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Formal Analysis of Security Properties on the OPC-UA SCADA Protocol

. Nowadays they are increasingly communicating over insecure media such as Internet. Due to their interaction with the real world, it is crucial to prove the security of their protocols. In this paper, we formally study the security of one of the most used industrial protocols: OPC-UA . Using ProVerif, a well known cryptographic protocol verification tool, we are able to check secrecy and authentication properties. We find several attacks on the protocols and provide countermeasures.

Introduction

Industrial systems also called SCADA (Supervisory Control And Data Acquisition) have been known to be targeted by cyberattacks since the famous Stuxnet case [START_REF] Langner | Stuxnet: Dissecting a cyberwarfare weapon[END_REF] in 2010. Due to the criticality of their interaction with the real world, these systems can potentially be really harmful for humans and environment. The frequency of such attacks is increasing to become one of the priorities for governmental agencies, e.g. [START_REF] Stouffer | Guide to industrial control systems (ICS) security[END_REF] from the US National Institute of Standards and Technology (NIST) or [START_REF] Anssi | Managing cybersecurity for ICS[END_REF] from the French Agence Nationale de la Sécurité des Systèmes d'Information (ANSSI).

Industrial systems differ from other systems because of the long lifetime of the devices and their difficulty to be patched in case of vulnerabilities. Such specificities encourage to carefully check standards and applications before deploying them. As it already appeared for business IT's protocols for twenty years, automated verification is crucial in order to discover flaws in the specifications of protocols before assessing implementations. However, the lack of formal verification of industrial protocols has been emphasized in 2006 by Igure et al. [START_REF] Vinay | Security issues in SCADA networks[END_REF] and in 2009 by Patel et al. [START_REF] Sandip | Improving the cyber security of SCADA communication networks[END_REF]. They particularly argued that automated protocol verification help to understand most of the vulnerabilities of a protocol before changing its standards in order to minimize the number of revisions which costs time and money.

State-of-the-art. Most of the works on the security of industrial protocols only rely on specifications written in human language rather than using formal methods. In 2004, Clarke et al. [START_REF] Gordon R Clarke | Practical modern SCADA protocols: DNP3, 60870.5 and related systems[END_REF] discussed the security of DNP3 (Distributed Network Protocol) and ICCP (Inter-Control Center Communications Protocol). In 2005, Dzung et al. [START_REF] Dzung | Security for industrial communication systems[END_REF] proposed a detailed survey on the security in SCADA systems including informal analysis on the security properties offered by various industrial protocols: OPC (Open Platform Communications), MMS (Manufacturing Message Specification), IEC 61850 , ICCP and EtherNet/IP . In 2006, in the technical documentation of OPC-UA (OPC Unified Architecture) the authors detailed the security measures of the protocol (specially in part 2, 4 and 6). In 2015, Wanying et al. [START_REF] Wanying | The study of security issues for the industrial control systems communication protocols[END_REF] summarized the security offered by MODBUS , DNP3 and OPC-UA .

On the other hand, some works propose new versions of existing protocols to make them secure against malicious adversaries. In 2007, Patel et al. [START_REF] Sandip | Analysis of SCADA security models[END_REF] studied the security of DNP3 and proposed two ways of enhancing it through digital signatures and challenge-response models. In 2009, Fovino et al. [START_REF] Fovino | Design and implementation of a secure MODBUS protocol[END_REF] proposed a secure version of MODBUS relying on well-known cryptographic primitives such as RSA and SHA2. In 2013, Hayes et al. [START_REF] Hayes | Securing MODBUS transactions using hash-based message authentication codes and stream transmission control protocol[END_REF] designed another secure MODBUS protocol using hashbased message authentication codes and built on STCP (Stream Transmission Control Protocol). To the best of our knowledge, Graham et al. [START_REF] Graham | Correctness proofs for SCADA communication protocols[END_REF] is the only work directly using formal methods to prove the security of industrial protocols or find attack against them. They proposed a formal verification of DNP3 using OFMC [START_REF] Basin | An on-the-fly model-checker for security protocol analysis[END_REF] (Open-Source Fixed-Point Model-Checker) and SPEAR II [START_REF] Saul | SPEAR II -the security protocol engineering and analysis resource[END_REF] (Security Protocol Engineering and Analysis Resource).

