
HAL Id: hal-01371023
https://hal.univ-grenoble-alpes.fr/hal-01371023v1

Submitted on 23 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Preemptive to Non-preemptive Scheduling Using
Rejections

Giorgio Lucarelli, Abhinav Srivastav, Denis Trystram

To cite this version:
Giorgio Lucarelli, Abhinav Srivastav, Denis Trystram. From Preemptive to Non-preemptive Schedul-
ing Using Rejections. 22nd International Computing and Combinatorics Conference (COCOON 2016),
Aug 2016, Ho Chi Minh Ville, Vietnam. pp.510-519, �10.1007/978-3-319-42634-1_41�. �hal-01371023�

https://hal.univ-grenoble-alpes.fr/hal-01371023v1
https://hal.archives-ouvertes.fr


From Preemptive to Non-preemptive Scheduling

using Rejections

Giorgio Lucarelli1⋆, Abhinav Srivastav1,2⋆⋆, and Denis Trystram1⋆

1 LIG, Université Grenoble-Alpes, France
2 Verimag, Université Grenoble-Alpes, France

{giorgio.lucarelli,abhinav.srivastav,denis.trystram}@imag.fr

Abstract. We study the classical problem of scheduling a set of in-
dependent jobs with release dates on a single machine. There exists a
huge literature on the preemptive version of the problem, where the
jobs can be interrupted at any moment. However, we focus here on the
non-preemptive case, which is harder, but more relevant in practice. For
instance, the jobs submitted to actual high performance platforms can-
not be interrupted or migrated once they start their execution (due to
prohibitive management overhead). We target on the minimization of
the total stretch objective, defined as the ratio of the total time a job
stays in the system (waiting time plus execution time), normalized by
its processing time. Stretch captures the quality of service of a job and
the minimum total stretch reflects the fairness between the jobs. So far,
there have been only few studies about this problem, especially for the
non-preemptive case. Our approach is based to the usage of the classical
and efficient for the preemptive case shortest remaining processing time
(SRPT) policy as a lower bound. We investigate the (offline) transfor-
mation of the SRPT schedule to a non-preemptive schedule subject to a
recently introduced resource augmentation model, namely the rejection
model according to which we are allowed to reject a small fraction of
jobs. Specifically, we propose a 2

ǫ
-approximation algorithm for the total

stretch minimization problem if we allow to reject an ǫ-fraction of the
jobs, for any ǫ > 0. This result shows that the rejection model is more
powerful than the other resource augmentations models studied in the
literature, like speed augmentation or machine augmentation, for which
non-polynomial or non-scalable results are known. As a byproduct, we
present a 1

ǫ
-approximation algorithm for the total flow-time minimiza-

tion problem which also rejects at most an ǫ-fraction of jobs.

1 Introduction

In this work we are interested in the analysis of an efficient algorithm for schedul-
ing jobs non-preemptively under the objective of minimizing the total (or aver-
age) stretch of the jobs. Stretch is the most relevant metric used in the context

⋆ This work has been partially supported by the projet Moebus (ANR-13-INFR-0001)
funded by ANR.

⋆⋆ This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-
LABX-0025-01) funded by the French program “Investissement d’avenir”.



of resource management in large scale parallel computing platforms. Informally,
the stretch of a job is the total time it spends in the system normalized by its
processing time. Thus, the average stretch over all the jobs represents a quality
of service measure in terms of fairness among the jobs. The jobs whose execution
requires more time are more appropriate to wait longer than short ones. Non-
preemptive scheduling policies are usually considered in computing platforms
since practically, interrupting jobs during their execution is not allowed. This
is due to significant communication overhead and extra memory costs that are
induced by such interruptions. However, from the combinatorial side, scheduling
non-preemptively is harder and as a consequence, a much less studied problem.

More formally, we consider the offline problem of scheduling a set J of n
independent jobs on a single machine. Each job j ∈ J is characterized by a
processing time pj and a release date rj . Given a schedule S, we denote by σS

j

and CS
j the starting time and completion time, respectively, of the job j. Then,

its flow time is defined as FS
j = CS

j − rj , that is the total time that j remains to

the system. The stretch of j in a schedule S is defined as sSj =
FS

j

pj
, that is the

flow time of j is normalized with respect to its processing time. When there is
no ambiguity, we will simplify the above notation by dropping S. Our objective
is to create a non-preemptive schedule that minimizes the total stretch of all
jobs in J , i.e.,

∑

j∈J sj . This problem is known as the total (or average) stretch
minimization problem.

