S. Albers, L. M. Favrholdt, and O. Giel, On paging with locality of reference, Journal of Computer and System Sciences, vol.70, issue.2, pp.145-175, 2005.
DOI : 10.1016/j.jcss.2004.08.002

N. Anand, A. Garg, . Kumar-janardhan, K. Kulkarni, and . Munagala, Resource augmentation for weighted flowtime explained by dual fitting Competitive flow time algorithms for polyhedral scheduling, Symposium on Discrete Algorithms Proc. 56th Symposium on Foundations of Computer Science, pp.1228-1241, 2012.

S. Im, S. Li, B. Moseley, and E. Torng, A Dynamic Programming Framework for Non-Preemptive Scheduling Problems on Multiple Machines [Extended Abstract], Proc. 26th ACM-SIAM Symposium on Discrete Algorithms, pp.1070-1086, 2015.
DOI : 10.1137/1.9781611973730.72

B. Kalyanasundaram and K. Pruhs, Speed is as powerful as clairvoyance, Journal of the ACM, vol.47, issue.4, pp.617-643, 2000.
DOI : 10.1145/347476.347479

H. Kellerer, T. Tautenhahn, and G. J. Woeginger, Approximability and Nonapproximability Results for Minimizing Total Flow Time on a Single Machine, SIAM Journal on Computing, vol.28, issue.4, pp.1155-1166, 1999.
DOI : 10.1137/S0097539796305778

E. Koutsoupias and C. H. Papadimitriou, Beyond Competitive Analysis, SIAM Journal on Computing, vol.30, issue.1, pp.300-317, 2000.
DOI : 10.1137/S0097539796299540

B. Moseley, K. Pruhs, and C. Stein, The complexity of scheduling for pnorms of flow and stretch -(extended abstract), Proc. Integer Programming and Combinatorial Optimization, pp.278-289, 2013.

A. Cynthia, C. Phillips, E. Stein, J. Torng, and . Wein, Optimal time-critical scheduling via resource augmentation, Algorithmica, vol.32, issue.2, pp.163-200, 2002.

P. Raghavan, A statistical adversary for on-line algorithms, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.7, pp.79-83, 1992.

K. Thang, Lagrangian duality in online scheduling with resource augmentation and speed scaling, Proc. 21st European Symposium on Algorithms, pp.755-766, 2013.

P. Williamson, B. David, and . Shmoys, The design of approximation algorithms, 2011.
DOI : 10.1017/CBO9780511921735