Contributions. We propose a formal analysis of the security of the sub-protocols involved in the OPC-UA handshake, namely OPC-UA OpenSecureChannel and OPC-UA CreateSession . These sub-protocols are crucial for the security since the first aims at authenticating a client and a server and deriving secret keys while the second allows the client to send his credentials to the server. To perform our security analysis, we use one of the most efficient tools in the domain of cryptographic protocol verification according to [START_REF] Lafourcade | Performance evaluations of cryptographic protocols. verification tools dealing with algebraic properties[END_REF], namely ProVerif developed by Blanchet et al. [START_REF] Blanchet | An efficient cryptographic protocol verifier based on Prolog rules[END_REF]. It considers the classical Dolev-Yao intruder model [START_REF] Dolev | On the security of public key protocols[END_REF] who controls the network, listens, stops, forges, replays or modifies some messages according to its knowledge. The perfect encryption hypothesis is assumed, meaning that it is not possible to decrypt a ciphertext without its encryption key or to forge a signature without knowing the secret key. ProVerif can verify security properties of a protocol such as secrecy and authentication. The first property ensures that a secret message cannot be discovered by an unauthorized agent (including the intruder). The authentication property means that one participant of the protocol is guaranteed to communicate with another one. Modeling credential in ProVerif is not common and requires to understand the assumptions made in the protocol in order to model it correctly. We follow the official OPC-UA standards in our models and checked it against a free implementation called FreeOpcUa1 . Finally, using ProVerif , we automatically find attacks against both sub-protocols and provide simple realistic countermeasures. All sources we developed are available2 .

Outline. In Section 2, we analyze the security of OPC-UA OpenSecureChannel and OPC-UA CreateSession in Section 3. Finally, we conclude in Section 4.

OPC-UA OpenSecureChannel

The OpenSecureChannel sub-protocol aims to authenticate a client and a server and allows them to exchange two secret nonces (random numbers) that will be used to derive shared keys for the later communications. Moreover, OPC-UA can be used with three security modes, namely None, Sign and SignAndEncrypt.

-SignAndEncrypt: messages are signed {h(m)} sk(X) and encrypted {m} pk(X) , where h is an hash function, sk(X) the secret key associated to X and pk(X) the public key of X. This mode claims to provide secrecy of communication using symmetric and asymmetric encryption, but also both authentication and integrity through digital signatures.

-Sign: it is the same as SignAndEncrypt but messages are only signed {h(m)} sk(x) , and not encrypted. -None: using this mode, the OpenSecureChannel sub-protocol does not serve much purpose as it does not provide any security but is used for compatibility. This protocol is described in Figure 1. In message 1, C requests information on S with GEReq meaning GetEndpointRequest. In message 2, DiscoveryEndpoint answers with the following information where GERes stands for GetEndpointResponse, SP for Security Policy and UP for UserPolicy. Both SP and UP are used for cryptographic primitive negotiations. In message 3, C sends a nonce N C to S with OSReq standing for OpenSecureChannelRequest. Finally in message 4, S answers a nonce N S to C with OSCRes for OpenSecureChannelResponse, ST for SecurityToken (a unique identifier for the channel) and TTL for TimeToLive (its life-time). The four terms GEReq, GERes, OSCReq and OSCRes indicate the purpose of each message of the protocol. At the end of this protocol, both C and S derive four keys (K CS , KSig CS , K SC and KSig SC ) by hashing the nonces with a function named P _hash, similar as in TLS [START_REF] Dierks | The transport layer security (TLS) protocol, version 1.2[END_REF]: (K CS , KSig CS ) = P _hash(N C , N S ) and (K SC , KSig SC ) = P _hash(N S , N C ).

Modeling

Normally, a GetEnpointRequest would be answered by a list of session endpoints with possibly different security modes. We suppose that the client always accepts the security mode proposed. Client's and server's certificates are modeled by their public keys. Moreover, thanks to the perfect encryption hypothesis, we can abstract the cryptographic primitives used. We consider an intruder whose public key would be accepted by a legitimate client or server. Such an intruder could for instance represent a legitimate device that has been corrupted through a virus or that is controlled by a malicious operator. We consider the following security objectives: (i) the secrecy of the keys obtained by C (denominated by K CS and KSig CS ), (ii) the secrecy of the keys obtained by S (denominated by K SC and KSig SC ), (iii) the authentication of C on N C and (iv) the authentication of S on N S .