The total stretch minimization problem is a special case of the total weighted
flow-time minimization problem where each job j ∈ J is additionally charac-
terized by a weight wj and the objective is to minimize

∑

j∈J wjFj . The above
problem reduces to the total stretch minimization problem if we consider that
wj =

1
pj

for each j ∈ J . Another closely related problem which is also a special

case of the total weighted flow-time minimization problem is the total flow-time
minimization problem in which the weights of all jobs are equal. Although total
flow-time and total stretch objectives do not have an immediate relation, the
latter is generally considered to be a more difficult problem since wj depends on
the job’s processing time, while in the former all the jobs have the same weight.

Based on the inapproximability results for different variants of the above
problems (see for example [2, 16] and the related work below), Kalyanasundaram
and Pruhs [14] and Phillips et al. [18] proposed to study the effect of resource
augmentation, in which the algorithm is applied to a more powerful environ-
ment than the optimal one. For instance, in the machine augmentation model
the algorithm can use more machines than the optimal solution, while in the
speed augmentation model the algorithm can execute the jobs on faster machines
comparing to the machines of the optimal schedule. More specifically, given some
optimization objective (e.g., total weighted flow-time), an algorithm is said to be
ℓ-machine ρ-approximation if it uses ℓm machines and it is a ρ-approximation
with respect to an optimal scheduling algorithm using m machines, for some
ℓ > 1; similarly, we can define a v-speed ρ-approximation algorithm. Recently,
Choudhury et al. [10] proposed the rejection model, in which the algorithm can
reject a bounded fraction of the jobs (or a set of jobs whose total weight is

2



a bounded fraction of the total weight of all jobs), while the optimal solution
should execute all the jobs of the instance. In this paper, we study the total
stretch minimization problem with respect to the rejection model.

Related work. When preemptions are allowed, the well-known online Shortest
Remaining Processing Time (SRPT) strategy returns the optimal solution for
the total flow-time minimization problem [1] and a 2-competitive solution for
the total stretch minimization problem [17]. A polynomial time approximation
scheme has been also presented in [7] for the total stretch objective. On the other
hand, for the total weighted flow-time minimization problem, the best known
guarantee is given by a randomized algorithm which achieves an approximation
ratio of O(log log∆) [5], where ∆ is the ratio of the largest processing time over
the smallest processing time in the input instance. Furthermore, algorithms of
competitive ratios O(logW ) [4] and O(log2 ∆) [9] are known, while any algorithm

should have a competitive ratio Ω(min{
√

logW
log logW ,

√

log log∆
log log log∆}) [2], where W

is the ratio of the largest weight over the smallest weight in the input instance.

In the non-preemptive context, even for the objectives of total flow-time and
total stretch, the problem becomes much harder to approximate. Specifically,
there is no approximation algorithm for the total flow-time minimization problem
with ratio O(n

1

2
−ǫ), for any ǫ > 0, unless P = NP [15]. On the other hand,

an algorithm that matches this ratio has been presented in the same paper.
In the online setting, in [9] it is mentioned that any algorithm should have a
competitive ratio Ω(n) even for the total flow-time objective. In [8], the greedy
online Shortest Processing Time (SPT) strategy is proven to be ∆+1

2 -competitive
for the total flow-time minimization problem and this ratio is the best possible for
this problem. Similarly, the weighted generalization of SPT is (∆+1)-competitive
for the total weighted flow-time objective and this ratio is optimal [20].

In the resource augmentation framework, an (1 + ǫ)-speed O( 1ǫ )-competitive
algorithm is known for the total weighted flow-time minimization problem when
preemptions are allowed [6]. In [11], an O( 1

ǫ12 )-competitive algorithm has been
presented for the total weighted flow-time objective which rejects an ǫ-fraction
of jobs; this result holds also for parallel machines.

If preemptions are not allowed, a 12-speed (2+ǫ)-approximation algorithm for
the total flow-time objective and a 12-speed 4-approximation algorithm for the
total weighted flow-time objective have been presented in [3]. In [13], a dynamic
programming framework has been presented that runs in quasi-polynomial time.
This framework works also for the parallel machine setting and leads to a (1+ǫ)-
speed and (1 + ǫ)-approximate solution for the total weighted flow-time mini-
mization problem and to a (1+ǫ)-speed and 1-approximate solution for the total
flow-time minimization problem. In [18], an O(log∆)-machine 1-competitive al-
gorithm has been proposed for the total weighted flow-time objective even for
parallel processors. For the unweighted version, an O(log n)-machine (1 + o(1))-
competitive algorithm and an O(log n)-machine (1 + o(1))-speed 1-competitive
algorithm have been proposed in the same paper. Note that the algorithms in [18]
work in the online setting but they need to know the minimum and the maximum

3



processing times in advance. Moreover, an ℓ-machine (1 +∆1/ℓ)-competitive al-
gorithm designed in [12] for the total flow-time minimization problem, if ∆ is
known a priori to the algorithm. They also provided a lower bound which shows
that their algorithm is optimal up to a constant factor for any constant ℓ.

