ε = D(v), which is the symmetrical part of
the tensor ∇(v). So equations 4 become, dropping the ·̃ symbol:

−∇ · σ + ζv = 0, (8)

with σ = λtr (D(v))I + 2D(v) + σa, where we have denoted λ = κ/G.
Then, we multiply the first equation by an arbitrarily test-function w ∈

W = H1(Ωc)2 and we integrate over Ωc:∫
Ωc
−(∇ · σ) ·w dx =

∫
Ωc
−ζv ·w dx, ∀w ∈W

Using Green’s formula, we can write:∫
Ωc
(∇ · σ) ·w dx +

∫
Ωc

σ : D(w) dx =
∫

∂Ωc
σ : (w⊗ n) ds

Remark that on ∂Ωc, σ : (w ⊗ n) = (σn) · w which is equal to zero due to
the boundary condition σ(v) · n = 0. So the integral over ∂Ωc is zero and the
problem rewrites: ∫

Ωc
σ(v) : D(w) dx =

∫
Ωc

ζv ·w dx
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From the constitutive equation, we have:

σ(v) : D(w) = λtr (D(v))(I : D(w)) + 2D(v) : D(w) + σa : D(w)

= λtr (D(v))∇ ·w + 2D(v) : D(w) + σa : D(w)

For now, we assume that the myosin pre-stress σa is isotropic, thus σa = σa I.
Then we finally have the variational formulation of the problem:∫

Ωc
λtr (D(v)) ·∇ ·w dx

+
∫

Ωc
2D(v) : D(w) dx

+
∫

Ωc
ζv ·w dx = −σa

∫
Ωc

∇ ·w dx ∀w ∈W. (9)

Next we define the finite element space Wh = {wh ∈W, wh|K∈T i
c,h
∈ P2(K)}.

The friction field ζh is calculated from a previous guess vk−1
h as stated in the

main text, and we solve equation (??) for vk
h in Wh using test functions wh ∈Wh

using the finite element library Rheolef.

B.2 Fitting of the myosin pre-stress parameter σa

From the solution of the 1D problem in the viscous case, we see that the myosin
pre-stress σa appears as a multiplying factor of the solution. This is convenient
in terms of data fitting, since this allows to calculate the traction field T1 for a
unit choice of σa = σ1

a , and then to minimise explicitly the difference between
T1 and Texp. Here is the precise derivation of this result.

Let v1 be solution of the problem:

ζv∗(|v|)v− λ∇ · v−∇ · 2D(v) = 0 on ∂Ωc (10a)

with v∗ = v∗1 and the boundary condition:

D(v1)n = −σ1
a n on ∂Ωc (10b)

Then by plugging v1 = σ1
a

σ2
a

v2 in equation (??), we get:

ζv∗1

(
σ1

a
σ2

a
|v2|

)
v2 −∇ · 2ηD(v2) = 0 on ∂Ωc

and thus v2 is solution of equation (??) with v∗ = v∗2 = σ2
a

σ1
a

v∗1 and the boundary
condition:

D(v2)n = −σ2
a n on ∂Ωc

if and only if the choice of the friction law is scale invariant, i.e. ζλv∗(λ|v|) =
ζv∗(|v|).
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Figure S1: (a) Actin velocity and (b) traction forces for various values of ξ =√
c1

f /c0
f , see supplementary text ??
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Figure S2: Determination of the position x∗ such that v(x∗) = v∗: plots of the
threshold velocity v∗ corresponding to solutions obtained with given parame-
ters L f and ξ and choice of x∗, see supplementary text ??.
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Figure S3: Comparison of results with the full visco-elastic model equation (5)
with the solution in the viscous limit De = 0, for two values of the Deborah
number. Green ‘×’ symbols, stress σ, blue ‘+‘ symbols, velocity v, see supple-
mentary text ??.
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Figure S4: Comparison of intensity of traction field predicted by the model
(left) and calculated from experimental observations (right) during a migration
experiment of T24 cell number 2, instants shown are t = 0, 8, 16, 24, 32, 40 and
48 min. Magnitudes are given in Pascals.
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Figure S5: Comparison of intensity of traction field predicted by the model
(left) and calculated from experimental observations (right) during a migra-
tion experiment of an RT112 cell, instants shown are t = 0, 12, 24, 36 48 60 and
72 min (t = 0 is also show in figure 4b) The RT112 morphology is much sim-
pler and does not change in the course of migration. The model predicts a
centripetal traction field which globally agrees with observations throughout
migration. The same shortcomings of the model as for the lamella region in T24
cells, figure 4a, are noted. Here no parameter is adjusted, ζ0 and σa are taken
to the value chosen for T24 cell experiment at t = 0, figure 4a. Magnitudes are
given in Pascals.