Results

We model in ProVerif this protocol for the three security modes of OPC-UA for each objective proposed. Results provided by ProVerif are shown in Table Obviously, as the security mode None does not provide any security, all objectives can be attacked. Moreover, as nonces are exchanged in plaintext in security mode Sign, the keys are leaked. Finally, in the case of Sign and SignAndEncrypt, the intruder reroutes messages to mount attacks on authentication in order to bypass replay protections such as timestamps as the packet's destination is changed rather than being replayed later. Figure 2 shows an attack on the authentication of C using N C . This attack is possible because the standard OPC-UA protocol does not require explicitly to give the identity of the receiver of a message. Thus it allows the intruder to send to S the signed message C sent to him similarly as the man-in-the-middle attack on the Needham-Schroeder protocol [START_REF] Lowe | Breaking and fixing the Needham-Schroeder public-key protocol using FDR[END_REF].

Fixed version

We propose a fixed version of the OpenSecureChannel sub-protocol using one of the classical counter-measures for communication protocols proposed in [START_REF] Abadi | Prudent engineering practice for cryptographic protocols[END_REF]. It consists in explicitly adding the public key of the receiver to the messages and thus avoiding an intruder to reroute signed messages to usurp hosts, as presented in Section 2.2. This resolves the authentication problem but, as ProVerif confirms, attacks on secrecy are still present. In order to solve the remaining secrecy attacks, we use the key wrapping [START_REF] Focardi | An introduction to security API analysis[END_REF] mechanism present in the OPC-UA standards [START_REF] Mahnke | OPC unified architecture[END_REF][START_REF]OPC Unified Architecture. Part 2: Security model[END_REF][START_REF]OPC Unified Architecture. Part 4: Services[END_REF][START_REF]OPC Unified Architecture. Part 6: Mappings[END_REF]. All occurrences of We also use ProVerif to confirm the security of the protocol with all our countermeasures. The results are presented in Table 2 

OPC-UA CreateSession

The OPC-UA CreateSession sub-protocol allows a client to send credentials (e.g. a login and a password) over an already created Secure Channel. This sub-protocol is presented in Figure 3. This protocol follows the security mode that was chosen during the OpenSecureChannel sub-protocol and uses the symmetric keys derived, thus encryption becomes symmetric and signature relies on a Message Authentication Code (MAC). Then messages sent by C are encrypted using K CS (resp. signed with KSig CS ) and messages sent by S are encrypted with K SC (resp. signed with KSig SC ). More formally, in message 1, C sends a nonce as a challenge to S with CSReq meaning Create-SessionRequest. In message 2, S answers with Sig N C = {pk(C), N C } sk(S) and CSRes for CreateSessionResponse. The message Sig N C is the response of C's challenge and requires S to sign with its private (asymmetric) key to prove that he is the same as in the OpenSecureChannel sub-protocol. For this particular use, the OPC-UA standard explicitly asks to add C's public key to the signature (which confirms the counter-measure given in Section 2.3). In message 3, C answers S's challenge with Sig N S and sends his credentials to S with ASReq for ActivateSessionRequest. Finally, in message 4, S confirms to C that the session is created with ASRes for ActivateSessionResponse and N S2 a fresh nonce as a challenge that C should use to refresh the session when it is timedout. Again, CSReq, CSRes, ASReq and ASRes indicate the purpose of each message of the protocol. 

Modeling

As this protocol involves logins and passwords, we assume that C uses a different password for each server he speaks with. On the contrary, as mentioned in Section 2.1, we consider an intruder that can play a legitimate device that has been corrupted and would obtain the credentials of the client just by playing the protocol with him. Modeling of credentials is still not common in ProVerif . We use two functions: Login and Passwd. The first one takes as parameter the public key of a host in order to associate his login with him. This function is public for everybody. The function Passwd takes as parameter the private key of its owner to make it secret, but also the public key of the server to model a different password for each server. Then we provide the following equation: verifyCreds(pk(S),Login(pk(C)),Passwd(sk(C),pk(S))) = true. It allows the server to verify if a password and a login are matching and if the password is the one he knows (using his public key). According to our results for the OpenSecureChannel sub-protocol, the secrecy of the symmetric keys in security mode Sign depends on if the protocol uses key wrapping. Again, as the OPC-UA standard is not clear on how to use the mechanism in this mode, we check with and without this security. This means that if keys are compromised, then the intruder has access to it. We consider four security objectives: (i) the secrecy of the password, (ii) the authentication of C on his password, (iii) the authentication of C on Sig N S and (iv) the authentication of S on Sig N C .