No results for the total stretch minimization problem without preemptions
in the resource augmentation context are known, except from the results that
derive from the more general problem of minimizing the weighted flow-time.

Contribution and organization of the paper. In this paper, we explore
the relation between preemptive and non-preemptive schedules with respect to
the total stretch objective subject to the rejection model. More specifically, we
consider the SRPT policy for creating a preemptive schedule. In Section 2 we de-
scribe several structural properties of this schedule. Next, we show how to trans-
form the preemptive schedule created by the SRPT policy to a non-preemptive
schedule with given worst-case guarantees.

In Section 3, we use the rejection model and we give an 2
ǫ -approximation

algorithm if we are permitted to delete a subset of jobs such that their total
weight is an ǫ-fraction of the total weight of all jobs. Note that, the relation
among the rejection model and other resource augmentation models is not clear.
For example, in Fig. 1 we give an instance for which the best possible solution us-
ing rejections is worse than the best possible solution using speed-augmentation,
when the same constant ǫ is selected for both models. However, our result shows

time

1 . . . k k+2 . . . 2k+1 2k+3 . . . 3k+2

0 (k + 1)(n − 1) (2k + 2)(n − 1)

Scheduling using rejections (reject the jobs k + 1 and 2k + 2)

time

1 2 . . . n

0 n − 1 (n − 1)(n − 1)

Scheduling using speed augmentation (use processing times equal to n− 1)

Fig. 1. An instance of n = 3k + 2 jobs with equal processing times pj = n, equal
weights wj = 1, and release dates rj = (j − 1)(n − 1), where 1 ≤ j ≤ n. By setting
ǫ = 1

n−1
, in the rejection model we are allowed to reject at most ǫn ≤ 2 jobs, while in

the speed augmentation model the processing time of each job becomes
pj

1+ǫ
= n − 1.

The total flow time using rejections is 3
∑k

j=1(n+ j − 1) = 21
2
k2 + 9

2
k, while the total

flow time using speed augmentation is n(n−1) = 9k2+9k+2 which is better for large
enough k.

the strength of the rejection model, particularly in the non-preemptive context,
since the known results subject to other resource augmentation models either
need quasi-polynomial time [13] or they cannot arrive arbitrarily close to the

4



classical model without resource augmentation [3, 18] even for the total flow-
time objective. Contrarily, our result is the best possible we can expect in the
rejection model.

Finally, using the same rejection strategy and analysis, we obtain an 1
ǫ -

approximation algorithm if we are allowed to delete an ǫ-fraction of jobs. We
conclude in Section 4. Before continuing, we give some additional notation which
we use throughout the paper.

Notations. In what follows, for each job j ∈ J and schedule S, we define the
interval [σS

j , C
S
j ] to be the active interval of j in S. In the case where preemptions

are allowed, the active interval of j may have a length bigger than pj . A job j is
available at a time t if it is released but it is not yet completed, i.e., rj ≤ t < Cj .
We call a schedule compact if it does not leave any idle time whenever there is
a job available for execution.

2 Structure and Properties of SRPT and an Intermediate

Schedule

In this section we deal with the structure of a preemptive schedule created by
the Shortest Remaining Processing Time (SRPT) policy and we give some useful
properties that we will use in the following sections. According to the SRPT
policy, at any time, we select to execute the available job with the shortest
remaining processing time. Since the remaining processing time of the executed
job j ∈ J decreases over time, its execution may be interrupted only in the case
where a new job k ∈ J is released and the processing time of k is smaller than
the remaining processing time of j at rk. Hence, the SRPT policy can be seen
as an event-driven algorithm in which at each time t where a job is released or
completed we should take a decision about the job that we will execute at t and
we always select the one with the shortest remaining processing time. In case
of ties, we assume that SRPT resumes the partially executed job, if any, with
the latest starting time; if all candidate jobs are not processed before, then we
choose among them the job with the earliest release time.