Results

Results without key wrapping (thus with keys leaked in security mode Sign, cf. Table 1) are presented in Table 3. Again, all objectives are attacked in security mode None. Also the secrecy of the password cannot hold even in security mode Sign since it will be sent by the client in plaintext during a legitimate exchange. However, both challengeresponse nonces ensure authentication since the private keys are used instead of the symmetric keys. An attack on the authentication on P asswd in security mode Sign is found by the tool. In this attacks the intruder replaces the credentials of C by other valid credentials and recalculates the MAC of the message using the leaked keys. If we consider that key wrapping is used in the OpenSecureChannel sub-protocol (thus without keys leaked in security mode Sign) then according to ProVerif results the authentication on C's password becomes secure. This analysis shows that the use of key wrapping is crucial in security mode Sign. Thus it should be clearly said in the OPC-UA standard since missing this feature completely breaks the security of Sign mode. Moreover, C's credential should also be encrypted when exchanged in Sign mode to ensure their confidentiality. Finally, we check the source code of the free implementation of OPC-UA (FreeOpcUa). This implementation is secure since it forces encryption of secrets even in security mode Sign.

Conclusion

We provided a formal verification of the industry standard communication protocol OPC-UA , relying its official specifications [START_REF] Mahnke | OPC unified architecture[END_REF][START_REF]OPC Unified Architecture. Part 2: Security model[END_REF][START_REF]OPC Unified Architecture. Part 4: Services[END_REF][START_REF]OPC Unified Architecture. Part 6: Mappings[END_REF]. We used ProVerif a tool for automatic cryptographic protocol verification. Protocol modelings were tedious tasks since specifications are often elusive to allow interoperability. Particularly due to unclear statements on the use of cryptography with security mode Sign, we studied the protocol with and without counter-measures and proved the need of encryption for secrets to ensure messages security properties. We also found attacks on authentication and provided realistic counter-measures. We chose to focus on the two sub-protocols involved in the security handshake as they represent the core of the protocol's security. In the future, we aim at testing the attacks we found on official implementations which are proprietary in order to check if they filled the gap as did FreeOpcUa.
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 1 Fig. 1. OPC-UA OpenSecureChannel sub-protocol in mode SignAndEncrypt.
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 2 Fig. 2. Attack on NC : I usurps C when speaking to S.
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 3 Fig. 3. OPC-UA CreateSession sub-protocol

Table 1 .

 1 1. Results for OpenSecureChannel sub-protocol

	OPC-UA Security mode	Objectives Sec KCS Sec KSC Auth NS Auth NC
	None	UNSAFE UNSAFE UNSAFE UNSAFE
	Sign	UNSAFE UNSAFE UNSAFE UNSAFE
	SignEnc	SAFE	SAFE UNSAFE UNSAFE

Table 2 .

 2 and show that both authentication and secrecy are now secure for security modes Sign and SignAndEncrypt. As nonces are encrypted in security mode Sign, keys remain secret. Results for fixed OpenSecureChannel sub-protocol

	OPC-UA Security mode	Objectives Sec KCS Sec KSC Auth NS Auth NC
	None	UNSAFE UNSAFE UNSAFE UNSAFE
	Sign	SAFE	SAFE	SAFE	SAFE
	SignEnc	SAFE	SAFE	SAFE	SAFE

Table 3 .

 3 Results for OPC-UA CreateSession sub-protocol

	OPC-UA Security mode	Objectives Sec P asswd Auth P asswd Auth SigN S Auth SigN C
	None	UNSAFE	UNSAFE	UNSAFE	UNSAFE
	Sign	UNSAFE	UNSAFE	SAFE	SAFE
	SignEnc	SAFE	SAFE	SAFE	SAFE

https://freeopcua.github.io/

http://indusprotoverif.forge.imag.fr/PPL16.tar.gz
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