Kellerer et al. [15] observed that in the schedule produced by the SRPT
policy, for any two jobs j and k, their active intervals are either completely
disjoint or the one contains the other. Moreover, there is no idle time during
the active interval of any job. Based on the above, the execution of the jobs in
the SRPT schedule has a tree-like structure. More specifically, we can create a
graph which consists of a collection T of out-trees and corresponds to the SRPT
schedule as follows (see Fig. 2): for each job j ∈ J , we create a vertex uj . For
each pair of jobs j, k ∈ J , we add an arc (uj , uk) if and only if [σk, Ck] ⊂ [σj , Cj ]
and there is no other job i ∈ J so that [σk, Ck] ⊂ [σi, Ci] ⊂ [σj , Cj ].

In what follows, we denote by root(T ) the root of each out-tree T ∈ T .
Intuitively, each vertex root(T ) corresponds to a job for which at any time t

during its execution there is no other job which has been partially executed at
t. We denote also by a(j) the parent of the vertex that corresponds to the job

5



jobs 1 2 3 4 5 6

rj 0 3 6 7 14 16
pj 7 3 3 1 5 1

1 2 3 4 3 1 5 6 5

0 3 6 7 8 10 14 16 17 20

Shortest Remaining Processing Time (SRPT) schedule

1

2 3

4

5

6

Collection of out-trees

Fig. 2. A schedule created by the SRPT policy and its corresponding collection of
out-trees.

j ∈ J in T. Moreover, let T (uj) be the subtree of T ∈ T rooted at a vertex uj

in T . Note that, we may refer to a job j by its corresponding vertex uj and vice
versa.

In this paper, we use the schedule created by the SRPT policy for the preemp-
tive variant of our problem as a lower bound to the non-preemptive variant. The
SRPT policy is known to be optimal [16, 19] for the problem of minimizing the
sum

∑

j∈J Fj when preemptions of jobs are allowed. However, for the preemptive
variant of the total stretch minimization problem, SRPT is a 2-approximation
algorithm [17].

SRPT 1 2 3 4 3 1 5 6 5

0 3 6 7 8 10 14 16 17 20

QPO 1 2 4 3 5 6

0 7 10 11 14 19 20

Fig. 3. Transformation from SRPT to QPO schedule

Consider now the collection of out-trees T obtained by an SRPT schedule
and let T (uj) be the subtree rooted at any vertex uj . We construct a non-
preemptive schedule for the jobs in T (uj) as follows: during the interval [σj , Cj ],

6



we run the jobs in T (uj) starting with j and then running the remaining jobs
in order of increasing SRPT completion time as shown in Figure 3. This policy
has been proposed in [8] for the problem of minimizing the sum

∑

j∈J Fj and
corresponds to a post order transversal of the subtree T (uj) excluding its root
which is scheduled in the first position. We call the above policy as Quasi Post
Order (QPO) and we will use it for the problem of minimizing the sum

∑

j∈J sj .
The following lemma presents several observations for the QPO policy.

Lemma 1. [8] Consider any subtree T (uk) which corresponds to a part of the
schedule SRPT and let QPO be the non-preemptive schedule for the jobs on
T (uk) created by applying the Quasi Post Order policy. Then,

i) all jobs in QPO are executed during the interval [σSRPT
k , CSRPT

k ] without
any idle period,

ii) σQPO
j ≥ rj for each uk in T (uk),

iii) CQPO
j ≤ CSRPT

j + pk for each uj in T (uk) with j 6= k, and

iv) CQPO
k = CSRPT

k −
∑

uj∈T (uk):j 6=k pj.

Note that, the schedule created by the SRPT policy is a compact schedule,
since it always execute a job if there is an available one. Therefore, by Lemma 1.i,
the following directly holds.

Corollary 1. The schedule created by the QPO policy is compact.

3 The Rejection Model

In this section we consider the rejection model. More specifically, given an ǫ ∈
(0, 1), we are allowed to reject any subset of jobs R ⊂ J whose total weight
does not exceed an ǫ-fraction of the total weight of all jobs, i.e.,

∑

j∈R wj ≤
ǫ
∑

j∈J wj . We will present our rejection policy for the more general problem of
minimizing

∑

j∈J wjFj .
Our algorithm is based on the tree-like structure of the SRPT schedule. Let

us focus first on a single out-tree T ∈ T . The main idea is to reject the jobs that
appear in the higher levels of T (starting with its root) and run the remaining
jobs using the QPO policy. The rejected jobs are, in general, long jobs which
are preempted several times in the SRPT schedule and their flow time can be
used as an upper bound for the flow time of the smaller jobs that are released
and completed during the life interval of the longest jobs. In order to formalize
this, for each job j ∈ J we introduce a charging variable xj . In this variable
we accumulate the weight of jobs whose flow time will be upper bounded by
the flow time of job j in the SRPT schedule. At the end of the algorithm, this
variable will be exactly equal to 1

ǫwj for each rejected job j ∈ R, while xj <
1
ǫwj

for each non-rejected job j ∈ J \ R. In fact, for most of the non-rejected jobs
this variable will be equal to zero at the end of the algorithm. Our algorithm
considers the jobs in a bottom-up way and charges the weight of the current job
to its ancestors in T which are closer to the root and their charging variable is

7



not yet full; that is the vertices to be charged are selected in a top-down way.
Note that, we may charge parts of the weight of a job to more than one of its
ancestors.

Algorithm 1 describes formally the above procedure. For notational conve-
nience, we consider a fictive vertex u0 which corresponds to a fictive job with
w0 = 0. We connect u0 with the vertex root(T ) of each out-tree T ∈ T in such a
way that u0 becomes the parent of all of them. Let T ∗ be the created tree with
root u0.

Algorithm 1

1: Create a preemptive schedule SRPT and the corresponding out-tree T ∗

2: Initialization: R ← ∅, xj ← wj for each j ∈ J , x0 ← 0
3: for each vertex uj of T ∗ with xj = wj in post-order traversal do
4: while xj 6= 0 and xa(j) <

1
ǫ
wa(j) do

5: Let uk be a vertex in the path between u0 and uj such that
xa(k) =

1
ǫ
wa(k) and xk < 1

ǫ
wk

6: Let y ← min{xj ,
1
ǫ
wk − xk}

7: xj ← xj − y and xk ← xk + y

8: for each job j ∈ J do

9: if xj = 1
ǫ
wj then

10: Reject j, i.e., R ← R∪ {j}
11: return S: the non-preemptive schedule for the jobs in J \ R using QPO

Note that, the for-loop in Lines 3-7 of Algorithm 1 is not executed for all jobs.
In fact, it is not applied to the jobs that will be rejected as well as to some children
of them for which at the end of the algorithm it holds that wj < xj < 1

ǫwj .
The weight of these jobs is charged to themselves. Moreover, the while-loop in
Lines 4-7 of Algorithm 1 terminates either if the whole weight of j is charged to
its ancestors or if the parent of uj is already fully charged, i.e., xa(j) =

1
ǫwa(j).

Theorem 1. For the schedule S created by Algorithm 1 it holds that

(i)
∑

j∈J\R

wjF
S
j ≤

1

ǫ

∑

j∈J

wjF
SRPT
j , and

(ii)
∑

j∈R

wj ≤ ǫ
∑

j∈J

wj.

Proof. Consider first any vertex uk such that k ∈ J \ R and a(k) ∈ R. By the
execution of the algorithm, all the jobs corresponding to vertices in the path from
u0 to a(k) do not appear in S. Hence, k starts in S at the same time as in SRPT ,
i.e., σS

k = σSRPT
k . Thus, by Lemma 1, the jobs that correspond to the vertices

of the subtree T ∗(uk) are scheduled in S during the interval [σSRPT
k , CSRPT

k ].
In other words, for any job j in T ∗(uk) it holds that C

S
j ≤ CSRPT

k , while by the

construction of T ∗ we have that σSRPT
k < rj . Assume now that the weight of j

is charged by Algorithm 1 to the jobs j1, j2, . . . , jqj , where qj is the number of

8



these jobs. Let wi
j be the weight of j charged to ji ∈ {j1, j2, . . . , jqj}; note that

wj =
∑qj

i=1 w
i
j . By the definition of the algorithm, each ji ∈ {j1, j2, . . . , jqj} is

an ancestor of both k and j in T ∗ (one of them may coincides with k). Therefore,
by the definition of T ∗, it holds that σSRPT

ji
< rj < CS

j ≤ CSRPT
ji

, for each
ji ∈ {j1, j2, . . . , jqj}. Then, we have

∑

j∈J\R

wjF
S
j ≤

∑

j∈J\R

qj
∑

i=1

wi
jF

SRPT
ji ≤

∑

j∈J

xjF
SRPT
j ≤

∑

j∈J

1

ǫ
wjF

SRPT
j

where the second inequality holds by regrouping the flow time of all appearances
of the same job, and the last one by the fact that Algorithm 1 charges at each
job j at most (1 + 1

ǫ )wj . Finally, since the weight of each job is charged exactly
once (probably to more than one other jobs) we have

∑

j∈J wj ≥ 1
ǫ

∑

j∈R wj

and the theorem holds. ⊓⊔

Since SRPT creates an optimal preemptive schedule for the problem of min-
imizing

∑

j∈J Fj on a single machine and an optimal preemptive schedule is a
lower bound for a non-preemptive one the following theorem holds.

Theorem 2. Algorithm 1 is a 1
ǫ -approximation algorithm for the single-machine

total flow-time minimization problem without preemptions if we are allowed to
reject an ǫ-fraction of the jobs.

By combining Theorem 1 and the fact that SRPT is a 2-approximation algo-
rithm for the preemptive variant of the total stretch minimization problem [17],
the following theorem holds.

Theorem 3. Algorithm 1 is a 2
ǫ -approximation algorithm for the single-machine

total stretch minimization problem without preemptions if we are allowed to re-
ject a set of jobs whose total weight is no more than an ǫ-fraction of the total
weight of all jobs.

4 Concluding Remarks

We studied the effects of applying resource augmentation in the transformation
of a preemptive schedule to a non-preemptive one for the problem of minimizing
total stretch on a single machine. Specifically, we show the power of the rejec-
tion model for scheduling without preemptions comparing with other resource
augmentation models, by presenting an algorithm which has a performance ar-
bitrarily close to optimal. Note that, SRPT is a 14-competitive algorithm for
minimizing total stretch on parallel machines when preemptions and migrations
are allowed [17]. So, an interesting question is to explore the general idea of this
paper about transforming preemptive to non-preemptive schedules subject to
the rejection model on parallel machines based on the above result.

9



References

1. K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.
2. N. Bansal and H.-L. Chan. Weighted flow time does not admit o(1)-competitive

algorithms. In SODA, pages 1238–1244, 2009.
3. N. Bansal, H.-L. Chan, R. Khandekar, K. Pruhs, C. Stein, and B. Schieber. Non-

preemptive min-sum scheduling with resource augmentation. In FOCS, pages 614–
624, 2007.

4. N. Bansal and K. Dhamdhere. Minimizing weighted flow time. ACM Transactions

on Algorithms, 3(4), 2007.
5. N. Bansal and K. Pruhs. The geometry of scheduling. SIAM Journal on Computing,

43:1684–1698, 2014.
6. L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Online weighted

flow time and deadline scheduling. Journal of Discrete Algorithms, 4:339–352, 2006.
7. M. A. Bender, S. Muthukrishnan, and R. Rajaraman. Approximation algorithms

for average stretch scheduling. Journal of Scheduling, 7:195–222, 2004.
8. D. P. Bunde. SPT is optimally competitive for uniprocessor flow. Information

Processing Letters, 90:233–238, 2004.
9. C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted flow

time. In STOC, pages 84–93, 2001.
10. A. R. Choudhury, S. Das, N. Garg, and A. Kumar. Rejecting jobs to minimize

load and maximum flow-time. In SODA, pages 1114–1133, 2015.
11. A. R. Choudhury, S. Das, and A. Kumar. Minimizing weighted lp-norm of flow-

time in the rejection model. In FSTTCS, pages 25–37, 2015.
12. L. Epstein and R. van Stee. Optimal on-line flow time with resource augmentation.

Discrete Applied Mathematics, 154:611–621, 2006.
13. S. Im, S. Li, B. Moseley, and E. Torng. A dynamic programming framework for

non-preemptive scheduling problems on multiple machines [extended abstract]. In
SODA, pages 1070–1086, 2015.

14. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal
of the ACM, 47:617–643, 2000.

15. H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonap-
proximability results for minimizing total flow time on a single machine. SIAM

Journal on Computing, 28:1155–1166, 1999.
16. S. Leonardi and D. Raz. Approximating total flow time on parallel machines.

Journal of Computer and System Sciences, 73:875–891, 2007.
17. S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E. Gehrke. Online scheduling

to minimize average stretch. SIAM Journal on Computing, 34:433–452, 2005.
18. C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling

via resource augmentation. Algorithmica, 32:163–200, 2002.
19. L. Schrage. A proof of the optimality of the shortest remaining processing time

discipline. Operations Research, 16:687–690, 1968.
20. J. Tao and T. Liu. WSPT’s competitive performance for minimizing the total

weighted flow time: From single to parallel machines. Mathematical Problems in

Engineering, 10.1155/2013/343287, 2013.

10


